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Cardiovascular diseases (CVDs) are the leading cause of death today. The current

identification method of the diseases is analyzing the Electrocardiogram (ECG), which

is a medical monitoring technology recording cardiac activity. Unfortunately, looking for

experts to analyze a large amount of ECG data consumes too many medical resources.

Therefore, the method of identifying ECG characteristics based on machine learning

has gradually become prevalent. However, there are some drawbacks to these typical

methods, requiring manual feature recognition, complex models, and long training time.

This paper proposes a robust and efficient 12-layer deep one-dimensional convolutional

neural network on classifying the five micro-classes of heartbeat types in the MIT- BIH

Arrhythmia database. The five types of heartbeat features are classified, and wavelet

self-adaptive threshold denoising method is used in the experiments. Compared with

BP neural network, random forest, and other CNN networks, the results show that the

model proposed in this paper has better performance in accuracy, sensitivity, robustness,

and anti-noise capability. Its accurate classification effectively saves medical resources,

which has a positive effect on clinical practice.

Keywords: deep learning, ECG, anti-noise performance, feature classification, convolutional neural network

INTRODUCTION

Cardiovascular disease is a common disease that seriously threatens human health, especially the
health of middle-aged and older people. It is characterized by high prevalence, high disability,
and high mortality. Nowadays, the world is facing with the aging population. The increasing
aggravation of cardiovascular disease has become a major public health problem (Mc Namara et al.,
2019). ECG analysis is an effective way of evaluating heart health. Therefore, the identification and
classification of ECG signals are essential to cardiovascular diseases. Not only for early prevention
but also necessary for timely detection and proper treatment. It is of considerable significance to
study the classification of related ECG signals (Guo et al., 2016; Yin et al., 2016).

The electrocardiogram is a visual time series that records the electrical activity generated by each
cardiac cycle of the heart in real-time and is nowwidely used in heart rate detection (Homaeinezhad
et al., 2012). This non-invasive detectionmethod is easy to operate and has become an essential tool
for assisting doctors in analyzing pathology. At this stage, the judgment of cardiovascular disease
mainly depends on the doctor’s experience. However, there are many types of heart diseases, and
long-term manual detection makes it easy to cause false detection. How to quickly and accurately
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analyze specific diseases has become a new problem (Song et al.,
2014). In addition, the traits of ECG signals include random, low-
frequency, and susceptible, resulting in the diagnosis results are
unstable. Intelligent automatic recognition and classification of
ECG signals have become an inevitable choice to improve the
efficiency and accuracy of ECG recognition (Yu and Chen, 2007).

With the maturity of Artificial Intelligence (AI) technology,
many machine learning methods are used in the ECG signal
feature detection, aiming at solving the problems related to
large amounts of ECG signal feature data and a heavy load
of manual detection. The typical methods are neural networks
(NN) (Jiang and Kong, 2007), support vector machine (SVM)
(Osowski et al., 2004), path forest (Luz et al., 2013), Independent
Component Correlation Algorithm (ICA) (Sarfraz et al., 2014).
Regarding neural networks, Jiang and Kong (2007) propose
an evolutionary block-based neural network (BbNNs) for the
classification of ECG signals. The BbNN is composed of a group
of two-dimensional modular networks with flexible structure and
internal configuration. The Hermite transform coefficient and
the time interval between adjacent two R peaks are used as the
input of BbNN. Osowski et al. (2004) introduce Hermite function
as a feature extraction method in the SVM classifier, and also
use higher-order statistics (HOS) to better extract features. Luz
et al. (2013) introduced an optimal path forest classifier (OPF)
to compare the performance of 6 distance metrics, six feature
extraction algorithms, and three classifiers in two variants of the
same data set. Although the accuracy of OPF is not as good as that
of SVM, OPF is more efficient than SVM in terms of calculation
time during training and testing phases. Sarfraz et al. (2014) use
the basic function of a typical ECG signal obtained by ICA for
pattern recognition. The features obtained by ICA are used as the
training set. Although thesemethods have good performance and
have achieved certain results, it is difficult to put into practice due
to the severe deficiency of requiring manual design features.

In recent years, the machine learning and deep learning
network has not only made remarkable achievements in the fields
of image processing, audio recognition and many other fields
(Wong et al., 2015a,b, 2016; Kandala et al., 2019; Pławiak et al.,
2019, 2020), it has also been commonly used in the assisted
diagnosis of heart disease based on ECG signals(Zubair et al.,
2016; Acharya et al., 2017a,b; Yildirim et al., 2018; Gao et al.,
2019; Atal and Singh, 2020; Pławiak and Acharya, 2020). Pławiak
and Acharya (2020) use a deep genetic ensemble of classifiers
to classify long-duration ECG signal (10 s). Gao et al. (2019)
implemented an effective long short-term memory (LSTM)
recurrence network model to classify 8 types of heartbeats.
Atal and Singh (2020) proposed an optimization-based deep
convolutional neural network to classify five different heartbeats.
Compared with traditional neural networks, deep learning
network can automatically extract features, recognize intricate
data patterns, and eliminate complex signal preprocessing. Deep
learning network also has a stronger nonlinear fitting ability,
which has a better effect in identifying single-lead, multi-
class, and unbalanced ECG datasets (Acharya et al., 2017a).
Convolutional neural network (CNN) is a feedforward neural
network that has been widely researched and used in deep
learning, which has been applied successfully for the classification

of arrhythmia (Zubair et al., 2016; Acharya et al., 2017a,b;
Yildirim et al., 2018; Gao et al., 2019; Atal and Singh, 2020;
Pławiak and Acharya, 2020) ECG signals. In the previous
literature (Zubair et al., 2016; Acharya et al., 2017a,b; Yildirim
et al., 2018; Atal and Singh, 2020), most of the works focus on the
recognition of five main macro classes, namely Non-ectopic (N);
Supraventricular ectopic (S); Ventricular ectopic (V); Fusion (F);
Unknown (Q).

There is very little effort devoted to classify the micro-classes
of the ECG signal, hence it serves as ourmainmotivation to study
the micro-classification heartbeats, of five types, i.e., Normal
(NOR), Left Bundle Branch Block (LBBB), Right Bundle Branch
Block (RBBB), Atrial Premature (AP), Premature Ventricular
Contraction (PVC). The contribution of this paper is two-fold,
in which the proposed algorithm is endowed with an ability to
effectively process the non-filtered dataset with its potential anti-
noise features, and secondly this paper presents an analysis of
micro-classes of the ECG signal that compares some techniques
of machine learning such as BP and Random Forest. The results
can be served as a good source of benchmark literature to other
researchers in the same field for future research work.

Section ECG Data Processing of the paper mainly introduces
the ECG dataset used in this study and provides a detailed
description of the data segmentation and preprocessing. In
section Methodology, the architecture of the proposed algorithm
and the specific experiment design is outlined. In section
Result and Discussion, the performance and robustness of the
proposed network is evaluated on the MIT-BIH Arrhythmia
database and compared with BP, Random Forest, and several
benchmarked CNN networks. Finally, section Conclusion
summarizes the paper.

ECG DATA PROCESSING

ECG Dataset
The MIT-BIH database, an ECG database provided by
the Massachusetts Institute of Technology and based on
international standards and annotated information by multiple
experts (Moody and Mark, 2001) is used in this study. The
MIT-BIH database has been frequently used by the academic
community in research for the detection and classification of
arrhythmic heartbeats. The MIT-BIH database contains 48
ECG recordings, each recording time is 30min, the sampling
frequency is 360Hz, and each ECG record is composed of two
leads. MIT-BIH database can make adjustments and corrections
based on the information annotated by experts and optimization
algorithms. Furthermore, it learns from existing solutions
for self-optimization.

Pre-processing
ECG signals collected in a clinical environment are usually mixed
with different interference, such as power frequency interference,
baseline drift, and EMG interference. The raw data needs to be
de-noised to make the classificationmore accurate. The bandpass
filters, low-pass filters, wavelet transforms are widely used in the
field of ECG denoising (Ahlstrom and Tompkins, 1985; Bazi
et al., 2013; Wang et al., 2015; Yadav et al., 2015). In this paper,
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FIGURE 2 | ECG signal before and after filtering.

the wavelet transform method is used to preprocess the ECG
signal. Wavelet transform is an algorithm that decomposes non-
stationary signals into scale signals of different frequency bands.
The filter uses an adaptive threshold filtering algorithm (Alfaouri
and Daqrouq, 2008; Awal et al., 2014), and selects Sym4 in the
Symlet wavelet function family as the wavelet function (Singh
and Tiwari, 2006). Because the convolutional neural network has
the feature of automatically extracting features from the inside
of the signal, this paper only performs simple filtering on the
signal, which can enhance the generalization of the network and
reduce signal distortion. Figure 1 shows the ECG signal before
and after filtering.

Data Segmentation
In the MIT-BIH dataset, each heartbeat is marked with a disease
annotation. This paper selects five heartbeats for classification,
normal (NOR), left bundle branch block (LBBB), and right
bundle branch block (RBBB), Atrial premature beats (AP),
premature ventricular beats (PVC). The process starts by using
the Pan-Tompkins algorithm to detected R-peak (Pan and
Tompkins, 1985). Dataset is segmented into 360 samples and
centered around the detected R-peaks. The process selects a single
lead in the dataset, and all segments use the Z-score normalizing
method (Acharya et al., 2017b).

Data Enhancement
The unbalanced training set affects the feature learning of the
convolutional neural network (Masko and Hensman, 2015),
thereby reducing the recognition accuracy. This paper selects
16 recordings that contain most of these five heartbeats
from the MIT-BIH dataset. After denoising and segmenting,
oversampling is performed on the under-represented classes
(Masko and Hensman, 2015). It randomly duplicates the under-
represented classes, and discards the over-represented classes,
which ultimately reduces the data imbalance of the training
set. According to Table 1, only the C1 and C4 are enhanced

because they greatly deviated from the average. The C2-C4 is not
enhanced since they are only slightly imbalanced.

Ten-Fold Cross Validation
The original and de-noised data samples are used for experiments
and 10-fold cross-validation is employed. This paper selects 16
recordings among the 48 recordings in the database, which
contains nearly all of the five heartbeats that need to classify.
A total of 32,422 heartbeats are extracted from 16 recordings,
which are separated equally into 10 groups. 9 out of 10 groups
are used in the training process while the remaining one of the
remaining 10 groups is used for validation to get the optimal
parameters. This process is iterated by 10 times by shifting test
data. The performance is recorded after every iteration and
integrated into one final confusion matrix at the end of the
10th iteration. The overall performance is calculated from the
integrated confusion matrix.

METHODOLOGY

The Architecture
This paper proposes a one-dimensional 12-layer convolution
neural network (CNN) network structure to classify the five
sub-classes of cardiac arrhythmia. CNN is a network consists of
the input layer, convolution layer, pooling layer, fully-connected
layer, and output layer. In contrast to traditional neural networks,
CNN has convolution and pooling layers, which can extract and
map features from input data to speed up learning and reduce
over-fitting. Because the CNN has the feature of the multilayer
perception, the two-dimensional convolution neural network has
been widely used in image processing (Li et al., 2014; Wei et al.,
2015). In this paper, we propose a one-dimensional 12 layer CNN
to process a one-dimensional time series with uniform interval
sampling (Kiranyaz et al., 2015). Several modifications are made
in the network structure, i.e., the proposed CNN network uses
the average-pooling layer instead of the max-pooling layer of the
compared CNN network. The average-pooling layer can preserve
the overall feature of the input data, which will be beneficial to
classify the heartbeats. Also, the proposed CNN network has one
more alternating convolution and pooling layer as compared to
the benchmark CNN network. Table 2 summarizes the proposed
CNN network architecture, including 8 alternating convolutions
and average-pooling layers. They are followed by a dropout layer
and two fully-connected layers, as seen in Figure 2.

(i) Convolution layer

To process one-dimensional ECG signal, this paper uses
a one-dimensional convolution kernel, which convolutes
independently of the feature map of the previous layer. The
output of the convolution layer is obtained by offsetting
the convolution kernel and transferring it to the nonlinear
activation function. The output expression is shown in
Equation (1).

hl,ki = f

(

bl,ki +

N
∑

n=1

W l.k
n,i ∗ x

l−1,k
i+n−1

)

(1)
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Where, hl,ki is the output of the ith neuron in layer l, f () is the

activation function and bl,ki is the offset of the neuron in layer

l. xl−1,k
i+n−1 is the output of neuron in layer l-1, W l.k

n,i is the kth

convolution kernels in lth layer.
(ii) Pooling layer

Convolution of the next layer is commonly the pooling
layer. By reducing the dimension of convolution layer output
data, network complexity is reduced, as well as overfitting
phenomenon. Robustness of the network is enhanced in this
process. The pooling layer averages or maximizes the output

TABLE 1 | Unbalanced and balanced dataset.

Class Classification dataset

Type Unbalanced Balanced

C1 NOR 18,653 7,563

C2 LBBB 6,612 6,612

C3 RBBB 7,165 7,165

C4 AP 4,758 4,758

C5 PVC 1,208 6,324

Total data 38,396 32,422

TABLE 2 | A summary table of the proposed CNN model for this work.

Layers Type Output Kernel size Stride

Layer 1 Convolution 360*16 1*13 1

Layer 2 Average-Pooling 179*16 1*3 2

Layer 3 Convolution 179*32 1*15 1

Layer 4 Average-Pooling 89*32 1*3 2

Layer 5 Convolution 89*64 1*17 1

Layer 6 Average-Pooling 44*64 1*3 2

Layer 7 Convolution 44*128 1*19 1

Layer 8 Average-Pooling 21*128 1*3 2

Layer 9 Dropout 21*128 - -

Layer 10 Fully-connected 1*35 - -

Layer 11 Fully-connected 1*5 - -

Layer 12 SoftMax 1*5 - -

features of the convolutional layer, and the corresponding
methods are respectively, average pooling or maximum
pooling. The output expression by Equation (2)

ol,ki = f (αl,k
i pool

(

xl−1,k
i

)

+ bl,ki ) (2)

ol,ki is the output of the ith neuron in the l layer, f () is the

activation function, bl,ki is the offset of the neurons in l layer,αl,k
i

is the sampling weight coefficient, xl−1,k
i is the output of the

neuron in l-1 layer, pool() is the pooling function.
(iii) Fully-connected layer

After extracting features frommultiple convolution layers and
pooling layers, the fully-connected layer is used to expand
the connection of all features. Finally, the SoftMax layer
makes a logistic regression classification. Fully-connected layer
transfers the weighted sum of the output of the previous layer
to the activation function. The expression of the output is
shown in Equation (3)

ol,ki = f (wl,k
i xl−1,k

i + bl,ki ) (3)

ol,ki is the output of the l layer of the ith neuron, f () is the

activation function, bl,ki is the offset of the lth layer of the

neuron, xl−1,k
i is the output of the layer l-1 of the neuron, wl,k

i
is the network weight.

(iv) Dropout layer

There is usually a dropout layer before the fully-connected
layer. The dropout layer will temporarily disconnect some
neurons from the network according to the certain probability
during the training of the convolution neural network,
which reduces the joint adaptability between neuron nodes,
reduces overfitting, and enhances the generalization ability of
the network.

(v) Training algorithm The training algorithm of the
convolution neural network is a backward propagation
algorithm based on gradient descent. The network
hyperparameters are estimated by the loss function, which is
the deviations of the output vector and the expected output
vector. Hyperparameters include the convolution kernel
parameter W of the convolution layer, the sampling weight
coefficient α of the pooling layer, the network weight w of

FIGURE 3 | The architecture for the proposed CNN model.
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the fully-connected layer and the offset b of each layer. The
training of a convolution neural network consists of two
phases, forward propagation and reverse propagation. In the
forward propagation stage, the training data is input into the
neural network, and the output vectors of the middle and
output layers are calculated. In the reverse propagation stage,
the output vectors of the output layer are compared with the
expected output vectors and calculated the loss function with
respect to the weights of the network. The loss is propagated
back to the initial layers (in reverse direction) using the
gradient descent method to update the weights for each
neuron in every layer. Gradient descent comprises two steps:
calculating gradients of the loss function, which is calculated
by chain rules, then updating weight in the opposite or reverse
direction of the gradient of the loss function, which is distinct
from the forward calculation of loss function. A cost function
is also calculated for the neuron output in each hidden layer
to optimize the network hyperparameters continuously. The
network ends training when it reaches the set error after
multiple iterations.

Layer 1 is convoluted with the kernel size of 13 and the
number of the filters of 16. An average-pooling layer with the size
of 3 is applied, hence the output of layer 2 is reduced to 179∗16.
Then the feature map of layer 2 is convoluted with the kernel size
of 15, and the number of the filter is 32 in layer 3. Again, an
average-pooling layer is applied with the size of 3, reducing the
neurons from 176∗16 to 89∗32 (layer 4). The convolution kernel
size is 17, and the number of the filter is 64 in layer 5. An average-
pooling layer with the size of 3 is applied after layer 5, reducing
output to 44∗64 (layer 6). The output of the layer 6 is convoluted
with the kernel size of 19 and the filter number of 128 in layer
7. An average-pooling layer is applied afterward with a size of 3
(layer 8). Layer 9 is the dropout layer, which is set to 50%. Layer
10 is connected 35 neurons to layer 11. Finally, layer 11 connected
5 neurons to the SoftMax layer. A rectifier linear unit (ReLU) is
used as an activation function before every average pooling layer.
All fully-connected layer is applied with the L2 factor of 5 to
reduce overfitting.

Experiment Setup
In this paper, we ran a total of 60 epochs with a batch size of 36.
The learn rate drop factor, learn rate drop period, and learning
rate parameters are set to 0.1, 20, 10−3. The parameters of all
proposed classifiers in Table 3 are selected for use based on the
best results of ten-fold cross validation.

Referring to Table 3, “MaxEpoch” is the maximum number
of epochs to use for training. “MiniBatchSize” is the size of the
mini-batch to use for each training iteration. A mini-batch is a
subset of the training set that is used to evaluate the gradient of
the loss function and update the weights. “InitialLearnRate” is
the initial learning rate used for training. “LearnRateDropPeriod”
is the number of epochs that passes between adjustments to
the learning rate during training. “LearnRateDropFactor” is the
multiplicative factor by which the learning rate drops during
training. “Optimizer” is Adam (adaptive moment estimation)
optimizer that we used. “NumberOfTree” is the number of

trees that were used in random forest. “MTry” of the random
forest is the number of features that were randomly selected in
each split. The training function of the BP network is “trainrp,”
which updates weight and bias values according to the resilient
backpropagation algorithm. “TrainingGoal” is the mean squared
error needing to reach at the end of the training. “Hidden node”
is the number of neurons in the hidden layer.

In this paper, we construct BP neural network and Random
Forest network for better comparison analysis, using the identical
datasets. The BP network has 360 nodes in the input layer,
correlated with 360 features of each sample has 20 neurons in
the hidden layer, and 5 nodes in the output layer that represents
five sub-classes; the largest value among the five neurons will
be deemed as the classification output. On the other hand, the
Random Forest network builds many decision trees and selects
features randomly from random samples with bagging strategy,
and uses the tress to vote for the input vector to get a class label.
The input of each sample has 360 features, the number of the tree
is set to 500, and 18 features are randomly selected to consider
each split. The output is a five-class voter; the largest value will be
taken as the classification output.

Furthermore, for fair comparison, we reconstruct a CNN
network identical to Acharya et al. (2017b) to benchmark
with our proposed algorithm (hereinafter referred to as the
compared CNN network). To the best of our knowledge, there
is no evidence in literature to study the micro-classification
of heartbeats. Hence it is our biggest motivation to prove the
viability of one-dimensional 12-layer CNN on the classifying the
sub-classes of Arrhythmia by reconstructing other CNN network
for better and fairer comparison.

Evaluation Index
In order to evaluate and compare the classification effects of
each model more accurately, this paper uses confusion matrix,
accuracy (Acc), sensitivity (Sen), specificity (Spe), and positive
prediction rate (Ppr) (Kiranyaz et al., 2015). Among them,
the accuracy rate represents the ability to detect the real
situation of the sample; the sensitivity represents the ability
to distinguish various diseases; the specificity represents the
ability to detect negatively for a certain disease; the positive
predication represents the rate that proportion of positive
identifications is actually correct. The corresponding expressions
are formula (4–7):

Acc =
TP + TN

TP + TN + FP + FN
(4)

Sen =
TP

TP + FN
(5)

Spe =
TN

TN + FP
(6)

Ppr =
TP

TP + FP
(7)

Where TP stands for True Positive, TN stands for True Negative,
FP stands for False Positive, FN stands for False Negative, FP
stands for False Positive (Zubair et al., 2016).
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TABLE 3 | All parameters of all proposed classifiers for this work.

Network Parameters

1D-CNN Epoch 60, MiniBatchSize 36, Optimizer adam,

LearnRateDropFactor 0.1, LearnRateDropPeriod 20,

InitialLearnRate 10e-3

Random Forest NumberOfTree 500, MTry 18

BP MaxEpoch 100, LearnRate 0.1, TrainingFunction trainrp,

TrainingGoal 10e-3, Hidden node 20

RESULT AND DISCUSSION

The proposed CNN algorithm is trained on a PC with Intel i5-
7300HQ processors with 16GB of RAM and GTX1050 as GPU.
It takes ∼4236 s to complete training, and ∼11 h to complete
ten-fold cross validation. The average classification time of a
single sample is 0.242 milliseconds. The implementation of the
algorithm is using the MATLAB Deep Learning Toolbox and
MATLAB Neural Network Toolbox.

The confusion matrix in Table 4 shows the classification
results of the proposed CNN network. The overall classification
accuracy rate of the five micro-class classification of heartbeats
reaches 97.41%, and the positive rate and specificity of each
category are over 90%, which has fully illustrated the effectiveness
of the model. However, despite the data enhancement, the
total number of C4 samples in the data set is still relatively
small compared to the other four categories. Hence, the model’s
sensitivity to the C4 type is quite low.

Tables 5–7 illustrate the confusion matrix of BP neural
network, Random Forest network, and the compared CNN
network, respectively. The result shows the accuracy rate of the
proposed CNN algorithm is 97.41%, which is 10.16% higher
than the BP neural network, 1.69% higher than the Random
Forest, and 3.34% higher than the compared CNN network.
Furthermore, the sensitivity and specificity of the proposed CNN
network are higher than the other three networks. Compared
with the traditional machine learning methods like BP network
and the random forests, the CNNnetwork has the weight-sharing
feature, which significantly accelerates the optimization process.
The proposed CNN network also shows better performance on
extracting local features, which is essential to classify different
heartbeat types. The proposed CNN network uses the average-
pooling layer instead of the max-pooling layer of the compared
CNNnetwork. The average-pooling layer can preserve the overall
feature of the input data, which will be beneficial to classify the
ECG signal. Also, the proposed CNN network has one more
alternating convolution and pooling layer than the compared
CNN network. The filter size and number of each convolution
layer are also larger than the compared CNN network.

Table 8 depicts the classification performance of the different
networks applied to the original and denoising data sets. For the
proposed CNN network, the accuracy rates of the original and
de-noised data are 96.9 and 97.2%, respectively, and the accuracy
rate of the classification of the original data is only decreased by
0.3%, which shows that the network proposed in this paper has

TABLE 4 | The confusion matrix of the proposed CNN network.

The proposed CNN network

Class C1 C2 C3 C4 C5 Sen(%) Spe(%) Ppr(%) Acc(%)

C1 7,216 1 0 453 7 95.41 98.15 93.99 97.41

C2 0 6,609 0 2 0 99.96 99.99 99.97

C3 1 0 7,149 2 2 99.78 99.98 99.93

C4 333 2 2 4,297 3 90.31 98.77 92.67

C5 13 0 14 4 6,312 99.81 99.88 99.51

a degree of noise resistance. The accuracy of BP neural network
classification of raw data is dropped 3.3% compared to the de-
noised data. The random forest is 0.5% lower, and the compared
CNN network is also 0.5% lower, all of which are suffered more
loss than the proposed CNN network.

Table 9 lists the standard deviations of the sensitivities,
specificities, and positive rates of four different networks.
According to Table 9, the standard deviations of the four metrics
of the proposed CNN network are less than the BP neural
network, random forest, and the compared CNN network. The
result indicates that the model’s performance against multiple
classifications is relatively stable, and the recognition effect of
each classification is consistent, which shows the robustness of
the model.

Table 10 shows the existing literature of ECG classification.
The dataset used in these literatures is not exactly the same, but
the comparison is useful because classification is all on the same
MIT-BIH database. Li and Zhou (2016) applied random forest
classifier to recognize five main classes (N, Q, S, V, F), which
achieved a 94.61% accuracy rate. Osowski et al. (2004) used an
SVM classifier that achieved 98.18% accuracy on 13 classes of
heartbeats. Martis et al. (2013) obtained 94.52% performance
on five main classes (N, Q, S, V, F) in their studies. Pławiak
and Acharya (2020) used a deep genetic ensemble of classifiers
to classify long-duration ECG signal, which achieved 94.6% of
accuracy on 17 arrhythmia classes in the MIT-BIH database.
Gao et al. (2019) implemented an effective long short-term
memory (LSTM) recurrence network model to classify 8 types of
heartbeats (N, LBBB, RBBB, APC,NESC, ABERR, NPC, AESC).
Atal and Singh (2020) proposed an optimization-based deep
convolutional neural network, achieving 93.19% accuracy on five
main classes (N, Q, S, V, F). Acharya et al. (2017a) achieved
95.22% of accuracy on the classification of two types of heartbeats
only (Normal and MI) with an 11-layer CNN network. The
architecture of this CNN network was 4 alternating convolutions
and max-pooling layers, followed by 3 fully-connected layers. In
another work, Acharya et al. (2017b) used 9-layer CNN network
to classify 5 main classes (N, Q, S, V, F) and they achieved 94.03%
of accuracy. For fair comparison, CNN model of Acharya et al.
(2017b) is reconstructed to benchmark with the proposed model.
Zubair et al. (2016) obtained a 92.70% classification performance
rate for five main classes (N, Q, S, V, F) using an 8-layer CNN-
based network. Zubair et al. (2016) implemented 3 alternating
convolution and max-pooling layer in the CNN, followed by
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TABLE 5 | The confusion matrix of the BP network.

BP network

Class C1 C2 C3 C4 C5 Sen(%) Spe(%) Ppr(%) Acc(%)

C1 6,573 79 14 1,580 252 86.91 92.25 77.34 87.25

C2 354 6,430 13 242 33 97.24 97.51 90.92

C3 33 6 6,726 65 186 93.87 98.85 95.88

C4 472 7 11 2,732 27 57.41 98.13 84.08

C5 132 90 401 139 5,826 92.12 97.08 88.43

TABLE 6 | The confusion matrix of random forest.

Random forest network

Class C1 C2 C3 C4 C5 Sen(%) Spe(%) Ppr(%) Acc(%)

C1 7,162 7 3 766 0 94.69 96.87 90.22 95.72

C2 6 6,577 2 24 3 99.47 99.86 99.47

C3 11 12 7,044 24 0 98.31 99.81 99.33

C4 364 10 8 3,934 3 82.68 98.60 91.08

C5 20 6 108 10 6,318 99.90 99.44 97.77

TABLE 7 | The confusion matrix of the compared CNN network (Acharya et al.,

2017b).

Acharya’s CNN network

Class C1 C2 C3 C4 C5 Sen(%) Spe(%) Ppr(%) Acc(%)

C1 6,873 11 3 1,043 9 90.87 95.71 86.73 94.07

C2 7 6,578 2 9 0 99.48 99.93 99.72

C3 13 7 7,076 21 3 98.75 99.82 99.38

C4 629 9 11 3,662 2 76.96 97.64 84.90

C5 41 7 73 23 6,310 99.77 99.44 97.76

TABLE 8 | The performance of four different approaches.

Network Dataset Acc(%) Sen(%) Spe(%) Ppr(%)

The proposed CNN Denoising 97.41 97.05 99.35 97.21

Raw 97.02 96.57 99.25 96.84

Random Forest Denoising 95.72 95.01 98.92 95.58

Raw 95.08 94.50 98.81 95.09

BP Denoising 87.25 85.51 96.77 87.33

Raw 85.98 84.94 96.46 85.14

Acharya et al. (2017b) Denoising 94.07 93.17 98.51 93.67

Raw 93.22 92.23 98.30 92.79

one MLP layer. Generally speaking, the proposed CNN network
achieved relatively high accuracy on the 5 micro-classes of
heartbeats classification.

Statistical variance test is carried out to study the differences of
the classification performance of the proposed CNN algorithm
as well as the different approaches for the raw and denoised
dataset. Analysis of variance is a collection and representation

TABLE 9 | The standard deviation of the four different networks.

Network Sen Spe Ppr

The proposed CNN 3.79 0.75 3.20

Random Forest 6.43 1.18 4.07

BP 14.44 2.33 6.29

Acharya et al. (2017b) 8.75 1.62 6.49

TABLE 10 | The performance comparison with other algorithms.

References No. of

classes

Feature

set

Classifier Accuracy

Li et al. (2014) 5 WPE + RR RF 94.61%

Osowski et al. (2004) 13 HOS +

Herminte

SVM 98.18%

Martis et al. (2013) 5 Cumulant

+ PCA

NN 94.52%

Acharya et al. (2017a) 2 End-to-

end

CNN 95.22%

Acharya et al. (2017b) 5 End-to-

end

CNN 94.03%

Zubair et al. (2016) 5 End-to-

end

CNN 92.70%

Pławiak and Acharya

(2020)

17 Frequency

components

DGEC 94.60%

Atal and Singh (2020) 5 Gabor

Filter +

Wavelet

BaROA-DCNN 93.19%

The proposed CNN

network

5 Wavalet CNN 97.20%

TABLE 11 | Variance test analysis of the proposed CNN network.

Class Denoise data Raw data p-value

Acc(%) 97.41 ± 0.27 97.02 ± 0.34 0.011

Sen(%) 97.05 ± 0.31 96.57 ± 0.38 0.006

Spe(%) 99.35 ± 0.07 99.25 ± 0.08 0.009

Ppr(%) 97.22 ± 0.31 96.84 ± 0.39 0.027

of statistical model. The associated estimation procedures are
used to analyze the differences among group means in a sample.
The results are recorded in Tables 11–13. The p-value is the
probability of obtaining test results at least as extreme as the
actually observed results, under the assumption that the null
hypothesis is correct. In the statistical significance test, the
smaller the p-value, the stronger the evidence we should reject
the null hypothesis. For analysis in Table 11, the null hypothesis
is that the denoised data and raw data perform equally well.
Significance level is set to 0.05. The p-value obtained from
Table 11 shows 0.011 for accuracy, 0.006 for sensitivity, 0.009
for specialty and 0.027 for positive prediction rate. It clearly
demonstrates all of the p-values are <0.05, therefore it has the
full evidence of rejecting the null hypothesis. Thus, the effect of
denoising is very significant in the classification of the micro-
heartbeats type.
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TABLE 12 | Variance test analysis of different classifiers on raw data.

Class The proposed CNN Acharya et al. (2017b) Random forest BP network p-value

Acc(%) 97.02 ± 0.34 93.22 ± 0.49 95.08 ± 0.39 85.97 ± 0.57 0.0001

Sen(%) 96.57 ± 0.38 92.23 ± 0.50 94.50 ± 0.46 84.94 ± 0.62 0.0001

Spe(%) 99.25 ± 0.08 98.30 ± 0.12 98.81 ± 0.10 96.49 ± 0.14 0.0001

Ppr(%) 96.84 ± 0.39 92.81 ± 0.57 95.10 ± 0.40 85.14 ± 0.65 0.0001

TABLE 13 | Variance test analysis of different classifiers on denoised data.

Class The proposed CNN Acharya et al. (2017b) Random forest BP network p-value

Acc(%) 97.41 ± 0.27 94.07 ± 0.26 95.72 ± 0.41 87.25 ± 0.60 0.0001

Sen(%) 97.05 ± 0.31 93.17 ± 0.25 95.01 ± 0.44 85.51 ± 0.65 0.0001

Spe(%) 99.35 ± 0.07 98.51 ± 0.06 98.92 ± 0.10 96.77 ± 0.15 0.0001

Ppr(%) 97.22 ± 0.31 93.68 ± 0.38 95.58 ± 0.45 87.34 ± 0.70 0.0001

On the other hand, in Table 12, the null hypothesis is under
raw data, all four classifiers perform equally well. Significance
level is still set to 0.05. The obtained p-values are too miniscule
for accuracy, sensitivity, specialty, and positive prediction rate.
All of the p-values are < 0.05, therefore it distinctly shows that
the null hypothesis should be rejected. Thus, under raw data, it
is obvious to interpret that the proposed CNN network performs
much better than the rest of the classifiers.

In Table 13, the null hypothesis is under denoised data, all
four classifiers perform equally well. Significance level is still set
to 0.05. The obtained p-values are too miniscule for accuracy,
sensitivity, specialty and positive prediction rate. All of the p-
values are < 0.05, therefore it distinctly shows that the null
hypothesis should be rejected. Thus, under denoised data, it is
obvious to interpret that the proposed CNN network performs
much better than the rest of the classifiers.

CONCLUSION

Cardiovascular disease is a major health problem in today’s
world. The early diagnosis of cardiac arrhythmia highly relies on
the ECG. Unfortunately, the expert level of medical resources is
rare, visually identify the ECG signal is challenging and time-
consuming. Different from the existing literatures in which
most of them classify the five main classes, such as the Non-
ectopic, Supraventricular ectopic, Ventricular ectopic, Fusion,
and Unknown, in the MIT-BIH Arrhythmia database, our
paper pays more attention to specific micro-classes, namely the
Normal, Left Bundle Branch Block, Right Bundle Branch Block,
Atrial Premature Beats, Premature Ventricular Beats. Compared
with the BP neural network, random forests, and other CNN
networks, it is worth to highlight that the proposed CNNnetwork
has relatively higher accuracy and robustness. The proposed
CNN network shows an outstanding performance in the overall
classification accuracy of 97.41%, sensitivity of 97.05%, specificity
of 99.35%, and positive prediction rate of 97.21% on the
classification of the micro-classes of Arrhythmia dataset.

The advantages of the proposed CNN network have been put
to evidence. It is endowed with an ability to effectively process

the non-filtered dataset with its potential anti-noise features.
Besides that, ten-fold cross-validation is implemented in this
work to further demonstrate the robustness of the network. In
addition, this paper presents an analysis of the classification
of micro-classes of the ECG signal with comparison to some
techniques of machine learning such as BP and Random Forest.
We add values to the research community by discussing the
results of the classification of less popular micro-classes of
Arrhythmia that can be served as a good source of benchmark
literature to other researchers in this field for further research.
One possible setback of the proposed solution is that it is
computationally intensive to train the network, due to deep
learning series is often attributed to large scale data required
for training.

As for future work, it would be interesting to explore the use
of optimization techniques to find a feasible design and solution.
The limitation of our study is that we have yet to apply any
optimization techniques to optimize the model parameters and
we believe that with the implementation of the optimization, it
will be able to further elevate the performance of the proposed
solution to the next level.
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