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Abstract— The compression of Electrocardiography (ECG)
signals acquired in off-the-person scenarios requires methods
that cope with noise and other impairments on the acquisition
process. In this paper, after a brief review of common on-
the-person ECG signal compression algorithms, we propose
and evaluate techniques for this compression task with off-
the-person acquired signals, in both lossy and lossless scenarios,
evaluated with standard metrics. Our experimental results show
that the joint use of Linear Predictive Coding and Lempel-
Ziv-Welch is an adequate lossless approach, and the amplitude
scaling followed by the Discrete Wavelet Transform achieves
the best compression ratio, with a small distortion, among the
lossy techniques.

I. INTRODUCTION

Electrocardiography (ECG) is the process of recording the
electrical activity of the heart [10]. It is widely used in
medicine since it can alert for a variety of heart diseases.
Recently, the demand for portable and accurate ECG moni-
toring has grown substantially, with ECG signals acquired in
an off-the-person procedure using dry-electrodes embedded
on everyday-use objects [1]. Besides medicine, the ECG
signal holds relevant information for other applications, e.g.
fatigue monitoring and biometrics. The dissemination of off-
the-person ECG monitoring systems leads to the need of
signal processing methodologies and the use of compression
techniques, for storage and transmission purposes.

This paper addresses the task of compression of off-
the-person ECG signals acquired using dry electrodes [1],
which is a much more challenging task than the well-known
typical use of gelled electrodes for clinical applications. The
remainder of this paper is organized as follows: Section
II presents the off-the-person ECG signals and the setup
for their acquisition; Section III reviews data compression
techniques for ECG signals; on Section IV, we address
the experimental evaluation of the proposed techniques,
with standard metrics. Section V ends the paper with some
remarks and directions for future work.

II. OFF-THE-PERSON ECG SIGNALS

The ECG is the electrical signal emitted by the heart on the
successive contractions and distensions of the heart muscle,
named myocardium [10]. The usual way to acquire ECG
signals uses electrodes directly attached to the body surface.
It uses a gel or a conductive paste that enables the proper
physical contact with the skin and an adequate capture of
the cardiac signal. These clinical methods may require the
placement of, for example, up to twelve electrodes on the
surface of the body to extract a good ECG signal [1] and

Fig. 1. CardioWheel [6]: a steering wheel cover with conductive leather
connected with box containing embedded electronics.

are limited to a restricted physical space of use, such as an
ambulance or a treatment room.

Off-the-person ECG techniques aim to acquire ECG sig-
nals in a less intrusive way using hands as contact points,
allowing the acquisition of signals without sensors placed
on the body, but rather in objects of everyday use [1]. The
purpose of these methods is to make the acquisition of signals
almost involuntarily, without impact on the person’s daily
actions. The components used in this method are called dry-
electrodes as they do not require the use of any conductive
gels or pastes, using human perspiration to a better contact
with the person’s skin. These electrodes can be placed on any
equipment, such as, for instance, computer mice, keyboards,
mobile phones, watches and cars’s steering wheels, as de-
picted in Figure 1. To achieve an acceptable biometric signal,
only two electrodes are required. However, the method is
more sensitive to noise, as compared to the on-the-person
ECG acquisition methods, leading to the need of signal
processing tasks on the signal. After signal processing task,
the main signal characteristics are preserved, enabling some
analysis similar to those achieved with hospitalar systems,
such as heartbeating detection.

Figure 2 presents a comparison of the signals acquired on
the chest with the CardioWheel device, that acquires off-the-
person ECG signals. In both cases, we identify the types of
wave P, Q, R, S, and T, but with more noise on the off-the-
person signal. The medical analysis of an ECG signal focuses
mainly on the QRS wave complex. However, the P and T
waves also have a high clinical value. Cardiac abnormalities
are detected by considering the mean amplitude of each wave



Fig. 2. Comparison between off-the-person (blue line) signal with on-the-
person ECG (green line) signal. The PQRST complex.

as well as the time intervals between them. Typically, the
signal voltage values may range from 1 to 10 mV, with signal
frequency values ranging from 0.05 to 100 Hz and a heart
rate oscillating from 60 to 100 beats per minute [8].

III. DATA COMPRESSION TECHNIQUES

Data compression is the process of encoding information
using fewer bits than the original representation. It can be
either lossless or lossy. In the lossless approach, also named
compaction, the decoded signal is exactly the same as the
original signal. On the lossy approach, the decoded signal is
similar to the original version, thus it has some distortion.
The lossy approaches achieve much higher compression ra-
tios than the lossless techniques, at the expense of distortion,
which is established by the lossy encoder.

The ECG signal acquisition produces a sequence of num-
bers recording the amplitude of the signal, which is named
as a digital signal. This sequence of numbers when displayed
as a graph, yields a representation similar to those depicted
in Figure 2. Thus, for the compression tasks of ECG signals,
one has to deal with a time-based sequence of amplitudes.
The following subsections briefly review some existing direct
time-domain, lossless, and lossy techniques for the compres-
sion task. For an overview of data compression techniques,
the reader is referred to [5], [9].

A. Direct Time-Domain Approaches

There are some simple approaches that are made up by
some operations directly on the time domain of the acquired
signal. These methods are often used in heartbeat detection
and counting, achieving good compression ratios but failing
in the perfect reconstruction of the signals, introducing
distortion to the ECG signal. Among these operations, we
have: amplitude scaling, Differential Pulse Code Modulation
(DPCM), Amplitude Zone Time Epoch Coding (AZTEC),
Turning Point (TP), and Coordinate Reduction Time Encod-
ing Scheme (CORTES) [4], [7].

B. Lossless Encoding Approaches

The lossless encoding techniques can be classified in
two major groups [9]: entropy coding and dictionary-based

Fig. 3. The lossy encoding process block diagram with its three main
operations [5].

coding. The lossless compression is achieved by remov-
ing the redundancy often found in the data. Among these
techniques, we have for instance the entropy-based Huff-
man coding [3] and the dictionary-based Lempel-Ziv-Welch
(LZW) [11]. The DEFLATE compression algorithm is based
on the Lempel-Ziv 77 (LZ77) algorithm, for duplicate string
elimination, followed by Huffman coding, for bit reduction.
For each data block, the LZ77 algorithm finds repeated
substrings and replaces the next occurrence of that substring
by a pointer to the previous substring, with a pair of
coordinates distance and length. The original sequences
and the match lengths are compressed with one Huffman
tree and the match distances are compressed with another
tree. The built Huffman trees are encoded to go along with
the rest of the data, so the receiver does not need to build
the Huffman tree to decode the data. The Linear Predictive
Coding (LPC) [5] is a type of predictive encoding scheme
adequate for audio and speech signals. This type of coding is
characterized by being an Auto-Regressive (AR) model, that
is, a sample is linearly dependent on the previous samples.
The main idea of LPC is the transmission of an error e[n],
which results from the subtraction between the original signal
o[n] and the predicted signal p[n]. The LPC coefficients are
computed from the autocorrelation of the input signal and
the number of coefficients of the predictor is set based on
the desired amount of error between o[n] and p[n].

C. Lossy Encoding Approaches

Transformation-based methods [5] are the most used tech-
niques to perform lossy encoding of audio and image data.
The transformation methods are lossless being applied to
enable better coefficient quantization, introducing loss, which
results in a lower quality output with high compression
ratio. These techniques consist in discarding less significant
information, on the quantization stage, which tends to be
irrelevant to the human perception of the signal. Figure 3
depicts the lossy encoding process with its three key stages.
There are different approaches for the three building blocks
of Figure 3. In this study, we address two well-known
techniques for the transform operation, namely the Discrete
Cosine Transform (DCT) and the Discrete Wavelet Trans-
form (DWT) [5]. The DCT performs the representation of
the input signal (a sequence of N points) on a cosine basis
functions. The DCT method is used in various applications
such as in the lossy compression of audio signals, in the MP3
format. The DCT coefficients, F [u], u ∈ {0, 1, . . . , N − 1}
for a one-dimensional N-point signal are computed by

F [u] = a[u]

N−1∑
n=0

f [n] cos

(
π(2n+ 1)u

2N

)
, (1)



Fig. 4. The Discrete Wavelet Transform (DWT) [5]: top - the forward
transform; bottom - the inverse transform.

where f [n] is the input signal and a[u] is a scaling factor
computed as

a[u] =


√

1
N , u = 0√
2
N , u ∈ {1, . . . , N − 1}.

(2)

The reconstructed signal is given by

f [n] =

N−1∑
u=0

a[u]F [u] cos

(
π(2u+ 1)n

2N

)
. (3)

The DWT performs a decomposition of the input signal,
depicted in the top part of Figure 4, through a Low-Pass-
Filter (LPF) and a High-Pass-Filter (HPF), with impulse
responses g[n] and h[n], respectively. The LPF filtering gen-
erates approximation coefficients (cA) and the HPF generates
the detail coefficients. The filtering operations are followed
by a dyadic decimation operation, usually called down-
sampling. The DWT provides a multi-resolution represen-
tation of signals, with information in time and frequency
domains. As a result, the DWT decomposes a digital signal
into different sub-bands so that the lower frequency sub-
bands will have a finer frequency resolution and a coarser
time resolution compared to the higher frequency sub-bands.
The inverse DWT is represented in the bottom part of
Figure 4, with the upsampling procedure with a factor of
2, applied before each filtering operation.

IV. EXPERIMENTAL EVALUATION
In this section, we perform a comparison of different

lossless and lossy approaches for the ECG compression task.
We present a description of the evaluation procedure and
evaluation metrics and then we move on to the experimental
results attained with the techniques described in Section III,
for ECG signals. We have considered a dataset provided by
the Swedish National Road and Transport Research Institute
contains signals from 18 different people, including ECG and
SWA, for the same car and track, in both awake and drowsy
states.

A. Evaluation Metrics and Procedure
The Compression Ratio (CR) is one of the most used

metrics in signal compression and measures the data re-
duction achieved by a given compression method. When

testing a method, it is intended to obtain high CR while
maintaining acceptable signal quality. For the original, o[n]
and the compressed, c[n], signals, the CR is given by

CR(o[n], c[n]) =
lo
lc

: 1, (4)

where lc and lo are the length of the compressed and the
original signal, respectively. For instance, a compression with
a reduction to half the original size is represented as 2:1.

The Root-Mean-Squared Error (RMSE) is one of the most
used distortion metrics. It represents how far the output
samples are from the input and it is calculated by the squared
root of the summation of the mean of the squared differences
between the original signal o[n] and the decoded signal d[n],

RMSE(o[n], d[n]) =

√√√√ 1

N

N−1∑
n=0

(o[n]− d[n])2. (5)

The Signal-to-Noise Ratio (SNR) measures the quality of
a signal affected by noise. In this case, the noise is given by
the distortion introduced by the lossy encoding process on
the quantization stage. SNR, expressed in dB, is defined as

SNR(o[n], d[n]) = 10 log10

(
Po

Pn

)
, (6)

where Po and Pn are the power of the original and noise/error
signals, respectively. The use of SNR to denote the quality
of the uniform quantization procedure leads to the SNR-
quantization (SNRQ) expression,

SNRQ = 6.02R+ 10 log10

(
3P

V 2

)
, (7)

where R denotes the number of bits per sample, P is
the power of the quantized signal and V is the maximum
amplitude of the quantizer. SNRQ serves as the basis for
comparing the attained transmission SNR (SNRt), after lossy
encoding. Considering that the number of bits per symbol
after quantisation is R = 12, the supply voltage of the
microcontroller V = 3.3, and the power of the signal P is
roughly its squared amplitude A2, then SNRQ=111.93 dB,
for the considered ECG signals.

The experimental procedure was conducted as follows.
The algorithms were written in Matlab and developed to
test source and transform-based compression methods. The
performance of these methods were assessed with different
metrics, described above, with the goal to identify the method
that best suits the application of fatigue and drowsiness
detection signals, which is the key goal of this module on
the overall system [2]. We have considered a set of methods
as described in the following subsection.

B. Lossy and Lossless Encoding Techniques

The following encoding methods were considered:
• DPCM + Huffman - The DPCM technique obtains

values on the 8-bit range of values {−128, . . . , 127},
turning the signal quantized with 8 bits instead of
12. The Huffman code produces variable length code-
words, depending on the probability of occurrence of



the corresponding symbol. Thus, we perform a 12
to 8-bit compression before Huffman coding, so the
output of it could fit in a Bluetooth Low Energy (BLE)
frame. This results in a CR of 1.5:1 with an infinite
SNRt (lossless technique). In case any DPCM sample
is outside the 8-bit range, the samples are truncated at
that limit to be sent via BLE, introducing error in the
transmitted signal.

• LPC + LZW - The LPC model is computed from
the mean of the first a + 1 samples of three ECG
signals. The initial coefficients of the LPC predictor
both at the transmitter and receiver are the mean of the
coefficients computed for each ECG signal. The LZW
algorithm is applied to the low entropy error from the
LPC encoder. To transmit in 8-bit frames of the BLE,
the LZW dictionary has a maximum of 256 entries. The
initial dictionary size, depends on the entropy of the
error; an initial dictionary with 32 entries is adequate
to handle the prediction for new ECG signals.

• DCT-based - The DCT can achieve a good performance
in signal compression if there are no concerns with
the signal amplitude, but only with sample reduction.
The output signal has high amplitudes at the beginning,
however, from the 4800 coefficient and beyond there are
no significant amplitude variations, and from sample
11000 until the end, the amplitude can be discarded.
Considering the first 11000 samples, this method can
achieve a CR of 5.36:1, and the reconstructed signal
has a SNRt of 54.94 dB.

• DWT-based - The compression in the DWT is achieved
by only transmitting the approximation coefficients
while the detail coefficients are discarded due to their
low amplitude. We applied the amplitude scaling, from
12 to 8 bits before applying the DWT with Daubechies
wavelets (the db10 wavelet), since the ECG signal
has a lot of vanishing moments and these wavelets
are known to be adequate to represent signals with
vanishing moments.

Table I shows the experimental results of these techniques,
regarding the CR, RMSE, and SNRt measures.

TABLE I
EXPERIMENTAL RESULTS ON COMPRESSION AND DISTORTION

Method CR RMSE SNRt
DPCM + Huffman 1.5:1 0 ∞

LPC (10 coefficients) + LZW 4.57:1 0 ∞
LPC + DEFLATE 3.45:1 0 ∞

DCT-based 5.36:1 0.33 54.94
Amplitude Scaling + DWT 5.99:1 3.56 34.26

C. Discussion of the experimental results

With all the compression tests done, it is possible to com-
pare them in order to establish the best solution for the ECG
signal compression. According to the CR values obtained, the
technique using Amplitude Scaling with DWT proved to be
the one with higher compression and acceptable distortion.

However, this is a lossy technique and it introduces some
distortion in the signal, that cannot be acceptable for precise
analysis, like medical analysis. For lossless compression, the
technique using LPC and LZW is the one with the best CR,
taking into account that this algorithm needs some time to
correct the prediction error and to be effectively a lossless
method.

V. CONCLUSIONS
The monitoring of a persons ECG signal and its recording

has many applications. In this paper, we address a system
in which the ECG signal is extracted with dry-electrodes
placed in a conductive leather covering the steering wheel
that can sense the electrical signal caused by the heartbeat
of the person while having the hands on the wheel.

The amount of data acquired with this system undergoes a
compression stage for transmission with the goal of reducing
the necessary bandwidth. For this purpose, in this paper we
have evaluated different lossy and lossless techniques for data
compression. We have compared different techniques with
standard metrics, using Matlab implementations. The method
that achieved better compression is the lossy hybrid method
using Amplitude Scaling and DWT with a CR of 5.99:1 with
an acceptable distortion. However, the LPC+LZW method
attains a CR of 4.57:1. The DCT-based method offers the
second best CR and RMSE values with the highest SNRt,
and thus it seems the best trade-off option. The choice of
which method best suits varies with the type of application
and for ECG pattern recognition it is preferable to preserve
the signal than to reduce the amount of data.

As future work, we intend to fine tune the parameters of
the best performing lossless and lossy techniques, for our
ongoing development of the system to monitor drivers fatigue
and drowsiness, to alert the driver from potential hazard.
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