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Abstract

We propose and study novel max-flow models in the con-

tinuous setting, which directly map the discrete graph-based

max-flow problem to its continuous optimization formula-

tion. We show such a continuous max-flow model leads

to an equivalent min-cut problem in a natural way, as the

corresponding dual model. In this regard, we revisit ba-

sic conceptions used in discrete max-flow / min-cut mod-

els and give their new explanations from a variational per-

spective. We also propose corresponding continuous max-

flow and min-cut models constrained by priori supervised

information and apply them to interactive image segmen-

tation/labeling problems. We prove that the proposed con-

tinuous max-flow and min-cut models, with or without su-

pervised constraints, give rise to a series of global binary

solutions λ∗(x) ∈ {0, 1}, which globally solves the orig-

inal nonconvex image partitioning problems. In addition,

we propose novel and reliable multiplier-based max-flow

algorithms. Their convergence is guaranteed by classical

optimization theories. Experiments on image segmentation,

unsupervised and supervised, validate the effectiveness of

the discussed continuous max-flow and min-cut models and

suggested max-flow based algorithms.

1. Introduction

Max-flow and min-cut is one of the key strategies to

model and solve practical problems in image processing and

computer vision as energy minimization procedures. It has

been successfully applied in a wide class of applications,

e.g. image segmentation [7, 2], stereo [15], 3D reconstruc-

tion [17]. The associated energy minimization problem is

often mapped as a minimum cut problem on an appropriate

graph, and then solved by efficient algorithms of max-flow.

There were a vast amount of research works on this topic

during the last years [6, 7]. One main drawback of such dis-

crete approaches is the grid bias. The pair-wise interaction

potential penalizes some spatial directions more than other,

which leads to visual artifacts in the final solution. This is

often called metrication errors. Reducing such visual ef-

fects often amounts to an extra memory and computational

burden [13].

During these years, extensive attentions have been paid

to investigate max-flow and min-cut models in a continu-

ous framework. G. Strang [19, 20] was the first to study

the max-flow / min-cut related optimization problem over

a continuous domain. In [2, 3], Appleton et al. proposed

a continuous minimal surface approach to segmenting 2D

and 3D objects and solved it by PDEs. Chan et al. [10]

proposed the segmentation of a continuous image domain

by a convex approach, which relaxed the binary constraint

of the partition function λ(x) ∈ {0, 1} to the convex set

λ(x) ∈ [0, 1]:

min
λ(x)∈[0,1]

∫

Ω

(1 − λ)f1 dx +

∫

Ω

λf2 dx + αTV(λ) . (1)

The authors proved that (1) leads to a series of global binary

optimums by simply thresholding the optimum λ∗(x) ∈
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[0, 1] of (1). It, consequently, leads to a set of global bi-

nary optima to the original nonconvex partition problem. In

this regard, it can actually be seen as a continuous min-cut

model without priori supervision. Recently, Chan’s model

(1) was extended to more than two regions in [18, 16, 4],

which proposes multi-way cuts in a continuous configura-

tion and was applied to solve multi-labeling problems.

However, in view of the duality between graph-based

max-flow and min-cut, the concerning max-flow model,

which is dual to the concerning min-cut model over a spa-

tially continuous domain, e.g. (1), is still lost in recent

developments. On the other hand, the continuous min-cut

model is numerically treated as a normal optimization prob-

lem, where potential max-flow features are not studied and

explored, both theoretically and numerically. This is not the

case in discrete settings where max-flow formulations are

often employed to design fast algorithms. Moreover, stud-

ies of continuous max-flow and min-cut models with priori

supervised constraints are also lost. Simply putting large

positive values to specified data, as done in graph-based

approaches, distorts numerical schemes in continuous op-

timization and slows down convergence.

1.1. Contributions

In this paper, we propose and study a new continu-

ous max-flow formulation, which is the direct counterpart,

in the continuous spatial setting, of the discrete max-flow

model. We generalize the main contributions of this work

as follows:

First, we build up the novel continuous max-flow model,

in terms of a flow representation and show it is dual to the

continuous min-cut problem (1). In comparison to previous

works, we show how to compute the continuous min-cut by

its max-flow formulation.

Second, we revisit and give a new explanation of the fun-

damental conceptions in graph cuts, e.g. ’saturated’ / ’un-

saturated’ flows and ’cuts’, from a variational perspective.

We prove that there exist a series of global binary optima

to the new continuous min-cut model, by using the maxi-

mal flow formulation, and each resulted cut shares the same

energy.

Third, we also propose new continuous max-flow and

min-cut models for the segmentation under supervised con-

straints. Through them, it is not required to change any

value of data terms as applied in interactive graph-cuts.

Meanwhile, the complexities of the new supervised max-

flow and min-cut models are the same as the unsupervised

ones. We prove that there exist globally optimal supervised

’cuts’, which can be resolved from the global non-binary

optimum λ∗.

Last but not least, novel multiplier-based max-flow al-

gorithms are proposed, which, in nature, splits the opti-

mization problem into simple subproblems over indepen-

dent flow variables. The labeling function λ(x) works as

the multiplier and is resolved simultaneously. The numeri-

cal scheme is reliable and can be verified by classical opti-

mization theories.

2. Continuous Max-Flow and Min-Cut

2.1. Revisit of Discrete MaxFlow and MinCut

Many imaging and vision tasks can be formualted in

terms of max-flow and min-cut on appropriate graphs, start-

ing from the work of Greig et. al. [11]. A graph G = (V,E)
consists of a vertex set V and an edge set E ⊂ V × V .

The vertex set of commonly-used graphs in image process-

ing and computer vision includes the nodes in a 2-D or 3-D

nested grid, together with two terminal vertices, the source s
and the sink t. The edge set includes two types of edges: the

spatial edge en sticks to the given grid and links two neigh-

bour grid stencils except s and t; the terminal edge or data

edge, es or et, which links the specified terminal, s or t, to

each grid node respectively. We assign a cost C(e) to each

edge e, which is assumed to be nonnegative i.e. C(e) ≥ 0.

In this work, we consider this type of graphs in the 2-D case

mainly for simplicities. Discussions can be simply extended

to the 3-D case.

A two-partition cut assigns the two disjoint partitions to

the source s and the sink t respectively, which is also called

s-t cut. It divides the spatial grid nodes of Ω into two disjoint

sets: one relates to the source s and the other to the sink t,
hence segments the given image domain into two parts:

V = Vs

⋃

Vt , Vs ∩ Vt = ∅ .

The energy of each cut is the total cost of edges e ∈ Est ⊂
E, whose end-points belong to two different partitions. The

problem of min-cut is to find the two partitions of vertices

such that the corresponding cut-energy is minimal:

min
Est⊂E

∑

e∈Est

C(e) . (2)

On the other hand, each edge e ∈ E can be viewed as

a pipe and the edge cost C(e) can be regarded as the ca-

pacity of this pipe. For such a ’pipe’ network, we have the

following constraints:

• Capacity of spatial flows p: for an undirected grid edge

en ∈ E, the spatial flow p(en) is constrained:

|p(en)| ≤ C(en) ; (3)

• Capacity of source flows ps: for a source edge es(v) :
s → v linking s to the node v ∈ V \{s, t}, ps(v) is

directed from s to v. The capacity Cs(v) indicates that

0 ≤ ps(v) ≤ Cs(v) ; (4)
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• Capacity of sink flows pt: for a sink edge et(v) : v → t
linking the node v ∈ V \{s, t} to t, pt(v) is directed

from v to t. Its capacity Ct(v) indicates that

0 ≤ pt(v) ≤ Ct(v) ; (5)

• Flow conservation: at each node v ∈ V \{s, t}, incom-

ing flows are balanced by outcoming flows, i.e. all the

flows passing v should be constrained by:

(

∑

en∈N(v)

p(en)
)

− ps(v) + pt(v) = 0 . (6)

where N(v) ⊂ E is the set of edges linking v to its

neighbour nodes.

The maximal flow problem tries to find the largest flow

amount allowed from the source s, i.e.

max
ps

∑

v∈V \{s,t}

ps(v) , (7)

subject to the above conditions (3), (4), (5) and (6).

When a flow p(e) over the edge e ∈ E reaches its corre-

sponding capacity C(e), in (3), (4) or (5), we call it ’satu-

rated’; otherwise, ’unsaturated’. It is well known that the

max-flow problem (7) is equivalent to the min-cut prob-

lem (2), where the flows are saturated uniformly on the cut

edges, i.e. flow is bottlenecked by the ’saturated’ pipes.

2.2. Primal Model: Continuous MaxFlow

Let Ω be a closed and continuous 2-D or 3-D domain

and s, t be the source and sink terminals. At each position

x ∈ Ω, we denote the usual spatial flow passing x by p(x);
the directed source flow from s to x by ps(x); and the di-

rected sink flow from x to t by pt(x). Now we consider

the counterpart of the discrete max-flow problem (7) in this

continuous setting, which can be directly formulated in the

same manner as stated in the previous section.

In view of the flow constraints (3), (4), (5) and (6) over

the graph G, we suggest constraints for flow functions p(x),
ps(x) and pt(x) over the spatial domain Ω, similarly:

|p(x)| ≤ C(x) ; (8)

ps(x) ≤ Cs(x) ; (9)

pt(x) ≤ Ct(x) ; (10)

div p(x) − ps(x) + pt(x) = 0 , (11)

where C(x), Cs(x) and Ct(x) are given capacity functions

and div p evaluates the total incoming spatial flow locally

around x, in analogy with the sum operator in (6). The con-

straints (9) and (10) for the source flow ps(x) and the sink

flow pt(x) are changed a little in comparison to (4) and (5).

This is because the positiveness of flows ps(x) and pt(x)

are not needed as they are directed flows and their values

simply mean that some flows are distributed from s to the

pixel x or from x to t. Likewise, Cs(x) and Ct(x) are also

not necessary to be positive. This extends the application

range of max-flow and min-cut models.

Consider the discrete max-flow problem (7), the contin-

uous max-flow model can then be formulated as

max
ps,pt,p

∫

Ω

ps(x) dx (12)

subject to the constraints (8), (9), (10) and (11). In this

paper, we call (12) the primal model and all flow functions

ps, pt and p primal variables.

2.3. PrimalDual Model

By introducing the multiplier λ, also called the dual vari-

able, to the linear equality of flow conservation (11), the

continuous maximal flow model (12) can be written as its

equivalent primal-dual model:

max
ps,pt,p

min
λ

∫

Ω

ps dx +

∫

Ω

λ
(

div p − ps + pt

)

dx (13)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

Rearranging the primal-dual formulation (13) gives

max
ps,pt,p

min
λ

∫

Ω

{(

1 − λ
)

ps + λpt + λ div p
}

dx (14)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

2.4. Dual Model: Continuous MinCut

Clearly, optimizing the dual variable λ of the primal-

dual problem amounts to the primal max-flow model (12).

Likewise, optimizing the flow variables ps, pt and p of the

primal-dual model (14) leads to its equivalent dual model:

min
λ(x)∈[0,1]

∫

Ω

{(

1 − λ
)

Cs + λCt dx + C |∇λ|
}

dx . (15)

In order to show this, let us first consider the following

optimization problem

f(q) = max
p≤C

p · q . (16)

When q < 0, p can be chosen to be a negative infinity value

in order to maximize the value p · q, i.e. f(q) = +∞.

Hence, we must have q ≥ 0 so as to make the function f(q)
meaningful and it follows

{

if q = 0 , then ∀p < C and f(q) reaches maximum 0
if q > 0 , then p = C and f(q) reaches maximum q · C

.

Therefore, the function f(q) can be reformulated by

f(q) = q · C , q ≥ 0 . (17)
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The function f(q) given by (16) provides us a proto-

type to maximize the source flow ps(x) and sink flow pt(x)
pointwise in the primal-dual model (14). At each position

x ∈ Ω, in view of (17), we have

fs(x) = max
ps(x)≤Cs(x)

(

1 − λ(x)
)

· ps(x) ,

=⇒ fs(x) =
(

1 − λ(x)
)

· Cs(x) , 1 − λ(x) ≥ 0 . (18)

and

ft(x) = max
pt(x)≤Ct(x)

λ(x) · pt(x)

=⇒ ft(x) = λ(x) · Ct(x) , λ(x) ≥ 0 . (19)

For the spatial flow p(x), it is well known [20] that:

max
|p(x)|≤C(x)

∫

Ω

λ div p dx =

∫

Ω

C |∇λ| dx . (20)

By (18), (19) and (20), it is easy to see that maximizing

flows ps, pt and p in (14) gives rise to (15).

When C(x) is constant in Ω, e.g. C(x) = α, we note

that (15) just coincides with the Chan-Esedoglu model (1)

proposed in [10]. When C(x) is a so-called edge detec-

tor, (15) coincides with the model studied by Bresson et.

al. [8]. We focus on the case when C(x) = α and prove

the following proposition based on its equivalent max-flow

model (12) and primal-dual model (14). The results can be

easily extended to its general version (15).

Proposition 1. Let p∗s , p∗t , p∗ and λ∗(x) be the optimal

primal-dual pair of (13) when C(x) = α. Then each level

set function uℓ(x), ∀ℓ ∈ (0, 1], of λ∗(x):

uℓ(x) :=

{

1 , λ∗(x) > ℓ
0 , λ∗(x) ≤ ℓ

,

gives a global binary solver of the nonconvex min-cut prob-

lem:

min
S

∫

Ω\S

Cs(x) dx +

∫

S

Ct(x) dx + αLS (21)

where LS is the length of the the boundary of S.

Moreover, each cut energy given by the indicator func-

tion uℓ(x) has the same energy as its maximal flow energy:
∫

Ω

p∗s(x) dx .

The proof is given as a supplementary material [1]. The

energy of each cut given by uℓ(x) is equal to its associated

max-flow energy by (12). Chan et al. [10] also gave a proof

of the first part through the coarea formula.

In view of Prop. 1, the variational max-flow problem

(12) leads to the segmentation of Ω together with a ’tight

boundary’, i.e. a minimal cut, by its optimal multiplier λ∗;

and vice versa, i.e. the variational max-flow model (12) and

its equivalent min-cut model (15) globally solve the non-

convex min-cut problem (21).

2.5. ’Saturated’/’Unsaturated’ Flows and Cuts

Now we consider the function f(q) in (16): for the given

q and its associated optimal p∗, if p∗ < C strictly, by means

of variations, its variation directly leads to q = 0 as its varia-

tion δp can be both negative and positive; on the other hand,

if p∗ = C, its variation over the constraint is δp < 0 which

gives q > 0. It follows that if p∗ < C, i.e. ’unsaturated’,

then q = 0 which leads to the so-called ’cut’ in the sense of

graph cut.

In the same manner, through (9), it is easy to see that

when the optimal source flow p∗s(x) < Cs(x) at x ∈ Ω, i.e.

’unsaturated’, we must have 1−λ(x) = 0 at x and fs(x) =
(1 − λ(x))p∗s(x) = 0, which means that at the position

x the source flow p∗s(x) has no contribution to the energy

function. The flow p∗s(x), from the source s to x, can be

’cut’ off from the energy function of (14). The same holds

for the sink flow p∗t (x): the ’unsaturated’ sink flow p∗t (x) at

x gives λ(x) = 0, which can be cut off. Observe this, only

’saturated’ source and sink flows have contributions to the

energy.

For the spatial flow fields p(x), let Cα
TV :=

{p | ‖p‖∞ ≤ α , pn|∂Ω = 0 } . Obviously,

max
p∈Cα

TV

〈div p, λ〉 = max
p∈Cα

TV

〈p,∇λ〉 . (22)

The extremum of the inner product 〈p,∇λ〉 in (22) just in-

dicates the normal cone-based condition of ∇λ [12]:

∇λ ∈ NCα
TV

(p) . (23)

Then we simply have:

∇λ(x) 6= 0 , if |p∗(x)| = α , (24a)

∇λ(x) = 0 , if |p∗(x)| < α (24b)

where p∗ is the optimal value to maximize (22).

In other words, for some position x ∈ Ω where the

flow p∗(x) is ’saturated’, i.e. |p∗(x)| = α, we must have

∇λ(x) 6= 0, i.e. there exists jumps of λ(x) locally, i.e. a

’cut’ locally. For some local area x ∈ Ω where the flow

variable p∗(x) is not ’saturated’, i.e. |p∗(x)| < α, we must

have ∇λ(x) = 0, i.e. λ(x) is locally constant.

3. Supervised Max-Flow and Min-Cut

In this section, we study the continuous max-flow and

min-cut models with priori given supervision constraints.

By simple modifications, we propose new supervised max-

flow and min-cut models, which implicitly encode the priori

labeled information and share the same complexities with

the unsupervised ones.

In contrast to the continuous max-flow and min-cut in-

vestigated above, supervised max-flow/min-cut computes
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the optimal partition with priori information about some

points or areas, e.g. some image pixels have already been

labeled, in advance, as foreground or background. Super-

vised image segmentation can therefore be modeled as the

constrained min-cut problem:

min
S

∫

S\Ωf

Cs(x) dx +

∫

(Ω\Ωb)\S

Ct(x) dx + αLS

s.t. Ωf ⊂ S ⊂ Ω\Ωb . (25)

where Ωf ,Ωb ⊂ Ω are the two disjoint areas pointed out

priori: Ωf belongs to the foreground or objects and Ωb be-

longs to the background.

We define two indicator functions:

uf (x) =

{

1, x ∈ Ωf

0, x /∈ Ωf
, ub(x) =

{

0, x ∈ Ωb

1, x /∈ Ωb
(26)

As Ωf and Ωb are disjoint, we obviously have

uf (Ωb) = 0 , ub(Ωf ) = 1 . (27)

3.1. Primal Model: Supervised MaxFlow

We consider the supervised max-flow model as a prob-

lem of flow cost. For the source flow ps(x): it flows from

the source s to each spatial pixel x ∈ Ω; when x ∈ Ωb,

the flow is valued as zero as it passes a known back-

ground pixel; otherwise, it is valued as the full flow ps(x).
Therefore, in view of ub(Ωb) = 0 and ub(Ω\Ωb) = 1
(26), the total cost from the source ps in Ω is given by
∫

Ω
ub(x)ps(x) dx. Concerning the ’total cost’ of the sink

flow pt(x): it flows from each spatial pixel x to the sink t;
when x ∈ Ωf , the sink flow costs −pt(x) where its neg-

ative sign means it reduces the cost; otherwise, the sink

flow costs nothing, likewise, in view of uf (Ωf ) = 1 and

uf (Ω\Ωf ) = 0 (26), we can evaluate the total cost of pt in

Ω by −
∫

Ω
uf (x)pt(x) dx.

Observe the continuous max-flow problem (12), we then

formulate the supervised max-flow model as

max
ps,pt,p

∫

Ω

ub(x)ps(x) dx −

∫

Ω

uf (x)pt(x) dx (28)

subject to the flow constraints (8), (9), (10) and (11). (28)

is also called the primal model of the supervised max-flow

/ min-cut problem.

In the special case when no priori information about

foreground and background is given, then we have the two

indicator functions uf (x) = 0 and ub(x) = 1, ∀x ∈ Ω. It

can be easily checked that the supervised max-flow problem

(28) coincides with the max-flow model (12) in this case.

Introduce the multiplier function λ, as (13), we then have

the equivalent primal-dual formulation of (28):

max
ps,pt,p

min
λ

∫

Ω

ub(x)ps(x) dx −

∫

Ω

uf (x)pt(x) dx+

∫

Ω

λ(x)
(

div p(x) − ps(x) + pt(x)
)

dx (29)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ,

which can be equally rearranged as

max
ps,pt,p

min
λ

∫

Ω

(ub − λ)ps dx +

∫

Ω

(λ − uf )pt dx +

∫

Ω

λ(x) div p(x) dx (30)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

3.2. Dual Model: Supervised MinCut

The maximization of (30) over all flows ps, pt and p,

subject to (18), (19) and (20), leads to the supervised min-

cut model, which is the equivalent dual model to (28):

min
λ

∫

Ω

(

ub − λ
)

Cs dx +

∫

Ω

(

λ − uf

)

Ct dx +

∫

Ω

C(x) |∇λ(x)| dx (31)

s.t. uf (x) ≤ λ(x) ≤ ub(x) .

In this paper, we focus on C(x) = α, ∀x ∈ Ω, then (31)

can be equivalently written as

min
λ

∫

Ω

(

ub − λ
)

Cs dx +

∫

Ω

(

λ − uf

)

Ct dx+

α

∫

Ω

|∇λ(x)| dx (32)

s.t. uf (x) ≤ λ(x) ≤ ub(x) .

Since ub(x) and uf (x) are given priori, (32) can be short-

ened as:

min
λ

∫

Ω

λ
(

Ct − Cs

)

dx + α

∫

Ω

|∇λ(x)| dx (33)

s.t. uf (x) ≤ λ(x) ≤ ub(x) .

Consider (32) and (33), it is easy to verify that the in-

equality constraint of λ(x), by (26) and (27), exactly gives

λ(Ωf ) = 1 , λ(Ωb) = 0 . (34)

This coincides with the priori information that Ωf is already

labeled as foreground, i.e. λ(Ωf ) = 1, and Ωb is labeled as

background, i.e. λ(Ωb) = 0.

In the special case when no priori information about

foreground and background is provided, i.e. uf (x) = 0 and
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ub(x) = 1 for ∀x ∈ Ω, the supervised min-cut problem (32)

is equivalent to the continuous min-cut problem obviously.

Moreover, we prove that the supervised cut of (25) can

also be obtained by thresholding the global optimum λ∗ to

(32) or (33) in the same manner as Prop. 1.

Proposition 2. Let p∗s , p∗t , p∗ and λ∗(x) be an optimal

primal-dual pair of (29) with C(x) = α. Then each in-

dicator function uℓ(x) by rounding λ∗(x) where ℓ ∈ (0, 1]:

uℓ(x) :=

{

1 , λ∗(x) ≥ ℓ
0 , λ∗(x) < ℓ

,

is a global solution to the nonconvex supervised min-cut

problem (25).

Moreover, each supervised cut given by uℓ(x) has the

same energy as the optimal supervised max-flow energy, i.e.
∫

Ω

ub(x)p∗s(x) dx −

∫

Ω

uf (x)p∗t (x) dx .

The proof of Prop. 2 is similar to the proof of Prop. 1

and is given as a supplementary material [1].

4. Algorithms

4.1. MultiplierBased MaxFlow Algorithm

In this section, we consider an algorithm based on the

max-flow formulation (12). The energy function of (13) is

just the lagrangian function of (12). To this end, we define

its respective augmented lagrangian function as

Lc(ps, pt, p, λ) :=

∫

Ω

ps dx +

∫

Ω

λ
(

div p − ps + pt

)

dx

−
c

2
‖div p − ps + pt‖

2
, (35)

where c > 0.

Therefore, we build up the algorithm, see Alg. 1, for the

continuous max-flow problem (12) based on the augmented

lagrangian method [5]. λ is updated as the multiplier at each

iteration.

4.2. MultiplierBased Supervised MaxFlow Algo
rithm

Likewise, we consider the algorithm for the supervised

max-flow problem (28). Its equivalent primal-dual formu-

lation of (29) is the lagrangian function of (28). Then, we

can define its respective augmented lagrangian function as

Lc(ps, pt, p, λ) =

∫

Ω

ubps dx −

∫

Ω

ufpt dx (36)

+

∫

Ω

λ
(

div p − ps + pt

)

dx

−
c

2
‖div p − ps + pt‖

2
.

We propose the multiplier-based supervised max-flow al-

gorithm as in Alg. 2.

Algorithm 1 Multiplier-Based Maximal-Flow Algorithm

Set the starting values p1
s, p1

t , p1 and λ1, let k = 1 and

start k−th iteration, which includes the following steps, till

convergence:

• Optimizing p by fixing other variables

pk+1 := arg max
‖p‖
∞

≤α
Lc(p

k
s , pk

t , p, λk) .

= arg max
‖p‖
∞

≤α
−

c

2

∥

∥div p(x) − F k
∥

∥

2
,

where F k is a fixed variable. The above formulation

gives a projection problem, which can be easily imple-

mented by Chambolle’s approach [9];

• Optimizing ps by fixing other variables

pk+1
s := arg max

ps(x)≤Cs(x)
Lc(ps, p

k
t , pk+1, λk)

:= arg max
ps(x)≤Cs(x)

∫

Ω

ps dx −
c

2

∥

∥ps − Gk
∥

∥

2

where Gk is a fixed variable and optimizing ps can be

easily computed at each x ∈ Ω pointwise;

• Optimizing pt by fixing other variables

pk+1
t := arg max

pt(x)≤Ct(x)
Lc(p

k+1
s , pt, p

k+1, λk)

:= arg max
pt(x)∈Ct(x)

−
c

2

∥

∥pt − Hk
∥

∥

2
,

where Hk is a fixed variable and optimizing pt can be

simply solved by

pt(x) = min(Hk(x), Ct(x)) ;

• Update λ by

λk+1 = λk − c (div pk+1 − pk+1
s + pk+1

t ) ;

• Let k = k+1 return to the k+1 iteration till converge.

5. Experiments

In this work, we show two applications of the proposed

max-flow / min cut models: unsupervised image segmenta-

tion and supervised image segementation.

5.1. Unsupervised Image Segmentation

For segmenting images unsupervised, two grayvalues f1

and f2 are chosen priori for clues to build data terms:

Cs(x) = D(f(x)−f1(x)) , Ct(x) = D(f(x)−f2(x)) ,
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Algorithm 2 Multiplier-Based Supervised Max-Flow

Set the starting values p1
s, p1

t , p1 and λ1, let k = 1 and

start k−th iteration, which includes the following steps, till

convergence:

• Optimizing p by fixing other variables

pk+1 := arg max
‖p‖
∞

≤α
Lc(p

k
s , pk

t , p, λk)

:= arg max
‖p‖
∞

≤α
−

c

2

∥

∥div p − F k
∥

∥

2
;

where F k is some fixed variable and results in a pro-

jection approach;

• Optimizing ps by fixing other variables

pk+1
s := arg max

ps(x)≤Cs(x)
Lc(ps, p

k
t , pk+1, λk)

:= arg max
ps(x)≤Cs(x)

∫

Ω

ubps dx −
c

2

∥

∥ps − Gk
∥

∥

2
,

where Gk is a fixed variable and optimizing ps can be

easily computed at each x ∈ Ω pointwise;

• Optimizing pt by fixing other variables

pk+1
t := arg max

pt(x)≤Ct(x)
Lc(p

k+1
s , pt, p

k+1, λk)

:= arg max
pt(x)∈Ct(x)

−

∫

Ω

ufpt dx −
c

2

∥

∥pt − Hk
∥

∥

2
,

where Hk is a fixed variable and optimizing pt can be

also simply solved pointwise;

• Update λ by

λk+1 = λk − c (div pk+1 − pk+1
s + pk+1

t ) ;

• Let k = k+1 return to the k+1 iteration till converge.

where D(·) is some penalty function. Here denoising binary

images (see 1st row of Fig. 1) is regarded as a segmentation

problem.

Fig. 1 shows two experiment results of unsupervised

max-flow model obtained by Alg. 1. By the computed λ∗

given at the second graph of each row, we see λ∗(x) is bi-

nary nearly everywhere of Ω. Segmentation is obtained by

simply thresholding λ∗. In contrast to PDE decent methods

[10], the proposed algorithm often converges within 100 it-

erations and reliable for a wide range of c.

Figure 1. 1st row shows an experiment of denoising a binary im-

age. 2nd row gives the result of image segementaion by gray val-

ues. Left column: The original images f . Middle column: The

obtained optimum of λ∗ respectively. Right column: The seg-

mentation achieved by thresholding λ∗ with some ℓ ∈ (0, 1) as

proposed in Prop. 1.

5.2. Supervised Image Segmentation

For supervised image segmentation, the Middlebury data

set [21] is used, see images in Fig. 2, as examples. The

corresponding data terms, i.e. Cs(x) and Ct(x), are based

on Gaussian mixture color models of foreground and back-

ground and provided in advance. It is not required for us

to put a very large values to data in the marked areas Ωf

and Ωb as proposed in (28). In the experiments, we simply

put data to be zero at Ωf and Ωb, in contrast to graph-based

supervised image segmentation.

As a comparison, the tree-reweighted message passing

method [22, 14] and α expansion method [7, 6] are applied.

It is easy to see that there is no visual artifact in our results,

the metrication errors are avoided

6. Conclusions and Future Topics

We study the continuous max-flow and min-cut models,

with or without supervised constraints, in this paper. The

dualities between max-flow and min-cut are constructed by

variational analysis. In this regard, conceptions applied in

graph cuts can be explained under a variational perspec-

tive and new theoretical results are derived in a natural

way. The proposed multiplier-based max-flow algorithms

provide reliable numerical schemes. In contrast to discrete

graph-based methods, the algorithms can be speeded up by

a multigrid and parallel implementation.
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