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Abstract 

Background: A brain-machine interface (BMI) should be able to help people with 

disabilities by replacing their lost motor functions. To replace lost functions, robot 

arms have been developed that are controlled by invasive neural signals. Although 

invasive neural signals have a high spatial resolution, non-invasive neural signals are 

valuable because they provide an interface without surgery. Thus, various researchers 

have developed robot arms driven by non-invasive neural signals. However, robot arm 

control based on the imagined trajectory of a human hand can be more intuitive for 

patients. In this study, therefore, an integrated robot arm-gripper system (IRAGS) that is 

driven by three-dimensional (3D) hand trajectories predicted from non-invasive neural 

signals was developed and verified.

Methods: The IRAGS was developed by integrating a six-degree of freedom robot arm 

and adaptive robot gripper. The system was used to perform reaching and grasping 

motions for verification. The non-invasive neural signals, magnetoencephalography 

(MEG) and electroencephalography (EEG), were obtained to control the system. The 3D 

trajectories were predicted by multiple linear regressions. A target sphere was placed 

at the terminal point of the real trajectories, and the system was commanded to grasp 

the target at the terminal point of the predicted trajectories.

Results: The average correlation coefficient between the predicted and real trajecto-

ries in the MEG case was 0.705 ± 0.292 (p < 0.001). In the EEG case, it was 0.684 ± 0.309 

(p < 0.001). The success rates in grasping the target plastic sphere were 18.75 and 

7.50 % with MEG and EEG, respectively. The success rates of touching the target were 

52.50 and 58.75 % respectively.

Conclusions: A robot arm driven by 3D trajectories predicted from non-invasive 

neural signals was implemented, and reaching and grasping motions were performed. 

In most cases, the robot closely approached the target, but the success rate was not 

very high because the non-invasive neural signal is less accurate. However the success 

rate could be sufficiently improved for practical applications by using additional sen-

sors. Robot arm control based on hand trajectories predicted from EEG would allow for 

portability, and the performance with EEG was comparable to that with MEG.
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Background

In modern life, people face an elevated risk of losing all or part of their motor functions 

because of accidents or disease. Various technologies have been developed to help peo-

ple who have lost their motor functions as replacements. A wearable robot arm driven 

by electromyography has been suggested [1], and functional electrical stimulation has 

been used to move the limb of a patient by stimulating a paralyzed muscle in lieu of inac-

tive motor neurons [2]. �is study used the brain-machine interface (BMI), which allows 

the neural signals of the user to be analyzed to realize the control of external machines. 

In other words, BMI allows a person to bypass conventional neuromuscular pathways to 

interact with the environment [3].

Since the BMI concept was first proposed in the 1970s at the University of Califor-

nia Los Angeles [4, 5], scientists and engineers have improved upon the technology to 

develop human-controlled external effectors that do not require physical movement [6–

9]. Recently, monkeys have fed themselves by controlling a robotic arm [10], and humans 

have used invasive neural signals to control a seven-degree of freedom (DOF) robot arm 

as if it were their own arm [11, 12]. An invasive electrode array collects the neural signal 

directly from the brain tissues. �erefore, it has the advantage of high spatial resolu-

tion, which allows for accurate prediction of the human intention. In these studies, robot 

arms were controlled according to the predicted three-dimensional (3D) trajectories of a 

human hand. �e velocity vector of the human hand was predicted from neural signals. 

�is approach enables subjects to control a robot arm intuitively as if it were their own 

arm.

Researches working on robot arm control based on predicting the hand trajectory 

have considered using not only invasive neural signals but also less-invasive neural sig-

nals such as electrocorticography (ECoG). Because the electrodes of ECoG contact the 

surface of the brain tissue, it provides a spatial resolution between that of invasive and 

non-invasive neural signals (see Fig.  1; [13]). A mesh of ECoG electrodes is inserted 

beneath the skull and draped over the surface of the arachnoid. Recently, ECoG has been 

used to predict hand movement trajectories and classify grasping types [14–19].

Even though invasive and less-invasive neural signals demonstrate a relatively high 

spatial resolution, non-invasive neural signals such as electroencephalography (EEG) 

and magnetoencephalography (MEG) are valuable because they provide an interface 

without surgery. In particular, EEG can provide a practical interface because of its port-

ability. Although the safety of surgery for electrode implantation has been confirmed by 

researchers, it is still burdensome for patients. Furthermore, the surgery for electrode 

implantation carries the risk of causing brain infection, bleeding, and brain tissue dam-

age [9]. �erefore, researches have considered robot arm control based on non-invasive 

neural signals. Valbuena et  al. [20] and Bakardjian et  al. [21] used steady-state visual 

evoked potential (SSVEP) to control a seven-DOF robot arm. Pathirage et al. [22] used 

P300 to control a wheelchair-mounted robot arm. Some research groups succeeded at 

moving a target object by using a multi-DOF robot arm or wearable robot suit [23–25]. 

Valenzuela and Avila [26] proposed biomimetic control of mechanical systems equipped 

with musculotendon actuators, which can potentially be activated by non-invasive neu-

ral signals. �ese studies have contributed to increasing the accuracy of robot arm con-

trol based on using non-invasive neural signals. However, predicting the hand trajectory 
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can provide more intuitive control for patients than previous methods because it allows 

the robot arm end-effector to be controlled how patients imagine moving their own 

arm. It provides the possibility of a damaged human arm being completely replaced by a 

robotic arm that moves as if it were the user’s own arm. �us, various researchers have 

studied the use of non-invasive neural signals to predict hand trajectories. Recently, 3D 

trajectories have been predicted by using human EEG and MEG [27–31], which demon-

strates the potential for more intuitive robot arm control. Bradberry et al. [31] reported 

results for the reconstruction of 3D movement trajectories by using EEG. However, the 

accuracy was not high enough (correlation coefficient = 0.19–0.38). A plausible expla-

nation for the low accuracy is that the EEG was low-pass filtered at 1 Hz, even though 

movement-evoked potentials during arm movements include components that are faster 

than 1 Hz [32]. Other groups have tried to improve the accuracy by changing the filter-

ing frequency (0.5–8 Hz) and methods [27–30]. Not only the frequency band, but also 

other two factors were additionally changed to improve the performance. �e studies 

have provided sufficient rest time (4 s) between reaching behaviors to exclude mere fluc-

tuations from analysis. Furthermore, the study used 200 ms interval data (from −200 ms 

to present) whereas previous EEG study used 100  ms interval data. �rough these 

changes, the accuracy was improved (correlation coefficient > 0.7) compared to that of 

the EEG study. However, the new methods have not yet been applied with EEG, which 

would allow for a portable BMI system.

Reports on robot arms controlled by 3D hand trajectories predicted from non-invasive 

neural signals are scarce. Even though robot arm control based on 3D hand trajecto-

ries is a challenging topic, it can contribute to the implementation of a more intuitive 

BMI system. In the present study, an integrated robot arm-gripper system (IRAGS), that 

is driven by 3D hand trajectories predicted from MEG and EEG was developed. �e 

Fig. 1 Spatiotemporal scale of neural signals. Spatiotemporal scales of neural signals that can potentially be 

used for brain–machine interfaces. Invasive neural signals have a fine spatial resolution, whereas non-invasive 

neural signals such as EEG and MEG have a coarse spatial resolution. ECoG has a spatial resolution between 

the other two
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improved method proposed in recent studies [27–30] is used to obtain accurate trajec-

tory. �is is the first study on controlling a robot arm by using 3D hand trajectories pre-

dicted from non-invasive neural signals. �e performance of the system was verified by 

the performance of reaching and grasping motions, which are important components of 

the BMI system [33]. �e Performance with MEG and EEG were compared to consider 

the portability of the proposed system.

Methods

System overview

�e BMI system contains two major subsystems: the signal processing system and 

IRAGS. �e signal processing system consists of signal acquisition, preprocessing, 

movement prediction, and coordinate transformation. Figure  2 shows the signal pro-

cessing procedure, which is explained in the next section. �e IRAGS is a robot arm 

consisting of two industrial robots: a six-DOF robot arm (VS-6556G, DENSO, Kariya, 

Aichi Prefecture, Japan) and an adaptive robot gripper (three-finger adaptive gripper, 

Robotiq, Saint-Nicolas, QC, Canada).

In the following subsections, the signal processing system and IRAGS are introduced 

first. �en, the process of offline verification is explained.

Signal processing system

MEG signal acquisition and preprocessing

�e acquisition of neural signals and the processing procedures are the same as those 

described in a previous study [27]. MEG signals are acquired from 306 channels of a 

whole-head MEG system (VectorView TM, Elekta Neuromag Oy, Helsinki, Finland) in 

Fig. 2 Signal processing procedure. Training has to be conducted to obtain the weight matrices. The filter-

ing, down-sampling, and linear regression processes are explained in the “Movement prediction” section
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a magnetically shielded room. �e 306 channels consist of 204 planar gradiometers and 

102 magnetometers distributed at 102 locations. �e sampling frequency is 600.615 Hz, 

and the signal is band-pass filtered in the range of 0.1–200  Hz. To eliminate external 

noise, the spatiotemporal signal space separation (tSSS) method is used. �e neu-

ral signals are segmented from −1 s before the cue onset to 2 s after the cue onset and 

band-pass filtered in the range of 0.1–100  Hz. �e 68 gradiometers of the 306 chan-

nels in the motor-related area are selected for movement prediction. �e 68 gradiom-

eters include motor-related areas [34] and demonstrate event-related desynchronization 

(ERD) around the alpha (8–13 Hz) and beta (13–30 Hz) frequencies [35]. An accelerom-

eter (KXM52, Kionix, NY, USA) is placed on the index finger, and the sensor signals are 

simultaneously recorded with MEG at the same sampling rate.

EEG signal acquisition and preprocessing

EEG signals are measured by using a 64-channel EEG system (Synamps 2, Compumed-

ics Neuroscan, Texas, USA). �e sampling frequency is 1000 Hz and low-pass filtered at 

200 Hz. A notch filter is applied at 60 Hz to remove line noise. �e signals are segmented 

from -1 s before the cue onset to 2 s after the cue onset. All 64 channels are used for 

movement prediction. Because the number of EEG channels is insufficient, in contrast 

to MEG, all channels are used to maximize accuracy even though they are distributed 

in not only the motor-related areas but also other areas. �e accelerometer signals are 

simultaneously acquired with the EEG signals at the same sampling frequency.

Movement prediction (�ltering, down-sampling, and linear regression)

�e MEG and EEG signals are band-pass filtered in the range of 0.5–8 Hz. �e acceler-

ometer signals are filtered in the range of 0.2–5 Hz. �e movement velocity is calculated 

by integrating the accelerometer signals with respect to time. �e filtered neural signals 

are down-sampled at 50 Hz (20 ms intervals). �e movement velocities are also down-

sampled at 50 Hz (20 ms intervals). Neural signals with 200 ms intervals (average of one 

current point and 10 preceding points) are used as features to predict the present veloc-

ity. �e x, y, and z velocities of the movements are predicted from the neural signal by 

using multiple linear regression. �e regression equations are expressed below in Eqs. 1, 

2, 3.

(1)Vx(t) =

n
∑

i=1

m
∑

j=0

W x
ij × Si

(

t − j
)

+ W x
0

(2)Vy(t) =

n
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m
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j=0

W
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Vx(t), Vy(t), and Vz(t) are the calculated velocities from the accelerometer. W x
ij , W

y
ij, and 

W z
ij are the weight matrices, and Si is the MEG/EEG signal of the ith channel. n is the 

number of channels (68 for MEG and 64 for EEG), and m is the number of data points 

before the time t. �e weight matrices are obtained first by training. �en, the weight 

matrices are used to predict the velocities from the neural signals. �e trajectories are 

calculated by integrating the predicted velocities as given below in Eqs. 4 and 5.

−−→

V (t) is the predicted velocity vector at the time t, and 
−−→

P(τ ) is the position vector at the 

time τ.

Coordinate transformation

�e 3D coordinates defined for the accelerometer and IRAGS are different. �erefore, 

they should be represented in one form to be controlled by a single system. �e coordi-

nates of the IRAGS is defined as the reference frame, and the coordinates of the accel-

erometer is transformed into the IRAGS coordinates. We assumed that the index finger 

is maintained at an angle of up to 30° from the horizontal plane. To maintain the angle 

between the index finger and horizontal plane at a constant value, the subjects were 

instructed to maintain their finger at the initial orientation. Although the invasive BMI 

studies achieved control of a robot arm with seven DOFs (three for translational move-

ments, three for orientation, and one for grasping) [11, 12], the present study focused 

only on the three DOFs of the translational movements. �erefore, the orientation of the 

index finger should be fixed to acquire the signal, which is not affected by the orientation 

movement of the hand. An additional method of controlling the orientation in future 

study is discussed in the Discussion section. Coordinate transformation is performed 

by multiplying the rotational matrices. �e rotation axis is defined as matrix A in Eq. 6, 

and the rotation matrix is represented as RA(θ) in Eq. 7, where θ is the rotated angle. By 

multiplying the two rotation matrices as expressed in Eq. 8, the trajectory can be trans-

formed from the accelerometer coordinates to the IRAGS coordinates. Figure 3 shows 

the coordinates of each system and the trajectories before and after the transformation 

as an example.

(4)
−−→
V (t) = [Vx(t)Vy(t)Vz(t)]

(5)
−−→
P(τ ) = ∫τ

t=0

−−→
V (t)dt

(6)A =

[

A1 A2 A3

]

(7)RA(θ) =





cosθ + (1 − cosθ)A2

1
(1 − cosθ)A1A2 − sinθA3 (1 − cosθ)A1A3 + sinθA2

(1 − cosθ)A1A2 + sinθA3 cosθ + (1 − cosθ)A2

2
(1 − cosθ)A2A3 − sinθA1

(1 − cosθ)A1A3 − sinθA2 (1 − cosθ)A2A3 + sinθA1 cosθ + (1 − cosθ)A2

3





(8)Coordrobot = Ry(−30
◦) · Rz(−90

◦) · Coordaccelerometer
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IRAGS

Six-DOF robot arm

A six-DOF robot arm movement consists of a translational movement (three DOFs) and 

orientation rotation (three DOFs). �e translational movement is predicted by neural 

signals, whereas the orientation rotation is assigned to maintain the end-effector in the 

horizontal direction. �erefore, the six-DOF robot arm is controlled with three DOFs. 

In a recent study, Bennis and Roby-Brami found that the orientation of the human hand 

is closely related to its velocity vector [36]. However, the orientation is not that signifi-

cant when the object has a spherical shape, and a spherically shaped object was used for 

grasping in this study. �e robot arm is controlled by an algorithm based on Microsoft 

Visual Studio 2010 (Microsoft, Redmond, WA, USA). �e six-DOF robot arm contains 

an external controller, and it communicates by using a personal computer through a 

binary controller access protocol. �e six-DOF robot arm is shown in Fig. 4a.

Adaptive robot gripper

�e industrial adaptive gripper is an optimized machine for grasping. �e adaptive robot 

gripper consists of three fingers and has five DOFs. �ree of the five DOFs are used for 

the grasping motion, and the others are used for the lateral motion of two fingers. �e 

five DOFs are coupled to a single-DOF motion to grasp a spherical object based upon 

a simple command. A controller is installed inside the robot. �e transmission control 

protocol and internet protocol are used for communication. �e control algorithm is 

implemented with MATLAB R2013b (MathWorks, Natick, MA, USA). �e maximum 

grasping force and speed are set to 15 N and 22 mm/s, respectively. �e internal control-

ler stops the grasping motion when each finger reaches the assigned maximum grasp-

ing force. Power is supplied from a regulated direct-current power supply (PWS-3005D, 

Provice, Hwaseong-si, Gyeonggi-do, Korea) and the voltage is set to 24 V. �e adaptive 

robot gripper is shown in Fig. 4a.

Fig. 3 Rotational transformation to change trajectories in the accelerometer coordinates to IRAGS coordi-

nates. a Predicted hand trajectories reconstructed from neural signal before transformation. b Predicted hand 

trajectories after transformation. IRAGS integrated robot arm-gripper system
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Robot system integration

To integrate the robot arm and the gripper, a mechanical coupling was designed. �e 

implemented IRAGS and mechanical coupling are shown in Fig.  4a, b, respectively. 

�e robot arm is controlled by an algorithm based on Microsoft Visual Studio, and the 

adaptive robot gripper is controlled by an algorithm based on MATLAB. To control 

the IRAGS with a single algorithm, the system is implemented so that the robot arm 

and robot gripper can interact. If a grasping signal is provided to the IRAGS, the adap-

tive robot gripper performs a grasping motion, while the robot arm stops moving. �e 

IRAGS is controlled with four DOFs. �ree DOFs are for the translational movement of 

the six-DOF robot arm, and one DOF is for the grasping motion of the adaptive robot 

gripper.

O�ine veri�cation

To verify the stability and performance of the IRAGS, it was used to perform the reach-

ing and grasping of a target object. �e success rate of the reaching and grasping motions 

with the IRAGS was measured to predict whether the system can be used in real-world 

situations. As a preliminary study, the input (neural signal) was provided offline.

As a first step, MEG and EEG signals were acquired, and the trajectories of the human 

arm movement were predicted. �e neural activity was measured during the reach-

ing movements with MEG and EEG. Nine healthy subjects for each signal (MEG case: 

19–37 years old, five males and four females; EEG case: 25–31 years old, five males and 

four females) participated in the study. Stereographic images were presented to the sub-

jects to guide the reaching movements. At the start of the experiment, an image of a 

sphere was presented at the center of a screen, and each subject was instructed to put 

his/her index finger on the sphere. After 4 s, a target sphere appeared randomly at each 

of the four corners of the screen. �e subject was instructed to move the index finger to 

the target sphere and then move it back to the center. �ese reaching movements were 

Fig. 4 Integrated robot arm-gripper system (IRAGS). a Hardware of the IRAGS. The IRAGS consists of a six-

DOF robot arm, adaptive robot gripper, and mechanical coupling. b Mechanical coupling to connect the 

six-DOF robot arm and adaptive robot gripper. IRAGS integrated robot arm-gripper system
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repeated during the experiments. Two sessions were performed by each subject. For 

each session, the subjects performed reaching movements for 30 trials in each direction. 

�e experiment was approved by the Institutional Review Board (IRB) of Seoul National 

University Hospital (IRB No.: 1501-006-637). �e trajectories were predicted by fivefold 

cross validation. �is method separates four-fifths of the data for training (obtaining 

weight matrices) and one-fifth for testing. �us, five combinations of training and test-

ing data were available. �rough the validation, test data was obtained. �e method of 

cross validation has been used in previous studies to obtain generalizability [27, 31]. �e 

process of fivefold cross validation for predicting 3D hand trajectory is demonstrated in 

Fig. 5. �e length of the trajectories reconstructed by integrating the accelerometer sig-

nal was scaled to 30 cm by multiplying the scaling coefficient. �e scaling coefficient was 

used to scale the reconstructed trajectories derived from the neural signal.

As a second step, the position of the target object was defined. A plastic sphere was 

fixed at a position as a target. To define the position of the target object, information 

from a real-limb trajectory was used. Even though no real plastic sphere existed when 

the neural signal was acquired, the subjects felt their fingers reached the target object 

(the stereographic images) when their arms were completely stretched. �erefore, we 

fixed the target object at the average of the terminal positions of the real trajectories. By 

using the accelerometer data, the average of the real terminal positions in each direction 

(four directions) and in each session (18 sessions) was calculated. �e values of the x, y, 

and z coordinates were averaged, as expressed in Eqs. 9, 10, 11.

(9)xavg =

1

30

30∑

i=1

xterm,i

(10)yavg =

1

30

30∑

i=1

yterm,i

(11)zavg =

1

30

30∑

i=1

zterm,i

Fig. 5 Fivefold cross validation for hand trajectory prediction. In the fivefold cross validation process, the test 

data, which guarantee generalizability, is obtained
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[xavg yavg zavg] is the calculated position to fix the target object, and [xterm,i yterm,i zterm,i] 

is the terminal position of the ith trajectory in each session. �e diameter of the target 

sphere was 70 mm, which is approximately the size of a baseball (a baseball has a cir-

cumference of approximately 23 cm, for a diameter of approximately 73 mm) and is a 

comfortable size for grasping by an average person.

As a final step, IRAGS was used to perform reaching and grasping motions. To dex-

terously perform reaching and grasping motions, seven DOFs are necessary (three for 

translational movement, three for orientation, and one for grasping) [37]. Only the three 

DOFs of the translational movement were predicted in the present study, and the three 

DOFs of the orientation were fixed as constant. A pseudo-grasping signal was provided 

for the grasping motion. �e pseudo-grasping signal was automatically provided when 

the distance between the adaptive robot gripper and target sphere was at its shortest.

�e accuracy of the predicted trajectories was evaluated by calculating the correla-

tion, root mean square error (RMSE) and terminal point error (TPE). �e grasping and 

touching target success rates were also measured.

Results

Predicted trajectory

Accuracy of the predicted trajectory

MEG was measured for two sessions from each of the nine subjects. Each session con-

sisted of 120 trials. In total, 2,160 trials were conducted with MEG. As an example, 

Fig.  6a shows the predicted trajectories from the first session of subject 4. Figure  6b 

shows the real trajectories derived from the accelerometer. �e correlation coefficient, 

RMSE, and TPE were measured to evaluate the accuracies of the predicted trajectories. 

�ese are listed in Table 1. �e average correlation coefficients from each session were 

significant (p < 0.0027 for the least accurate session). �e total correlation coefficient 

between the real and predicted trajectories was 0.705 ± 0.292 (p < 0.001) on average. 

�e data from subject 2 exhibited a low correlation coefficient because the reaching 

behavior of the subject during the task was inconsistent. RMSE is an index that indicates 

the average Euclidean distance between the real and predicted trajectories. �e average 

RMSE was 11.154 ± 5.399cm. Except for three sessions (one session contained an out-

lier, and the other two sessions were from subject 2 who exhibited inconsistent reaching 

behavior was performed), all other sessions exhibited an RMSE of less than 12 cm. TPE 

indicates the distance between the surface of the target sphere and the predicted trajec-

tory at the closest position. �e pseudo-grasping signal was provided at the closest posi-

tion. �erefore, TPE is an index that is closely related to the success rate of grasping the 

target. �e average TPE was 9.714 ± 4.789cm. Figure 7a, b show the BMI system to pro-

vide a reference for the readers with regard to the degree of accuracy. Figure 7b shows 

a miniaturized drawing of a real BMI system, although the palm of the adaptive robot 

gripper is simplified as squares. �e radius of the smaller transparent sphere around the 

target represents the TPE of the MEG. �is implies that, on average, the center of the 

palm of the adaptive robot gripper approached the surface of the transparent sphere.

�en, 2160 trials were conducted with EEG. As an example, Fig.  6c shows the pre-

dicted trajectories. Figure 6d shows the real trajectories derived from the accelerometer. 

�e same indexes were measured to evaluate the trajectory accuracy. �ese are listed in 
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Table 2. �e average correlation coefficients from each session were significant (p < 0.011 

for the least accurate session). Further, the total correlation coefficient between the real 

and predicted trajectories was 0.684 ± 0.309 (p < 0.001) on average, and the RMSE was 

13.724 ± 5.370 cm on average. �e TPE was 11.432 ± 4.749 cm on average. �e radius of 

the larger transparent sphere shown in Fig. 7 represents the TPE of the EEG.

Comparison of MEG and EEG results

�e trajectories predicted with MEG and EEG both had a correlation coefficient of 

approximately 0.7. �is implies that the predicted trajectories were significantly cor-

related to the real trajectories (because p  <  0.03 for all sessions). According to the 

statistical analysis, EEG provided significantly less accuracy than MEG. Using an inde-

pendent-sample comparison, we compared the three indexes. All three indexes with 

MEG were significantly (p < 0.03) better than those with EEG (see Tables 1, 2). �ese 

results are widely known in the BMI field [13]. However, the practical values exhibited 

a small difference. �e RMSE exhibited a difference of 2.566 cm, and the TPE exhibited 

a difference of only 1.717 cm. Figure 7b shows that the two transparent spheres had a 

small size difference. �e effect sizes listed in Table  3 (Cohen’s d < 0.50) also demon-

strate that the difference between EEG and MEG was not critical despite the proven sta-

tistical significance.

Fig. 6 Trajectories predicted from neural signals and real trajectories. a Hand trajectories predicted by MEG 

(first session of subject 4). b Real hand trajectories reconstructed from the accelerometer signal during MEG 

signal acquisition (first session of subject 4) c Hand trajectories predicted by EEG (first session of subject 7). d 

Real hand trajectories reconstructed from the accelerometer signal during EEG signal acquisition (first session 

of subject 7). Each color represents one of the four hand-movement directions
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Table 1 Accuracy of the trajectories predicted with MEG

Values in brackets represent standard deviations

RMSE root mean square error, TPE terminal point error

Subject Session Correlation RMSE (cm) TPE (cm)

1 1 0.726 (0.224) 10.041 (3.584) 11.040 (4.334)

2 0.706 (0.216) 10.165 (3.458) 11.068 (4.490)

2 1 0.513 (0.381) 17.418 (7.194) 16.086 (6.086)

2 0.569 (0.321) 16.953 (9.258) 4.027 (2.205)

3 1 0.812 (0.166) 13.383 (6.544) 6.499 (4.175)

2 0.820 (0.188) 20.006 (70.367) 7.595 (4.786)

4 1 0.762 (0.219) 7.935 (3.147) 8.239 (3.241)

2 0.800 (0.233) 6.919 (3.108) 6.787 (3.537)

5 1 0.754 (0.210) 8.560 (3.080) 8.086 (3.483)

2 0.657 (0.269) 11.038 (4.098) 10.351 (4.849)

6 1 0.654 (0.265) 8.401 (3.299) 9.004 (4.372)

2 0.770 (0.233) 6.811 (1.880) 8.391 (3.118)

7 1 0.728 (0.196) 10.304 (3.656) 10.564 (4.397)

2 0.750 (0.210) 8.745 (3.098) 8.395 (4.076)

8 1 0.699 (0.274) 11.379 (6.137) 12.190 (5.771)

2 0.762 (0.209) 10.522 (8.859) 11.621 (4.163)

9 1 0.620 (0.277) 11.022 (4.401) 11.346 (6.023)

2 0.584 (0.246) 11.169 (3.924) 12.850 (6.033)

Average 0.705 (0.292) 11.154 (5.399) 9.714 (4.789)

Fig. 7 TPE of MEG and EEG. a The distance between the target sphere and adaptive robot gripper was 

30 cm. The radius of the TPE is the average distance between the target sphere and adaptive robot gripper 

at the closest position. b Miniaturized drawing of the real BMI system. Lengths are proportional to the actual 

size. TPE terminal point error
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Performance of reaching and grasping motions

Before the reaching and grasping motions were performed, the accuracy of the IRAGS 

was verified in an environment using an approximately 2.3 kg robot gripper fixed on the 

end-effector. Twelve trials (three trials per direction) were randomly selected among the 

predicted trajectories from the MEG and were used to verify the accuracy of the robot 

system. �e RMSE between the input trajectory (predicted trajectory) and robot trajec-

tory was 1.8 × 10
−3

± 3.3 × 10
−3

cm. �is is an extremely small error, and no further 

calibration was needed.

To verify the reaching and grasping motions, 80 trials from two sessions that demon-

strated the median correlation coefficient were selected (40 trials from each session) as 

input data. To test the reliability of the experiment, trials using the median correlation 

coefficient were selected as representative. �e experiment was conducted with both 

EEG and MEG. Forty trials were randomly selected from the first session of subject 1 

and the first session of subject 7 for MEG. For EEG, 40 trials were randomly selected 

from the first session of subject 2 and the first session of subject 3. �e results were 

classified into three types: grasping, touching, and failure. �ese are shown in Fig. 8. A 

Table 2 Accuracy of the trajectories predicted with EEG

Values in brackets represent standard deviations

RMSE root mean square error, TPE terminal point error

Subject Session Correlation RMSE (cm) TPE (cm)

1 1 0.777 (0.204) 19.606 (58.826) 4.539 (2.771)

2 0.745 (0.209) 11.569 (13.751) 11.915 (4.293)

2 1 0.743 (0.333) 14.908 (8.867) 12.007 (4.061)

2 0.592 (0.255) 19.262 (37.090) 14.923 (4.700)

3 1 0.743 (0.202) 12.694 (17.501) 10.547 (4.033)

2 0.756 (0.224) 11.065 (6.688) 9.923 (3.766)

4 1 0.587 (0.197) 15.007 (3.204) 13.643 (4.747)

2 0.729 (0.205) 12.267 (2.833) 9.369 (3.005)

5 1 0.437 (0.459) 17.402 (10.729) 7.726 (5.526)

2 0.439 (0.539) 17.590 (7.753) 8.854 (7.744)

6 1 0.635 (0.271) 14.435 (3.482) 8.486 (5.152)

2 0.569 (0.308) 15.037 (3.454) 10.115 (4.403)

7 1 0.592 (0.277) 12.385 (3.259) 17.309 (4.899)

2 0.820 (0.175) 11.011 (2.415) 13.828 (3.380)

8 1 0.787 (0.186) 12.225 (3.719) 14.689 (3.600)

2 0.798 (0.129) 10.773 (3.181) 12.563 (3.875)

9 1 0.800 (0.155) 10.158 (2.485) 12.852 (4.224)

2 0.765 (0.198) 9.638 (2.846) 12.482 (4.333)

Average 0.684 (0.309) 13.724 (5.370) 11.432 (4.749)

Table 3 Comparison of MEG and EEG

In generally, the e�ect size is not critical when Cohen’s d is less than 0.5 [38]

Correlation RMSE TPE

p value 0.011 <0.001 <0.001

Cohen’s d 0.070 0.477 0.360
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grasping success was counted as both grasping and touching. Out of the 80 trials, 15 

trials (18.75  %) with MEG and six trials (7.50  %) with EEG succeeded at grasping, as 

listed in Table 4. However, the success rate was much higher for touching the target than 

grasping it. With MEG, 42 out of 80 trials (52.50 %) succeeded in touching the target. 

With EEG, 47 out of 80 trials (58.75 %) succeeded in touching the target. �e touching 

Fig. 8 Grasping and touching the target object. a Grasping. b Touching. c Failure

Table 4 Number of successes and success rates for grasping and touching

MEG and EEG were each used in 80 trials

Signal type Grasping Touching

No. of successes Success rate (%) No. of successes Success rate (%)

MEG 15 18.75 42 52.50

EEG 6 7.50 47 58.75
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success rates were similar between MEG and EEG, whereas the grasping success rate 

was clearly higher in the MEG case.

Discussion

Intuitive robot arm control based on non-invasive neural signals is preferred for poten-

tial patients who have lost their motor functions. In this study, the non-invasive neural 

signals, EEG and MEG, were considered to meet this objective. �e possibility of a port-

able BMI system for robot arm control was also considered by comparing the accuracies 

of EEG and MEG.

Evaluation for the accuracy

Both EEG and MEG exhibited a high correlation between the predicted and real trajec-

tories. In particular, EEG showed improved accuracy compared to the results of a previ-

ous EEG study [31]. In our study, three factors were mainly improved. First, frequency 

band was changed to the broader pass band (0.5–8 Hz) to cover movement information 

of higher frequency. Furthermore, sufficient rest time (4 s) was provided to exclude mere 

fluctuations from analysis. As a final factor, the study used 200 ms interval data (from 

−200 ms to present) whereas previous EEG study used 100 ms interval data. �e previ-

ous MEG study [27] showed that correlation coefficient increases as the interval of pre-

ceding data increases. �e three factors, which were already applied to MEG study [27], 

contributed to performance improvement not only for the MEG case but also EEG case.

Even though the trajectories were relatively accurate, they were not sufficient for per-

forming reaching and grasping motions by IRAGS. �ree issues could be proposed as 

the reasons for the low accuracy. �e first is the limited spatial resolution of the non-

invasive neural signals. Non-invasive neural signals are known to have a coarse spatial 

resolution, as shown in Fig. 1, because the electrodes are located on the surface of the 

human head. In contrast, the invasive neural sensors are directly implanted into the tis-

sue of the human brain.

�e second factor is the inaccuracy of the accelerometer. In movement prediction 

using multiple linear regression, acquiring accurate weight matrices is important. �e 

velocity information acquired from an accelerometer is used as reference data and is the 

most critical factor for accurate multiple linear regression. However, the error accumu-

lates during the integration process because of the error of the accelerometer. Acceler-

ometers with higher accuracy can yield better results.

�e third factor is the limitation of linear regression. Obtaining a highly complicated 

relationship between the neural signal and hand trajectory based only on the linear 

model is not easy. More complex methods such as kernel regression should demonstrate 

a more accurate result.

Solution

�e success rate for grasping turned out to need some improvements from a practi-

cal point-of-view. Even though the success rate for grasping was not sufficiently high, 

the robot was able to approach the target very closely in most of the trials, and more 

than half of the trials resulted in touching. Even though, various methods can be used 

to resolve the accuracy issue, using additional sensors may be a powerful alternative 
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considering the results of previous studies. Onose et al. [24] used a pair of cameras to 

find the 3D gaze point and succeeded in reaching and grasping objects with EEG. Kim 

et  al. [39] controlled a robot arm with the assistance of external sensors and greatly 

improved the performance of the reaching and grasping motions. �ey were the first 

to apply continuous shared control (CSC), which was initially proposed to help humans 

intervene in autonomous tasks executed by a robot [40], to a BMI. Kennel et al. used a 

stereo camera with a robot arm controlled by MEG to grasp a target object [41]. Some 

studies have implemented BMI systems based on non-invasive neural signal assisted by 

external sensors in systems outside robot arms [42, 43]. Yeom et al. proposed using an 

image processing technique [44] and Kalman filtering [29] to improve the accuracy of 

the predicted hand trajectories. �us, using external sensors, can greatly improve the 

non-invasive BMI system to realize accurate intuitive robot arm control for practical 

application.

Possibility of a portable system

Although MEG has better spatial resolution than EEG, a MEG device is not portable 

and requires a magnetically shielded room. �erefore, EEG should be used for real-time 

operation. �e results of this study showed that EEG provided comparable performance 

to MEG. Even though the trajectory predicted with EEG was statistically not as accurate 

as that with MEG, the practical difference was small. In particular, the TPE, which is the 

most crucial index for reaching and grasping, exhibited a difference of only 1.717  cm 

(see Fig. 7). �e effect size also demonstrated that the difference between MEG and EEG 

is not critical (Cohen’s d < 0.50). In addition, the success rate for touching (see Table 4) 

supported the competitiveness of EEG. As mentioned in the Method section, EEG chan-

nels were distributed over the entire head, whereas MEG channels were distributed at 

the motor-related area. In addition, 64 channels were used for EEG, whereas 68 channels 

were used for MEG. Based on these factors, the EEG accuracy can be improved by locat-

ing more channels in the motor-related area. �erefore, an EEG-driven robot, which is a 

portable system, can potentially be realized.

Future work

�e proposed system is in the preliminary stage of development, and some issues need 

to be resolved for practical applications. First, it has not yet been applied to real patients. 

For online application to real patients, the training problem should be resolved. In this 

study, training was performed by using real hand trajectories that were derived with the 

accelerometer. Linear regression between the real hand trajectory and neural signal pro-

vides weight matrices that indicate the relationship between them. However, for practi-

cal application to patients who have lost their limb motor function, the training method 

used in this study cannot be applied because patients cannot move their upper limbs, so 

the data of the real hand trajectory cannot be obtained. �erefore, patients should train 

themselves to adapt and control the robot arm system through visual feedback. Nev-

ertheless, the offline verification performed in this study plays an important role as a 

previous study on online use. Training based on visual feedback for practical applica-

tions can take a long period of time. A recent study on invasive neural signals showed 

that accurate control can take over 13 weeks [12]. �e offline verification conducted in 
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this study can provide reference for the application of a non-invasive BMI system to real 

patients. As a next step in this study, the proposed system will be applied to healthy sub-

jects without real hand movement. Finally, it will be applied to patients with neuromus-

cular disorders.

�e second issue is that orientation control has to be implemented. In this research, 

the three-DOF orientation was fixed as a constant value. In recent studies on robot arm 

control based on invasive neural signals [11, 12], the three-DOF translational movement, 

three-DOF orientation, and one-DOF grasping motion are controlled by the neural sig-

nal. However, controlling all seven DOFs in BMI systems using non-invasive neural 

signals is difficult because of the relatively low spatial resolution. �e application of the 

external sensors discussed above will be helpful to resolving this issue.

Conclusions

In this research, an IRAGS driven by 3D hand trajectories predicted from non-invasive 

neural signals was implemented, and reaching and grasping motions were performed 

for verification. �e verification was conducted offline. MEG and EEG were used as the 

input signals. In the verification, the robot approached the target very closely in most 

cases, but the grasping success rate was not very high because the non-invasive neural 

signal is less accurate. �erefore, further improvements will be needed for the system to 

be suitable for practical application.

Even though MEG showed statistically better accuracy than EEG, the practical differ-

ence and effect size were not large. Furthermore, EEG used fewer channels despite them 

not being confined to the motor-related area. Based on these factors, the performance 

with EEG is comparable to that of with MEG.

In conclusion, hand arm trajectories were reconstructed with relatively high accuracy 

by using MEG and EEG. Additionally, the robot arm was operated by using 3D hand 

trajectories predicted from MEG and EEG, respectively. Even though it was not accu-

rate enough, sufficient possibility for practical application with further improvement was 

shown. Furthermore, it was confirmed that performance of EEG, which enables a port-

able system, is comparable to that of MEG. Even though the verification in this study was 

performed in offline, it will contribute to practical application as a prior research.
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