
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Study on Deep Learning for Latency
Constraint Applications in Beyond 5G
Wireless Systems

SUREN SRITHARAN1, HARSHANA WELIGAMPOLA1, AND HARIS GACANIN2, (Senior

Member, IEEE)
1
University of Peradeniya, Sri Lanka. (e-mail: {suren.sri, harshana.w}@eng.pdn.ac.lk)

2
RWTH Aachen University, Germany (e-mail: harisg@ice.rwth-aachen.de)

Corresponding author: Haris Gacanin (e-mail: harisg@ieee.org).

ABSTRACT The fifth generation (5G) of wireless communications has led to many advancements in

technologies such as large and distributed antenna arrays, ultra-dense networks, software based networks

and network virtualization. However, the need for a higher level of automation to establish hyper-low latency

and hyper-high reliability for beyond 5G applications requires extensive research on machine learning with

applications in wireless communications. Thereby, learning techniques will take a central stage in the sixth

generation of wireless communications to cope up with the stringent application requirements. This paper

studies the practical limitations of these learning methods in the context of resource management in non-

stationary radio environment. Based on the practical limitations we carefully design and propose supervised,

unsupervised, and reinforcement learning models to support rate maximization objective under user

mobility. We study the effects of practical systems such as latency and reliability on the rate maximization

with deep learning models. For common testing in the non-stationary environment, we present a generic

dataset generation method to benchmark across different learning models versus traditional optimal resource

management solutions. Our results indicate that learning models have practical challenges related to training

limiting their applications. These models need an environment-specific design to reach the accuracy of an

optimal algorithm. Such an approach is practically not realistic due to the high resource requirement needed

for frequent retraining.

INDEX TERMS Machine learning, low-latency application, learning model ageing, mobile communica-

tions, 6G.

I. INTRODUCTION

The fifth generation (5G) of wireless communication has

been a key enabler for many services including mobile broad-

band, mission-critical applications, and massive machine-

type communications [1]. The recent development in 5G

has led to advancements in techniques such as large and

distributed antenna arrays, ultra-dense networks, software-

based networks, and network virtualization. However, the

continuously evolving need of hyper low latency (i.e. 6G

aims at the control plane latency < 1 ms, while user plane

latency < 0.1 ms) and higher data rates (e.g. Tbps-level) for

emerging applications such as holographic teleportation [2],

virtual and augmented reality [3], smart materials based pro-

grammable radio environment [4], brain-computer interfac-

ing [5], etc. cannot be fulfilled by the existing 5G technology.

Recent developments in artificial intelligence (AI) has shifted

the interest towards the development of “autonomous and

connected intelligence” [6], [7]. Thereby, learning techniques

will take a central stage in the sixth generation (6G) com-

munication systems to design autonomous networks with the

stringent application requirements of next generation user-

centric communications [8]. However, as often observed [9],

the usage of machine learning techniques (i.e. supervised,

unsupervised and reinforcement learning) for wireless appli-

cations poses many challenges, and better understanding of

their practical limitations is of high importance.

There has been growing interest in learning through neural

networks for various applications in wireless communica-

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

tions such as resource allocation, channel estimation, inter-

ference management, etc. [10], [11]. Deep neural network

(DNN) is a supervised learning technique that requires an

offline data-dependent training mechanism with its perfor-

mance being highly sensitive to the amount and quality of the

labeled dataset [12]. Valuable analysis in [11], clearly shows

that most of the works evaluate the wireless system-level

performance under the assumption that the environment is

stationary, while training of a learning model is accomplished

– the learner is in a steady-state with the asymptotically

converged model. However, these are critical assumptions

and their impact needs to be carefully studied.

A misconception of such assumptions renders the practical

application of deep learning unclear for wireless services

in a non-stationary environment with latency and reliability

constraints (e.g. mission-critical applications such as Indus-

try 4.0 with moving robots, ultra-dense ultra-range mobile

communication networks, mmWave drone-based networks,

to name just a few). As we will show in later sections, a

non-stationary radio environment causes the ageing of the

model with a high dependency on biased and incomplete

datasets. This requires frequent retraining of the model and

causes a service disruption (e.g. drop in sum-rate). Thus,

the following questions motivate this study: (i) What are the

system’s performance limitations with practical training? (ii)
What is the impact of non-stationarity on learning? (iii) What

is the efficiency and efficacy of learning with the change in

the complexity of the problem?

This paper presents a comprehensive study of application

of deep learning models for wireless applications with strin-

gent latency and reliability requirements, in particular, we

focus on resource management in a non-stationary radio en-

vironment. We discuss the degree of influence factors such as

user mobility, problem complexity, retraining time constraint,

etc. have on the design of deep learning models. Unlike

previous works [11], we evaluate the wireless system-level

performance with respect to the tight latency/reliability learn-

ing requirement, and the computational requirements while

considering both training and prediction time of learning.

Our findings indicate that deep learning models need to be

carefully designed to reach the accuracy of an optimal algo-

rithm given the computational complexity constraints, while

the latency due to frequent retraining remains a challenge.

The contributions of this work are summarized as follows:

• We present a semi-online training methodology to elim-

inate service disruptions due to ageing of the learning

model. We further enhance our approach with a practical

design employing reinforcement learning through Deep

Q-Network (DQN) model, to circumvent the frequent

retraining requirements through online operation. We

perform a thorough analysis of the variation of perfor-

mance under different conditions utilizing state-of-the-

art models.

• We study the effect of non-stationarity on the perfor-

mance of deep learning models and further analyze the

variation of performance of these models with respect

TABLE 1: Abbreviations and expansions.

Abbreviation Expansion

AWGN Additive white Gaussian noise

BS Base station

CNN Convolution neural network

CSI Channel state information

DNN Deep Neural Network

DQN Deep Q-Network

LSTM Long short-term memory

MDP Markov decision process

MSE Mean square error

OFDM Orthogonal Frequency Division Multi-

plexing

ReLU Rectified linear unit

RNN Recurrent neural network

SINR Signal-to-interference plus noise ratio

WMMSE Weighted minimum mean-square error

to other factors such as the problem complexity, non-

deterministic user activity, etc.

• The sum-rate maximization with deep learning in multi-

carrier systems is prone to power violation. To eliminate

the power violation problem, we propose a design of

loss function in a non-stationary environment for the

training of DNN models to regulate the power violation.

• We investigate the learning bias in the subcarrier alloca-

tion vector due to its sparsity1 leads to poor training of

the DNN model [13]. To solve this problem, we propose

a method with linear a sequence of learning models

referred to as the “pipeline model”.

• Our study reveals that the high computational resources

required by the existing implementation of deep learn-

ing models act as a barrier to employ them for hyper

low latency/reliability criteria of future wireless applica-

tions (e.g. Industry 4.0). Interactive applications would

require sophisticated hardware, and current available

computational resources on handheld devices for learn-

ing would only suffice for non-interactive applications.

Thus, novel training approaches or faster computational

resources are required to reach the latency/reliability

criteria of Industry 4.0 applications.

For convenience, the abbreviations and notations used in

this work are listed in Table 1 and Table 2 respectively.

II. RELATED WORKS

Deep learning has been studied by many, to address the

challenges in wireless physical-layer [11]. It plays an increas-

ingly important role in the mobile and wireless networking

domain. However, to date, the deep learning models have

been tailored to specific mobile networking applications as

indicated next.

1The subcarrier allocation results in an output vector with high number of
null values (sparse output).

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: Notations and definitions.

Notation Definition

N , U , B Number of subcarriers, users, and BSs.

Lt, Mt Number of multipath and incoming waves at

time t.

k Non-stationarity control parameter.

hu
b (τ, t) Channel impulse response between uth user

and bth BS at time t.

gub (n, t) Channel gain between uth user and bth BS on

nth subcarrier at time t.

γu
b (n, t) SINR between uth user and bth BS on nth

subcarrier at time t.

pub (n, t) Power allocation on nth subcarrier between

uth user and bth BS at time t.

αu
b (n, t) Fraction of nth subcarrier allocated to uth

user by time division at time t.

rt Sum-rate of the system at time t.

R̂t, Rt Relative sum-rate: Eq. (15) and the moving

average value of R̂t: Eq. (16) at time t.

W Bandwidth.

fD Doppler frequency.

ρ Channel decay factor.

σ2 Additive white gaussian noise.

Pmax Maximum power allocation for each BS.

Υ Loss (cost) function of DNN.

Gt, Pt Set of gub (n, t) values and pub (n, t) values for

each user, BS, and subcarrier at time t.

t1 Labeling time - Total time taken to label train-

ing set using (sub)optimal algorithm.

t2 Training time - Total time taken to train the

model using the training set.

t3 Testing time - Total time taken to predict

the power allocation using the learning model

(DNN/DQN).

A. SUPERVISED LEARNING

Most of the deep learning approaches have been based

on supervised learning models that utilize labeled datasets

to train the model. In the context of resource allocation,

supervised learning models have been proposed in works

such as [14]–[19]. In [14], Sun et al. have proposed a DNN

model generalization which approximates the WMMSE in-

terference management algorithm with high approximation

accuracy and higher computational efficiency compared to

state-of-the-art interference management algorithms. In [15],

the authors have proposed a resource allocation technique

for small cells by employing deep learning for dynamic

channel selection, carrier aggregation, and fractional spec-

trum. In [16] Zhou et al. have proposed an efficient DNN

for resource allocation in cognitive radio networks aiming

at the real-time performance to maximize the energy and

spectral efficiency of the network. In [17], Li et al. have

proposed a model that utilizes a Hopfield neural network to

predict the bit and power allocation in a multi-user OFDM

system. In [18], the authors propose a supervised DNN model

for subcarrier assignment in an OFDMA/NOMA downlink

video transmission system. The proposed model provides

near-optimal performance with lower complexity. In [19], the

authors propose a framework for “Learning to Optimize for

Resource Management” which provides near-optimal perfor-

mance using fewer data samples. In [20], the authors propose

an artificial neural network to compute the optimal user-cell

association based on the mobile users’ positions in a realistic

massive MIMO network. In [21], the authors redesign the

classical communication protocol as an autoencoder, and pro-

pose a DNN based solution for the physical layer to enhance

end-to-end communication in wireless networks. Moreover,

supervised learning techniques have been applied to many

other communication problems. However, these works fail to

address the performance degradation that occurs in the long

run in a changing environment. Especially models which are

evaluated on lab-generated datasets disregard the practical

consideration related to the dynamicity of the environment

and thus do not highlight the importance of retraining.

B. UNSUPERVISED LEARNING

Unsupervised models, on the other hand, use alternative

approaches to train the model to eliminate the dependency

on a labeling algorithm. In [22], the authors propose a fast

beamforming design method for the sum-rate maximization

in a Multiple-Input and Multiple-Output single base station

system using unsupervised learning. The proposed convolu-

tion model, which is trained offline and provides real-time

service, improves computational speed significantly with

performance close to the optimal WMMSE algorithm. In

[23], the authors modify the training process of the pro-

posed model in two steps with supervised pre-training and

unsupervised re-training to optimize the performance. In

[24], the authors propose an unsupervised DNN model for

optimal resource allocation and interference minimization in

multi-channel cognitive radio networks. In [25], the authors

propose an unsupervised learning strategy based ensemble

model for sum-rate maximization in a fading multi-user

interference channel, which outperforms the state-of-the-art

methods. In [26], a random edge graph neural network

is proposed to parameterize the resource allocation policy

which is trained using an unsupervised model-free, primal-

dual learning method. In general, unsupervised techniques

converge to a local optimum and thus suffer from perfor-

mance degradation with time similar to supervised models.

C. REINFORCEMENT LEARNING

In addition to these approaches, deep reinforcement learning

has also been used to solve wireless communications prob-

lems [27]–[34]. In the context of sum-rate maximization,

DQNs are used commonly in small networks [27], [28].

In [27], the authors propose a distributively implemented,

DQN model for multiple BS system that performs efficiently

compared to classical techniques. Furthermore, in [28], the

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

authors propose a DQN based reinforcement learning model

for sum-rate maximization in multiple BS system which

is first pre-trained and then trained online and it provides

better performance in comparison to iterative algorithms

such as WMMSE. Apart from these, reinforcement learning

has been used in other wireless resource allocation prob-

lems such as resource allocation in cognitive radio networks

[29], [30], network slicing in radio access networks [31]–

[33], and resource allocation for vehicle-to-vehicle com-

munication [34]. Recently, it was a shift from knowledge-

discovery toward knowledge-driven (autonomous) commu-

nications was demonstrated in [35], where an autonomous

wireless system was implemented to address the problem of

self-deployment of non-stationary radio nodes. Moreover, in

[36], an environment-specific RL agent with Q-learning was

devised to solve a self-optimization through joint channel

association and location optimization through management

system and reasoning for a new optimization strategy. In

general, reinforcement learning techniques have been shown

to perform optimally in an efficient manner with low la-

tency, even in dynamic environments that are susceptible to

topological changes [34]. Online training enabled through

reinforcement learning overcomes the performance degrada-

tion in dynamic environments. However, in a highly dynamic

environment, the convergence to an optimal solution takes

time and is not always guaranteed. Thus, it is important to

study this effect and identifying whether the learning model

would converge to an acceptable performance level.

The studies in [14]–[36] have neglected the significant

practical limitations related to training requirements of the

learning model and the impact of ageing of the learning

model due to the evolution of the wireless environment.

Hence, we need to understand the requirements for retraining

of the model in the presence of an ageing environment and

the trade-off between the complexity and the computational

efficiency to achieve the target service requirements.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The study considers a multi-user multi-cell network as illus-

trated in Fig. 1 with U randomly located users. The network

consists of B number of base stations (BSs) denoted by

the set B = {1, 2, 3, . . . , B}. We address a particular BS

by b ∈ B with the set of randomly located users U =
{1, 2, 3, . . . , U}. The users connected to the bth BS are given

by the set Ub ⊂ U , while a user u ∈ U is connected to only

one BS at a given time, i.e. family of sets {Ub}b∈B is pairwise

disjoint. In the OFDM system, a particular subcarrier is

denoted by n from a set of subcarriers N = {1, 2, 3, . . . , N}.

As the propagation channel, we assume the time and

frequency selective Rayleigh fading channel. The L-path

discrete-time channel impulse response between the bth BS

and the uth user at the moment t is represented by

hu
b (τ, t) =

Lt−1
∑

l=0

h(l, t)δ(τ − τl(t)), (1)

where h(l, t) denotes the lth path random complex gain. δ(·)
denotes the delta function and τl(t) denotes the time delay of

the lth path. Lt indicates the time dependency of the number

of paths due to user mobility. h(l, t) with Mt incoming waves

in the receiver’s vicinity is defined as zero-mean independent

complex variables given by

h(l, t) =

Mt−1
∑

m=0

exp[θ(l,m)t+ φ(l,m)], (2)

where θ(l,m) = 2π(m − r1)/Mt and φ(l,m) = 2πr2 (r1
and r2 are random uniformly distributed numbers between

0 and 1). We also assume that the transmitter and receiver

terminals are moving with pedestrian speed generating slow

fading conditions. This movement is based on the random

waypoint model, where the movement of mobile users, their

location, velocity, and acceleration change over time ran-

domly [37]. We assume that the user moves across different

locations with a constant velocity however, the position of the

user is random. As the users move the channel parameters: 1)

the number of multipath (Lt) and 2) the number of incoming

waves (Mt) vary depending on the instantaneous position

of the user at time t. Thus, the non-stationary (dynamic)

nature of the environment is determined by user mobility

and defined by the number of paths Lt and the number of

incoming waves Mt in Eq. (1). The channel gain gub (n, t) is

given as an output of the fast Fourier transform of hu
b (τ, t).

Without loss of generality, we made the following assump-

tions:

(A1) We assume τ0 = 0 < τ1 < . . . < τLt−1 with the lth
path time delay τl = l∆ where ∆ = 1 denotes the time delay

separation between adjacent paths.

(A2) We assume that expectation term E[
∑Lt−1

l=0 |hu
b (l, t)

2|]

= 1−ρ−1

1−ρ−Lt

∑

l ρ
−lδ(τ − τl), where ρ denotes the channel

decay factor that ensures the total energy of the channel is

normalized to unity.

(A3) We assume the Jakes’s fading model, where incoming

rays constituting each propagation path arrive at a user with

uniformly distributed angles [38]; the normalized autocor-

relation function2 is given by E[hu
b (τ1, t)h

u
b (τ2, t + ς)] =

J0(2πfDς) at delay ς when the maximum Doppler shift is

fD.

(A4) We assume that the size of the OFDM symbol

is equivalent to the channel coherence time - the chan-

nel gains remain constant during an OFDM symbol and

vary symbol-by-symbol. Thus, the negative effect of inter-

carrier interference is not considered. The Jakes’s fading

channel model is assumed where the channel varies symbol-

by-symbol as correlated fading. The fading in-phase and

quadrature components are assumed to be independent and

identically distributed (i.i.d.) random variables [39]3, which

2The autocorrelation function E[hu

b
(τ1, t)hu

b
(τ2, t + ς)] measures

the statistical correlation between two propagation paths with propaga-
tion delays τ1 and τ2 as a function of time-difference ς . J0(α) =
1

π

∫

π

0
exp(jαcosθ)dθ is the zero order Bessel function of the first kind.

3We note here that the simulations can be modified to introduce the
interference, while later being reduced by using a cancellation technique.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

BS1

BS2BS2

BS3

User1

User2

User3

User6

User5

User4

User7

Signal

Interfering signal

Single cell

FIGURE 1: Network model.

is the important assumption for evaluation of reinforcement

learning algorithm. Furthermore, we assume that the guard

interval of each OFDM symbol is sufficiently long so that the

inter-symbol interference is not present at any time instant.

Since the objective of the study is to investigate the im-

plications of learning methods, we believe that such assump-

tions (i.e., an inter-carrier and inter-symbol interference-free

OFDM system [39]) may not be a demerit for this work.

We follow these assumptions to keep the investigation of

our learning study trackable while performing a thorough

analysis across different models. These assumptions help us

emphasize the objective of this study and explain the findings

related to learning more clearly.

Next, we formulate the following rate maximization prob-

lems as our case studies that are later used to analyze the

effectiveness of learning models in different non-stationary

environments.

A. LOW COMPLEXITY PROBLEM

We start with the rate maximization of the single-user single-

cell OFDM system (i.e. U = 1, B = 1) where time index t has

been omitted for brevity. The model is described by a single

cell with only one user. The sum-rate maximization problem

is defined by

max
p(n)

r =
N
∑

n=1

W log2[1 + γ(n)]

s.t. 0 ≤
N
∑

n=1

p(n) ≤ Pmax

(3)

where r and W denote the transmission rate of the system and

the bandwidth respectively. γ(n) is the signal-to-interference

plus noise ratio (SINR) between the user and its serving BS

on the nth subcarrier, p(n) is the power allocated to the nth

subcarrier and Pmax is the maximum power allocation of BS.

The corresponding SINR is given as follows

γ(n) =
|g(n)|2p(n)

σ2
(4)

where g(n) is the channel gain between the user and the BS

and σ2 is the variance of the additive white Gaussian noise

(AWGN).

To solve the rate maximization problem, we utilize the

water filling algorithm described in [40] as a benchmark for

this case study.

B. MODERATE COMPLEXITY PROBLEM

1) Multi-user Single-cell OFDM System

The model can be described by a single cell (B=1) in Fig. 1.

The sum-rate maximization problem is given by

max
p(n)

r =
U
∑

u=1

N
∑

n=1

W log2[1 + γu(n)]

s.t. 0 ≤
N
∑

n=1

pu(n) ≤ Pmax,

(5)

where the SINR between the uth user and its serving BS,

γu(n), is given by

γu(n) =
|gu(n)|2pu(n)

σ2
. (6)

Here gu(n) is the channel gain between the uth user and its

serving BS. pu(n) is the power allocation to the uth user on

the nth subcarrier.

The optimization problem consists of two sub-problems

namely subcarrier allocation and power allocation. Thus, it is

comparatively more complex than the previous case. As the

first step of the algorithm, each subcarrier is allocated to a

unique user (but a single user can have multiple subcarriers).

After subcarrier allocation, power is allocated to each subcar-

rier. As the benchmark, we utilize a greedy method in which

the subcarrier allocation is done through ranking based on

SINR [41] and the power allocation is accomplished using

the water filling algorithm [40].

2) Multi-user Multi-cell Single-carrier System

The system is modeled with B BSs and U randomly located

users as shown in Fig. 1. The sum-rate maximization problem

is given by

max
pu

b
(n)

r =
B
∑

b=1

U
∑

u=1

W log2[1 + γu
b (n)]

s.t. 0 ≤
∑

u∈Ub

pub (n) ≤ Pmax; ∀b ∈ B

(7)

where n denotes the frequency component of the SC system.

pub (n) is the down-link power allocation between the bth BS

and the uth user. We consider a particular channel realization

hu
b (t) having Lt = 1 (i.e. a single path channel) given by

Eq. (1). Now, the SINR is defined by

γu
b (n) =

|gub (n)|
2pub (n)

∑

b′∈B\{b} |g
u
b′(n)|

2pu
′

b′ (n) + σ2 (8)

where pub (n) is the downlink power allocation between bth
BS and uth user. σ denotes the composite Gaussian noise

variance of additive noise and residual Gaussian interference

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

after the frequency domain equalization. gub′(n) is the channel

gain between uth user and BSs excluding bth BS, pu
′

b′ (n)
is the down-link power allocation between BS b′ and con-

nected user u′. The weighted minimum mean-square error

(WMMSE) algorithm [42] is used as a benchmark for this

case study. The set difference operator is defined by “\”.

C. HIGH COMPLEXITY PROBLEM

The system is modeled with B BSs, each with N subcarriers

and U randomly located users as shown in Fig. 1. Due

to inter-cell interference, the rate maximization problem is

Non-deterministic Polynomial-time hard [43]. The sum-rate

maximization problem is given by

max
pu

b
(n)

r =
B
∑

b=1

U
∑

u=1

N
∑

n=1

W log2[1 + γu
b (n)]

s.t. 0 ≤
∑

u∈Ub

pub (n) ≤ Pmax; ∀b ∈ B,

(9)

where γu
b (n) and pub (n) denote the SINR and the allocated

power between the uth user and the bth BS on nth subcarrier.

The SINR γu
b (n) is given by

γu
b (n) =

|gub (n)|
2pub (n)

∑

b′∈B\{b}

∑

u′∈U
b′
αu′

b′ (n)p
u′

b′ (n)|g
u
b′(n)|

2 + σ2
.

(10)

We assume that each user can utilize any of the subcarriers,

while users in the same cell cannot utilize the same subcar-

riers at the same time. The load variable αu
b (n) ∈ [0, 1],

is defined as the fraction of subcarrier n allocated to user

u ∈ Ub by time division. Intuitively, αu
b (n) can be interpreted

as the probability of receiving interference from bth BS on

nth subcarrier. To ensure that users in the same cell do not

occupy the same subcarrier at the same time, we must have
∑

u∈Ub
αu
b (n) ≤ 1, ∀n ∈ N and any given time.

Due to the high data rates in BSs, it is not practical to eval-

uate instantaneous interference and therefore, we consider

an average interference taken over time. According to this

assumption, the total power qb(n) =
∑

u∈Ub
αu
b (n)p

u
b (n),

∀b ∈ B, ∀n ∈ N with Eq. (10) leads to the SINR given by

γu
b (n) =

pub (n)|g
u
b (n)|

2

∑

b′∈B\{b} qb′(n)|g
u
b′(n)|

2 + σ2
. (11)

Now, the problem defined by Eq. (9) and Eq. (11) is a non-

convex optimization problem. We use the suboptimal linear

programming method proposed in [44] as the benchmark.

In [44], the problem is converted to a convex optimization

problem and solved by sequential least squares programming

(SLSQP) optimization.

IV. LEARNING PRELIMINARIES

We first develop a generic framework for dataset generation,

and then we briefly describe DNN and DQN models. The

proposed methodology has 2 main steps namely: 1) Data

generation and labeling and 2) Training and evaluation. The

pseudocode for these steps are given in the relevant sections.

�

{L1, M1} {L2, M1} ... {L32, M1}

{L1, M2} {L2, M2} ... {L32, M2}

...

{L1, M128} {L2, M128} ... {L32, M128}

L
=

 1
 ~

3
2

M = 1 ~ 128

4096 combinations

k = 3

{L2, M1}

{L1, M2}

{L32, M128}

�

(a) (Lt,Mt) pairs.

�, � ∈ �

Select k → � ⊂ �

Data Generation / Labeling

Train Val Test

�
�

��1� … �
�

����

… �
�

���� �

�
�

��1� � �
�

����

u
:

U
se

rs

n : Subcarriers

Split

1)

2)

3)

4)

(b) Framework.

FIGURE 2: Data generation.

A. DATASET GENERATION FRAMEWORK

For common testing in the non-stationary environment, we

devise the generic dataset generation method that can be used

to benchmark across different learning models.

Fig. 2 illustrates the data generation, labeling, and training

process devised in this paper. This is the general process for

the data generation, and it can be applied to any type of

wireless application. The following steps are taken:

1) We assume that (Lt,Mt) pairs in Eq. (1) may only vary

within a full set D = {(L,M) | L ∈ Z
+
Lmax

,M ∈
Z
+
Mmax

} where Z
+
α = {1, . . . , α} represents the pos-

itive set of integers up to α. (e.g. if Lmax = 32, and

Mmax = 128, Lt varies between 1 and 32, while Mt

varies between 1 and 128, resulting in a full set with

card(D)=4096, where card(·) denotes the cardinality

of the set. See Fig. 2a).

2) For the sake of computational complexity, we assume

that the user’s movement area is constrained. The

degree of the user’s movement is given by the non-

stationarity control parameter k and it determines the

number of stationary points in the user’s constrained

movement area. A subset P ⊂ D (card(P) = k)

is created by choosing k number of (Lt, Mt) pairs

from the full set D and each (Lt, Mt) pair corresponds

to a stationary point in the user’s movement area as

illustrated in Fig. 2a. We assume that the user’s mo-

bility results in an observation of a limited number

of Lt and Mt values which always lie within the

subset P . Note that the non-stationarity parameter k
can also be interpreted as a measure of randomness

of a dataset. i.e. a higher k describes the higher user

mobility/randomness and thus, a higher number of

possible (Lt,Mt) pairs and vice versa.

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3: System parameters and settings.

Parameters Setting

k 1 (Stationary), [2, 4096] (Non-stationary)

Lmax 32

Mmax 128

W 100 Mbps

fD 40 Hz

ρ 0.2 dB

σ2 10−3 µW

Pmax 10 µW

N , B, U Vary depending on the case study.

3) A dataset of gub (n) values are generated as shown

in Fig. 2 by using k selected pairs (Lt,Mt) ∈ P .

Next, the dataset is labeled using a known opti-

mal/suboptimal algorithm4. In our sum-rate maximiza-

tion problem, the labeled dataset describes the output

as power allocation for the given input as user mobility

determined channel gain.

4) The labeled dataset is split as Training, Validation and

Testing sets5 for evaluation of deep learning models as

described next.

For convenience, the channel generation parameters are

summarized in Table 3. Unless stated otherwise, these param-

eters are used for all the studies. The pseudocode for the data

generation framework and labeling is given in Pseudocode 1.

Pseudocode 1 Data generation framework and labeling.

1: Initialize network model parameters

(N,B,U, Lmax,Mmax,D, etc.)

2: Choose non-stationarity parameter k and

generate set P ⊂ D ⊲ refer Fig. 2a

3: for t = 1 to No. of samples do

4: Choose (L,M) ∈ P ⊲ refer Fig. 2b

5: Generate channel impulse hu
b (τ, t) ⊲ refer Eq. (1)

6: Calculate channel gain gub (n, t) = FFT(hu
b (τ, t))

7: Find (near-)optimal power allocation.

⊲ refer water filling [40], WMMSE [42], SLSQP [44]

8: Split dataset as train, validation, and test ⊲ refer Fig. 2b

B. LEARNING MODELS

1) Deep Neural Networks

DNNs are supervised learning models that are used to find

patterns in a dataset and make predictions upon them. Given

a labeled dataset with input and its expected output pair,

the DNN model learns the dataset structure generators (i.e.

4Depending on the specific case study the dimensions of the data sample
and the specific labeling algorithm may change. The default dataset size is
hundred thousand (100K) samples.

5Unless stated otherwise, the labeled dataset is split as follows: the first
20K data samples are the training set, the next 20K samples are the validation
set, and the last 60K are the testing set.

	
 �� �� ��
��!�����#���������!���

���

���

���

���

��	

���

��
��

���
�!

��
��

�#
��
��

��
�

��

��

��#��������!���

����� ��"��!���
����� ����� ��"��!��������
����

FIGURE 3: Illustration of power violation problem at the output
of the DNN model.

pattern) and predicts on a new set of data based on them.

At a time t, the input is the set of channel gain values given

by Gt = {gub (n) | ∀n ∈ N , ∀b ∈ B, ∀u ∈ Ub} and the

target output is the power allocation strategy set given by

Pt = {pub (n) | ∀n ∈ N , ∀b ∈ B, ∀u ∈ Ub}.

In this study, we utilize a fully connected neural network

with multiple hidden layers to predict the power allocation.

The DNN takes Gt as the input and Pt as the output. Thus, in

general, the input layer has a size card(Gt) and the output

layer is of size card(Pt). The number and size of hidden

layers vary depending on the case study. Each layer uses

ReLU (Rectified linear unit) as the activation function except

for the output layer which uses Leaky ReLU with a low slope

(i.e. gradient = 0.01) to avoid the dying ReLU problem [13].6

a) Training

The training set is used to derive the weights of the model

through backpropagation. Traditionally, the model is trained

such that the loss (cost) function Υ, defined by the mean

square error (MSE)7 between the expected (near-)optimal

output pub (n) and the DNN predictions p̂ub (n), is minimized.

However, the independent allocation of power to each subcar-

rier might lead to total power being excess of the total power

allocation budget Pmax in Eq. (9), i.e. a power violation

problem. This occurs since the DNN model is not aware of

the power constraint in Eq. (9).

To solve the power violation problem of DNN we propose

6Unless stated otherwise, all DNNs in this study have the same architec-
ture

7MSE is generally used as the loss function for a regression problem in a

form
∑

b∈B

∑

u∈Ub

∑

n∈N

∣

∣p̂u
b
(n)− pu

b
(n)

∣

∣

2
[13].

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a loss function8 which regulates the maximum power limit

constraint as follows

Υ =
∑

b∈B

(

∑

u∈Ub

∑

n∈N

|p̂ub (n)− pub (n)|
2
+

β

∣

∣

∣

∣

∣

(

∑

u∈Ub

∑

n∈N

p̂ub (n)

)

− Pmax

∣

∣

∣

∣

∣

2




(12)

where β is the weighing factor of the power violation term.

Fig. 3 shows the effect of the modified loss function and how

the standard MSE loss function [13] results in high power

allocation and exceeds the maximum BS power Pmax which

violates the maximum power constraint in Eq. (9).

The loss Υ is minimized by varying the model weights,

and the minimum of the loss function is searched by the

gradient descent algorithm [13]. The update of weights in

each layer independently results in redundant calculation and

thus, the backpropagation (chain rule) algorithm is used to

avoid redundant calculations. The backpropagation is done

through the mini-batch gradient descent method9. This re-

sults in a higher speed of training due to parallel computation

and avoids problems such as the over/underestimation of the

error [45]. Furthermore, the Adam optimization technique is

used to accelerate the training process [46].

The training process is made up of multiple training iter-

ations10. After the completion of each training iteration, the

updated model is checked for any improvements through the

validation stage as described next.

b) Validation and Convergence

After the update of the weights, the improvements in the

model are validated in this stage. A model is considered to

have improved if the error Eq. (12) on the validation set has

reduced after the update.

Finally, the training and validation steps are repeated until

convergence for multiple epochs11. The DNN model is said

to have converged when the minimum of the loss function is

reached. In general, the back-propagation algorithm cannot

be shown to converge, and there are no well-defined criteria

for stopping its operation. Furthermore, a low number of

epochs will result in underfitting, while a large number would

result in overfitting [47]. Therefore, we make a reasonable

assumption regarding the convergence point and terminate

the training process by defining the following threshold pa-

rameters [48]:

8Unless stated otherwise, all DNN models use the proposed loss function
Eq. (12) with β = 0.1.

9The training set is broken down into multiple batches in this method. A
Batch refers to a set of data samples. Unless stated otherwise, the batch size
of 32 samples is used.

10A training iteration is when a single batch has been passed forward and
backward through the DNN once

11An epoch is when the entire training set has been passed forward and
backward through a DNN once. In other words, when the training iterations
are done on all the batches in the training set, it is known as an epoch.

TABLE 4: DNN parameters.

DNN Parameters Setting

Batch size 32

Total epochs Etot 100 epochs

Early stopping: error ̟ 10−6

Early stopping: epochs Ê 50 epochs.

Input layer size card(Gt)

Output layer size card(Pt)

Loss function Υ Eq. (12) with β = 0.1

(i) First the change in error |Υe−Υe−1| ≤ ̟ is measured

where Υe denotes the error at the eth epoch and ̟
denotes the minimum threshold for the change in error.

(ii) The error change is not monotonic, thus an increase in

error doesn’t indicate that the loss is minimal. There-

fore, the change in error measured in (i) is monitored

for Ê number of epochs and if it is still below ̟, then

we assume convergence.

(iii) Finally, if the aforementioned criterion is not met then

the model is stopped after Etot epochs to avoid overfit-

ting.

The termination of the training process is therefore deter-

mined by either of the three bullets defined above12.

c) Testing

Once the DNN model is trained, the model is evaluated

based on the prediction made on the test data. Since this

data is unseen during the training and validation steps, the

evaluation of the model on this set can be generalized to all

other datasets.

For convenience, the parameters of the DNN are summa-

rized in Table 4. Unless stated otherwise, the DNN has the

architecture and parameters specified. The pseudocode for

the DNN training and evaluation methodology is given in

Pseudocode 2.

Pseudocode 2 DNN training and evaluation.

1: Create the DNN model and initialize parameters

(Loss, Epochs, etc.)

2: for e = 1 to Etot do

3: Predict user/power allocation ⊲ refer Section IV-B1

4: Calculate Loss. ⊲ refer Eq. (12)

5: Update model weights through gradient descent.

⊲ refer Section IV-B1 a)

6: Validate updated weights using the validation set.

⊲ refer Section IV-B1 b)

7: Check for early stopping. ⊲ refer Section IV-B1 b)

8: Transfer weights at regular intervals for semi-online

training. ⊲ refer Section V-A3

9: Evaluate DNN performance using the testing set.

⊲ refer Section IV-B1 c)

12Unless stated otherwise, Etot = 100 epochs, ̟ = 10−6, and Ê = 50
epochs.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

DQN

Value

estimator

Knowledge

Base

Experience

(si , ai , ri, si+1)

ri

si+1

ai

si

Q

values

E
n
v
ir

o
n
m

en
t

Reasoning

ai
Policy

…

i = 0 i = i i = I

Episode 0 s0 = G0 P0(I)

s0 = Gt
Pt(I)

s0 = GT PT(I)

Episode t

…

Episode T

s0 …… sIsi
si+1

i = i+1

s0 …… sIsi
si+1

s0 …… sIsi
si+1

FIGURE 4: DQN agent model.

2) Deep Q-learning

Deep Q-learning is a reinforcement learning model [49], [50]

that combines deep learning and reinforcement learning to

form powerful models that can be used to solve wireless

problems in a non-stationary environment [51]. The DQN ob-

serves the environment through a set of environment-specific

observable parameters (S observation space); interacts with

an environment by a set of actions (A action space) that

can be executed and tries to increase the reward through a

specific action from the action space. Our objective is to

predict the optimal power allocation strategy given a set of

observed channel gains. As opposed to DNNs, DQNs do

not require a labeled dataset, but DQNs can be used only

for Markov Decision Processes (MDP). Therefore, the given

problem must be converted to an MDP in which for each state

si ∈ S and action ai ∈ A, the resulting state si+1 would only

depend on the prior state si and the corresponding action ai.
Note that, DQN cannot be directly applied to the sum-rate

maximization problem formulation since in time domain, the

future state Gt+1 is not dependent on the current state Gt

and the corresponding action Pt. Therefore, we reformulate

the problem by focusing on time t and consider the process

of estimating Pt using Gt to be an MDP as explained in the

following section.

a) DQN preliminaries

We propose an MDP that allows the DQN to adjust the

elements of Pt iteratively at each time step t depending on the

channel gain Gt. The process of estimating the set Pt using

Gt for a given time t is defined as an episode in our study.

Each episode corresponds to a time t > [t + 1, t + 2, . . .)
and each episode consists of several steps (denoted by i) as

illustrated in Fig. 4. At the beginning of an episode, the initial

state s0 is observed from the environment. The state space

contains the channel state information (CSI) for each user

and subcarrier in a given network (The exact details about the

state space is defined in the relevant section where the DQN

model is introduced). Depending on the state si, an action ai
is taken which results in new power allocation and as a result

a new state si+1 is observed along with the corresponding

reward ri. This is given by an arrow circled using dotted

lines in Fig. 4. The underlying processes of the DQN are also

shown in Fig. 4 and they will be explained later.

The action ai is chosen based on the Q-values which have

a direct correlation to the reward ri resulting from each action

ai. The value estimator: DNN, estimates the Q-values for

all possible actions for a given state si. Then, a suitable

action ai is selected using the policy considering the Q-

values obtained from the value estimator. Then, the action

ai is executed on the environment and the corresponding

reward ri for action ai in state si is obtained along with the

resulting state si+1 of the environment. The total sum-rate of

the network (given in Section III) is used as the reward since

our objective is to maximize the sum-rate. Finally, the tuple

(si, ai, ri, si+1), which is defined as the experience, is stored

in the Knowledge Base.

The state space si consists of the channel gain information

Gt and the power allocation Pt(i). At each step i, depending

on the action ai, the power allocation Pt(i) is updated,

resulting in a new state si+1. Thus, it is evident that the future

state si+1 can be derived using the current state si and action

ai making this an MDP. To estimate the power allocation, we

propose the following MDP formulation depending on the

network model:

• Single carrier system: In a single carrier system, power

can be allocated without violating the power constraint

as described in Section IV-B1. Thus, at each step i, the

DQN chooses a discrete level from the action space ai
based on which the power is allocated to a user.

• Multicarrier system (OFDM): In a multi-user OFDM

system, power cannot be allocated to each user indepen-

dently as in the previous case, as the power violation

problem may occur (see discussion in Section IV-B1).

However, by dividing the power budget Pmax into dis-

crete increments of I levels, and allocating δ = Pmax/I
amount of power to each subcarrier at each step i, we

can ensure that the total power allocation does not ex-

ceed Pmax (resulting in the case of no power violation).

In a new episode, DQNs usually reset the environment to a

predefined starting state. But in our study, in a new episode,

the channel gain Gt+1 is correlated to the previous episode’s

channel gain Gt. Thus, there are two approaches to initialize

the power allocation at the start of an episode.

• We assume that a particular time t is independent of

previous time steps t ∈ (0, t − 1). i.e. an episode is in-

dependent of previous episodes. Therefore, all elements

of Pt,0 are initialized to zero at the beginning of an

episode.

• We assume that the power allocated at time t is related

to time t+ 1. Thus, we allocate Pt(I) to Pt+1(0) at the

beginning of an episode.

In this study, we consider the first initialization method. An

episode ends at i = I when the entire set Pt(i = I) is

estimated or if Pt(i) leads to a power violation.

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

W
ar

m
u

p
 p

h
as

e

Convergence

R
ew

ar
d
 i
n
cr

em
en

t

Training phase

R
ew

ar
d

Time (s)

FIGURE 5: Different phases in DQN training process.

b) DQN operation

The operation of the DQN can be described through the four

phases shown in Fig. 5.

Warm-up phase

In the beginning, the DQN agent has no experience about its

environment, and the knowledge base is empty (i.e. observa-

tion, taken action, and the corresponding reward). Initially,

the weights of the Value estimator are initialized randomly

in the range [0,1]. To start the operation, we obtain the

experience by executing actions on the environment based

on the Q values from the initialized value estimator without

training the DQN. Then these experiences are stored in the

knowledge base. This phase is known as the warm-up phase.

We select the warm-up phase to be 100 episodes so that the

knowledge base is adequately filled.

Exploration/Exploitation Mechanism [50]

The decision-making function (or the Policy) is in a dilemma

between two actions: 1) selecting the action that worked so

far - exploiting the knowledge, or 2) choosing a random

action without considering Q-values to gain more reward

- exploration for higher rewards. By only exploiting DQN

cannot reach the optimal solution, while if we often explore

the convergence is slow. The trade-off between the explo-

ration and exploitation is designed by ǫ-greedy strategy in

the policy. In this study, the DQN starts the training phase

with ǫ=0.8 at the beginning and it is linearly reduced to

ǫ=0.01 within 1000 episodes and then maintained at 0.01

(1000 episodes is equivalent to 1 second since we sample

the channel gain information for each 1ms). We chose these

specific values through trial and error so that the DQN

converges to a solution quicker.

TABLE 5: DQN parameters.

DQN Parameters Setting

Number of episodes 100K

Warm-up episodes 100

Steps per episode (Episode size) I 50

Epsilon ǫ 0.8 → 0.01

Discount factor Γ 0.99

Knowledge base: memory size 5000

Value estimator: Learning rate µ 0.01

Value estimator: batch size 256

Value estimator: architecture Section specific

Training

The Q-value for the state si and action ai is given by

Q(si, ai; θ) = E[ri + ΓQ(si+1, ai+1)] (13)

where θ denotes the parameters/weights of the value estima-

tor implemented by DNN in Fig. 4. Γ (=0.99) is the discount

factor that adds the effect of valuing rewards received earlier

higher than the rewards received later. During training, a set

of experiences is retrieved from the knowledge base. We train

the value estimator to predict Q values such that the DQN

maximizes the final reward by updating θ as follows

θi+1 := θi + µ
[

ri + Γmax
a′

Q(si+1, a
′; θi)−Q(si, ai; θi)

]

×∇Q(si, ai; θi)
(14)

where µ is the learning rate (hyperparameter for optimization

algorithm that determines the size at each iteration while

moving toward a minimum of a loss function). This is known

as experience replay.

Convergence and Prediction

When the training phase begins, the DQN starts to train the

value estimator to predict Q values that are more likely to

give higher rewards. In general, during the training phase, the

reward increases as shown in Fig. 5. This reward increment

period can vary with the complexity of the problem, the DNN

model of the value estimator, hyperparameters used to train

the DQN, and the computing power. A DQN is said to be

converged when the reward given by the DQN for a specific

environment plateaued in a maximum reward as illustrated in

Fig. 5. We can assume that the action taken by the DQN is

near-optimal after the convergence of the DQN.

Since DQN is an online model, prediction can be done

while training. When predicting, ǫ-greedy policy uses ǫ =
0. The reward increases with the experience gained while

exploring/exploiting the environment. For convenience, the

parameters of the DQN are summarized in Table 5. Unless

stated otherwise, we use the specified parameters. The pseu-

docode for training and evaluation of the DQN is given in

Pseudocode 3. Note that after convergence the training can

be stopped and the model can be evaluated by selecting the

best action (ǫ = 0).

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

�	
� �
 ��

 ��� �	
 ��� ��
 �
� ��
 ��� 	�
 	��

������ �

�

��

	�

��

�

���

� !

��
��
!��

�� �!
�!
��

��
�#

��
�"

���
��

��
!

�
��

�
!�
!��

��
�#

��
�"

���
��

��
!

�
��

�
!�
!��

��
�#

��
�"

���
��

��
!��

�!�
���

�!
��
��

��
�

��!����

���

�
�

�

���

�

��
��

��

��
��
��

��

�
��
��

��

��
��
��

��
�

(a) DNN.

�	
� �
 ���� �
 ��� ��
 ��� �

 �	� ��
 	
�
�

��

������!�

�

��

	�

��

�

���

� �

�
��

" �
�� �"

�"
��

��
 $

��
�#

� �
��

��
"

�
��

�!
"�

"��
��

 $
��

�#
� �

��
��

"

�
��

�!
"�

"��
��

 $
��

�#
� �

��
��

"��
�"�

 �
�"

 �
��

��
�

�

��

��
��

!

��
��

��
��

!

�
��

��
��

!

��
��

��
��

�!

��" ���
���

�
�

�

���

��" ������"� #��

��!���
������!�
��
�!����������!�
��
�!��
�������!�

��!�����������!�

(b) DNN with semi-online learning.

�	
� �
 ���� �
 ��� ��
 ��� �

 �	� ��
 	
�
�

��

������ �

�

��

	�

��

�

���

� �

��
��
!��

��
��

�
� �

��
��

��

��
��
��

��
�

��!����
���

���

�
�

���

��

���
�����
�� ���!�������!��"���
�����

�� ���!�������!��"���

(c) DQN.

� �	� ��� �	�
��

��������

�

��

��

�

��

���

� �

����������������������
��	��	���
���	�	����

(d) DQN under fast-fading conditions.

FIGURE 6: Variation of performance of learning models in a mobile radio (i.e. non-stationary) environment.

V. CASE STUDIES AND DISCUSSIONS

A. LEARNING MODEL AGEING IN A WIRELESS

ENVIRONMENT

First, we focus our attention on ageing of the learning model

with respect to non-stationary radio environment. For this, we

consider the sum-rate maximization problem as described in

Section III-A for a single-user single-cell OFDM system with

N = 32 subcarriers. We present the results averaged for 20

simulations in Fig. 6.

In this case study, we compare and analyze the perfor-

mance in both stationary and non-stationary environments.

During the initial stage, we consider the environment to be

stationary and the model is trained under this condition. The

channel between a stationary user and a BS is defined by

Eq. (1) with Lt = 6, Mt = 20 incoming waves in the user’s

vicinity, and an exponential power delay profile with decay

factor ρ = 0.2 dB. A dataset is generated as described in

Section IV-A. The water filling [40] algorithm, which derives

the optimal power loading, was used to label and slice the

dataset as shown in Fig. 2.

1) Stationary environment

We utilize a DNN with 5 hidden layers each containing 300

nodes as described in Section IV-B1. The DNN is initially

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Pseudocode 3 DQN training and evaluation.

1: Create the DNN used to estimate Q-values and

initialize model parameters (Loss, Epochs, etc.)

2: for each episode t do

3: Initialize the starting state s0
4: for i = 0 to I − 1 do ⊲ refer Fig. 4

5: Calculate Q-values by feeding si to DQN.

6: Choose the action ai based on the epsilon

greedy policy. ⊲ refer Section IV-B2 b)

7: Calculate the reward ri and derive the

new state si+1. ⊲ refer Section IV-B2 a)

8: Store the experience (si, ai, ri, si+1) in the

knowledge base. ⊲ refer Section IV-B2 a)

9: Train the DQN through experience replay

at regular intervals. ⊲ refer Eq. (14)

trained in the stationary environment for 450 seconds using

20K training and 5K validation samples. We consider the

time at which the training ends to be the t = 0s point.

Then, the system performance is evaluated by measuring the

relative sum-rate defined as

R̂t =
r̂t
rt

× 100%, (15)

where r̂t is the sum-rate obtained by the output of the DNN

model and rt is the expected sum-rate given by the water

filling algorithm [40]. Since the relative sum-rate per sample

might have a high dynamic range we define the moving

average of the relative sum-rate as follows:

Rt =
1

w

t
∑

i=t−w

R̂i. (16)

where w is the time window size13. From Fig. 6a we observe

that the Rt value is ≈ 99.5% in the stationary environment

indicating that the DNN output is close to the optimal sum-

rate.

2) Non-stationary environment

The DNN trained in the stationary wireless environment

provides near-optimal performance for t ∈ (0, 5) as shown

in Fig. 6a. Next, we let the environment evolve after at t = 5
to observe the performance of the pre-trained model in a

non-stationary environment. To observe the effect of non-

stationarity, we simulate the user movement at a vehicular

speed of 20 km/h at t = 5s as shown in Fig. 6a. The

environment generators such as the distance, multipath, and

scattered waves vary as a result. Therefore, a new dataset is

created with k = 100, Lmax = 32 and Mmax = 128 as

described in Section IV-A. In comparison to the optimal so-

lution, a significant drop in the DNN prediction performance

is observed due to the non-stationarity after the 5th second.

This is because the pre-trained DNN model does not capture

13Unless stated otherwise, a window size of w = 5000 is used.

the various environment generators defined by k = 100 due

to user mobility.

Thus, in order to capture this new variation, the DNN

model was next retrained after the 10th second with data

generated in the new environment. The training process was

redone multiple times to analyze the effect of training dura-

tion on the performance of the DNN. The training duration

(number of epochs) was increased as shown in Fig. 6a and

we observed that the relative sum-rate increases from 78% to

92% as the number of epochs is increased from 15 to 100.

The increase is significant from 15 to 50 epochs, but it satu-

rates at about 100 epochs. This confirms that the loss function

reduces and saturates after some time which is shown by the

increase and saturation of the relative performance.

The time axis in Fig. 6a has been scaled to clearly visualize

the performance and thus the training time is much longer

compared to the prediction time. So, we note that the perfor-

mance increases with the training time (number of epochs) at

the expense of efficiency. This trade-off is studied in detail in

later studies.

Another observation is that the relative sum-rate drops

to zero during the retraining period. This is because the

new training set is labeled by a traditional signal process-

ing algorithm and the DNN is retrained during this period.

This is referred to as the offline training period when the

DNN model cannot make any new predictions. In a highly

non-stationary system, this retraining is vital to maintain

the wireless performance at the target level, and retraining

must be done repeatedly as the environment evolves and the

wireless performance degrades below a threshold. However,

frequent offline training triggered by a non-stationary envi-

ronment effectively reduces the overall system performance

and efficiency of the DNN. This makes the usage of DNNs a

challenging task in general for ultra-low latency applications

such as augmented reality which require the system to be at

continuous operation at an acceptable reliability level at all

times.

3) Semi-online training through dual DNN in a non-stationary

environment

It can be seen from Fig. 6a that the relative sum-rate Rt falls

to zero during the offline retraining period which makes it

unsuitable for real-time applications. To overcome this issue,

we exploit the fact that the current model is already trained

well enough for the stationary system. We introduce a semi-

online training methodology, whereby the learning model

copes with the drop in performance through continuous re-

training. However, the model cannot make predictions while

being trained. Thus, two DNN models are used in parallel,

one for training and another for prediction. The prediction

model does continuous predictions, while the training model

continues the cycle of reading the input, labeling, training

and validation, and periodic update of the prediction model

weights. While training, the low performance of the DNN

model is maintained: we maintain the effective performance

at 67% using this semi-online learning mechanism as shown

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

in Fig. 6b. Consequently, by employing this approach we

guarantee the continuous operation of the wireless system

without service dropping to zero while maintaining the pre-

diction performance at the expense of slightly higher pre-

diction time in non-stationary environments. However, the

channel changes can occur rapidly and not gradually as we

assume in this section. This would trigger frequent retraining

and such a model requires a sophisticated learning system for

parallel operation. Therefore, retraining the proposed model

in a highly mobile (i.e. non-stationary) environment would

not be practical due to the limited availability of resources.

4) Online training through DQN in a non-stationary

environment

The high computational requirements needed for continuous

retraining makes the proposed semi-online training method-

ology impractical. However, reinforcement learning models

such as DQNs provide efficient means for online training

which would be highly useful in this scenario. We repeat the

experiments using a DQN model. The problem is converted

to an MDP first using the first MDP formulation specified in

Section IV-B2:

• State space - The state space si is formed by the con-

catenation of the current channel gain values of each

subcarrier Gt, the previous power allocation of each

subcarrier Pt(i− 1), and the corresponding rate of each

subcarrier Rt(i− 1).
• Action Space - The action space has a size A = N and it

corresponds to the power allocation to each subcarrier.

At each time step i, the power of the chosen subcarrier is

incremented by δ = Pmax/I . Note that after I steps the

total power allocation would be Pmax and thus power

violation doesn’t occur.

• Reward - We use the sum-rate which is given by Eq. (3)

as the reward for the DQN.

• Value estimator - We use a DNN with 2 hidden layers

each of size 256 and ReLu activation for each layer.

Furthermore, we use the parameters specified in Table 5.

As shown in Fig. 6c, we begin the training at t = 0

and the model continues its online training and prediction

cycle without any interruptions. Initially, we observe that

the relative performance of DQN starts at a low value and

increments steadily. This occurs since reinforcement learning

models such as DQNs are not pre-trained unlike supervised

learning models such as DNNs. Then at t = 5s, the envi-

ronment starts changing, and as a result, the performance

of DQN drops. However, soon after the drop, the DQN

model recovers its performance level unlike the DNN or

the proposed semi-online training methodology. This steady

increment of DQNs performance is attributed to its efficient

online training methodology and thus DQNs can perform

retraining more efficiently in a non-stationary environment as

opposed to DNNs. Thus, reinforcement learning methodolo-

gies are much more suitable for real-time time-constrained

applications under non-stationary wireless environment.

Finally, after some time, we could observe that the per-

formance of the DNN models reaches and exceeds the per-

formance of the saturated DQN performance. The DNNs

perform better in this scenario since they are trained using

optimal power allocation values, unlike DQNs which use

exploration and exploitation strategy for training. This gives

DNN a competitive advantage if the labeling algorithm pro-

vides the optimal solution. In later sections, we study whether

DNNs have the same advantage in complex problems where

the labeling algorithm is suboptimal.

5) Variation of DQN performance under fast-fading condition

In the previous section, we observed that the DQN han-

dles non-stationarity comparatively well. Even though the

reinforcement learning model experiences a sudden drop

in performance, after some time the model recovers and

converges to the initial performance level. Note that, the time

taken for convergence is slightly higher in a non-stationary

environment (∼100 s) when compared to the stationary en-

vironment (∼20 s), suggesting that as the non-stationarity

increases, the convergence time increases too. Thus, if the

channel conditions vary rapidly, the reinforcement learning

model may not be able to learn the channel parameters in

time. As a result, the reinforcement learning model may not

converge and would have comparatively lower performance.

To observe this effect, these conditions were simulated by

changing the velocity of the user (and thereby the Doppler

frequency). Fig. 6d shows the variation of performance of

DQN as the user movement varies in a stepwise manner,

from stationary position to pedestrian velocity, and finally

to high vehicular speed. First, when the speed is increased

in steps as 0 km/h → 5 km/h → 25 km/h → 90 km/h, we

observe that at each transition the DQN model’s performance

drops and then recovers. This drop occurs due to the change

in the system and the recovery suggests that the model was

able to learn these changes. Next, as the first transition in

velocity is increased from 0 km/h → 25 km/h, the drop in

performance is slightly higher. However, with time, the drop

during the transitions (from medium to high speed) becomes

insignificant in both these cases. This is because the first

case study has relatively low complexity and thus the model

can learn the system changes easily and converge faster.

Therefore, the DQN performs sufficiently well under fast-

fading conditions in this case study. In later sections, we dis-

cuss whether these observations hold for higher complexity

problems under fast fading conditions and we study the effect

of increasing complexity on the variation of performance of

DQN.

B. LOW COMPLEXITY PROBLEM

We consider an OFDM system with N = 128 subcarriers.

For the propagation channel, we have chosen the normalized

Doppler frequency fD × T × N = 5 × 10−5 where fD =

40 Hz is the Doppler frequency with a user data rate of 1/T

= 100 Mbps. Such Doppler frequency corresponds to moving

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 6: Variation of Rt with the number of subcarriers N .

N t2 (min) t3(ns)/sample Rt

32 5.8 27 99%

64 6.1 29 95%

128 7.7 36 90%

256 9.1 38 79%

512 12.6 52 39%

terminal speed of 22 km/h for 2 GHz carrier frequency.14 The

computer simulations were done using σ2 = 10−3 µW, and

Pmax = 10 µW.

A dataset is generated with a non-stationarity factor of

k = 10, then labeled using the water-filling algorithm [40]

and finally split as shown in Fig. 2. We consider the DNN

with five hidden layers each with 300 nodes as specified in

Section IV-B1.

1) The impact of problem complexity

First, the variation of the performance of the model is studied

as a function of the optimization problem complexity. This is

done by altering the number of subcarriers N . Consequently,

the model needs to learn more complex features from the

dataset. The performance is measured through the relative

sum-rate Eq. (16) with a window size w equal to the total

number of samples. In addition, the variation of the total

training time t2 and the prediction time per sample t3/sample

(see Fig. 7) with the number of subcarriers N are also given

in Table 6.

We observe that the performance of the DNN decreases as

the complexity of the problem increases proportionally to N .

This is because the DNN model needs to be retrained with

more data and higher complexity models to cope with the

increase of problem complexity. Furthermore, the efficiency,

which is measured in terms of the training time t2, and

prediction time t3/sample also worsens as the complexity

increases. This is attributed to the change in the input/output

layer size of the DNN, which results in a higher number of

weights. Despite this increase, the prediction time is well

within the margin of the millisecond level latency require-

ment for this low-complex case study.

Therefore, we conclude that the performance of the DNN

degrades and its efficiency worsens as the complexity of

the problem increases. The performance can be improved to

an acceptable level by altering training parameters such as

the number of training samples and the number of training

epochs, or alternatively, by modifying the DNN to learn more

complex data by increasing the number of hidden layers

and the number of nodes. However, this can lead to poor

efficiency (i.e. longer training or prediction time, respec-

tively). Beyond 5G applications such as VR require high

reliability (performance) and low-latency(efficiency). Thus,

we need a proper trade-off between the system performance

14Unless stated otherwise, we use the same parameters for data generation
of all other system models.

Labeling Train Test : seenValidation Test : Unseen

Data generation and

labeling
�Data generation

� ���

�
�

�
�

�
�

FIGURE 7: A dataset with seen and unseen (Lt, Mt) pairs
and measuring computational efficiency.

and learning efficiency, and this relationship is discussed

next.

The wireless system’s performance is measured in terms

of the relative sum-rate given by Eq. (15) and the learning

efficiency is measured in terms of the training time and the

prediction time of the DNN. The time evaluation has three

time steps namely, t1 (labeling), t2 (training and validation),

and t3 (prediction on the test dataset) as shown in Fig. 7.

The main objective of learning methods must be to reduce

the prediction time t3 to match the ultra-low-latency require-

ment. However, in a highly dynamic wireless environment,

retraining becomes vital due to model ageing. Thus the

training and labeling (in case of supervised techniques) must

also be considered when evaluating the efficiency of learning

models. We conduct each of these simulations by keeping the

structure of DNN and the dataset fixed while changing one

parameter at a time.

a) Impact of the Number of Training Samples

As the first experiment, the training parameter was changed

by varying the number of training samples. The variation of

the performance and efficiency as a function of the training

size is shown in Table 7. We observe that the relative sum-rate

Rt increases with training size up to a certain point before it

reaches saturation. This confirms the need for a significant

amount of training data for good prediction even in relatively

low complexity cases.

We also observe that the training time t2 is extremely

high compared to t1 and t3. This may pose limitations to

learning for applications with tight latency and reliability

requirements. For example, interactive virtual reality applica-

tions require a latency of about 20 ms to avoid distortion and

motion sickness, and the currently available online virtual

reality applications have a latency of around 100 ms which

can only be used for non-interactive applications such as

streaming [3]. However, the training time t2 is in the order

of minutes which indicates that online retraining becomes

a challenging task and cannot be a solution to the ageing

problem in real-time applications as discussed before.

We note here, that the experiments were conducted on

a 16 Core i7-6700 central processing unit, which runs at

4.00 GHz and can perform nearly 40 GigaFlops [52]. State-

of-the-art processors such as the Ascend 910 delivers 256

TeraFlops which is nearly 5000x times faster. Therefore,

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 7: Variation of performance with the number of train-
ing samples with k = 10.

Training set size t1 (s) t2 (s) t3 (s) Rt

1K 1.25 372 4.07 87.9%

5K 1.47 534 3.31 88.4%

10K 1.83 744 3.15 90.1%

20K 2.62 1002 2.64 90.3%

50K 4.16 2424 1.58 90.6%

TABLE 8: Variation of efficiency with the number of training
samples.

Training set size t1 (ns)/sample t3 (ns)/sample

1K 59 51

5K 58 44

10K 60 45

20K 62 44

50K 59 52

even though learning models in our studies are constrained

by time for real-time applications, powerful AI chips cou-

pled with fast communication technologies supported by

5G cloud-based architectures could be used to implement

deep learning solutions. The practicality of utilizing such

sophisticated hardware and robustness of these solutions

must be studied through experimentation and application.

However, as mentioned before, the processing time must be

less than 2 ms for a round trip time of less than 20 ms for

online applications such as virtual reality [53]. Therefore,

even though the studied learning solutions could be used

for non-interactive applications, it remains questionable as

to whether frequent retraining can be done within a short

period where the radio environment is evolving – even with

the support of computationally powerful devices supported

by cloud architecture.

Finally, we consider the prediction efficiency of the learn-

ing model compared to the water filling algorithm. The times

t1 and t3 are the total times taken by the water filling

algorithm and the DNN model respectively to calculate the

power allocation strategy. Since the total elapsed time may

not give a good indication of the performance, the time taken

per sample by water filling method (t1/sample) and the DNN

model (t3/sample) were measured as shown in Table 8. It can

be observed that the DNN prediction time per sample is a few

nanoseconds faster compared to the labeling time. However,

we note that this observation is specific only to this simpler

case study. In later, more complex case studies, we show that

learning models can be highly efficient while promising near

equal performance when compared to classical algorithms.

b) Impact of the Number of Hidden Layers

The complexity of the DNN was changed by varying the

number of hidden layers. The efficiency and accuracy mea-

sures are indicated in Table 9. We note here that since the time

t1 remains unchanged (i.e. the labeling set is not altered),

TABLE 9: The impact of the number of hidden layers.

Number of hidden layers t2 (s) t3 (s) Rt

1 564 1.51 68.2%

3 810 2.28 88.4%

5 1002 2.64 90.3%

7 1194 3.67 91.0%

9 1578 4.89 90.8%

TABLE 10: Variation of Rt on seen and unseen data with the
channel non-stationarity factor k.

k Rt of seen data Rt of unseen data

1 99.5% 67.2%

5 93.6% 89.8%

10 92.2% 89.9%

50 92.1% 90.8%

100 91.6% 91.5%

it is omitted from the table. One can observe that both the

training time t2 and the prediction time t3 decrease as the

number of layers decreases. However, the accuracy of the

model decreases as well. Through these observations, we

depict the inability of the DNN model to learn complex

functions through the use of simple models. As the number

of hidden layers increases both t2 and t3 increase together

with the performance. However, after a certain point, t2 and

t3 keep on increasing while the increment in the performance

becomes negligible. This shows that the DNN may not be

able to perfectly model a problem beyond a certain limit.

Through these observations, we conclude that a good bal-

ance between efficiency and accuracy could be achieved by

adjusting the model parameters. Globally best parameters do

not usually exist and thus the model and training parameters

must be optimized on a case-by-case basis through ablation

studies and experimentation ensuring that it satisfies the

latency and performance requirements.

2) Variation of performance with non-stationarity and the

ageing effect

Next, the relative sum-rate was measured while changing

the environment generators of the training dataset; (Lt,Mt)
pairs. Note that in the previous section, the performance of

the DNN model was evaluated based on test data which

exhibits a low variation when compared to the training data.

However, in reality, as the channel model varies, the char-

acteristics of the input data would deviate from that of the

training data and the performance of the DNN model would

change as a result. To observe this variation, a new dataset

of 100K samples was generated as shown in Fig. 7. In this

case, the (Lt,Mt) pair values of the new dataset show a high

variation compared to the training data. We codify these test

sets as seen and unseen data.

From Table 10, we make the following observations:

• Relative sum-rate on seen data is high when the known

(Lt,Mt) pairs, k is low. Due to the low non-stationarity

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

factor k, the data distribution is narrow and conse-

quently, the DNN model manages to learn the behavior

of the data distribution.

• As k increases, the relative sum-rate on the seen dataset

reduces. While increasing the non-stationarity factor k
the distribution of the data becomes broader and natu-

rally, the DNN model requires a large set of samples

and more parameters to learn the behavior of the dataset.

However, the number of samples and the DNN archi-

tecture is kept constant, thus the overall performance

reduces.

• The unseen dataset shows an opposite trend, as the

relative sum-rate increases with k. This is because the

DNN model generalizes the data distribution with more

diverse samples. Therefore, we can see an increase in

relative sum-rate with unseen data with larger k.

• The relative sum-rate of DNN output on both seen and

unseen datasets saturates and becomes equal after a

certain k value (around 1% out of 4096). This is because

the DNN model reaches its capacity to learn from the

given data due to the limitation of the parameters in the

DNN model.

The observations listed above can be explained through

“overfitting”. In Table 10, the parameter k refers to the

degree of non-stationarity of the channel data, i.e. varia-

tion/randomness in the dataset. Thus, the “seen data” shows

a similar pattern to the training set whereas “unseen data”

shows a high variation in comparison. For a lower k, the

model easily learns the patterns in the training data due to

its low variation and “overfits” on the training data. This

can be observed through the high performance on seen data

(which shows a similar pattern as the training set) but a poor

performance on the unseen data. As k increases the non-

stationarity variation in the training data increases, and as a

result, overfitting is minimized during training. This can be

observed with the decrease in performance on the “seen data”

with an increase in k. However, since the trained model is not

overfitted, the performance of the model on the “unseen data”

increases due to “generalization”.

The degradation of performance in supervised learning

models due to model ageing as discussed in Section V-A

also occurs due to the overfitting. In that case, the supervised

model (DNN) is initially trained based on training data which

has a particular pattern. Initially, this pattern exists in the test

dataset as well and thus the trained DNN model performs

well on this test set. However, with time as the features of

the test data change due to the user movement (i.e., non-

stationarity of the channel), the pattern which was initially

observed in the training set is not repeated anymore. As a

result, the performance of the DNN degrades on this new test

set with high variation. Thus, the performance degradation

of DNN with time occurs due to the initial overfitting and the

high variation which occurs with time.

Now let us combined these ideas and analyze the ageing

effect on models trained under different k values with time.

The model with high overfitting (k = 1) performs well

initially (99%), but its performance degrades drastically over

time (68%) whereas the model with the least overfitting

(k = 100) has a comparatively lower (91%) but stable

performance. Therefore, the degradation can be reduced if

overfitting is minimized. However, even though this degrada-

tion is small and could be overcome through generalization

in this case study, we highlight the following issues related to

generalization:

• Generalization usually results in lower performance

than if the model was trained for a specific environment.

Due to the low complexity of this case study, the dif-

ference in performance (99% vs 91%) is low. However,

as the complexity of increases, this difference becomes

significant. This is discussed in a later section where the

performance of the model degrades significantly with

the complexity. (See Fig. 13)

• In these studies, we exert a boundary/limit, within which

the channel parameters (L = 1 ∼ 32, M = 1 ∼ 128)

may vary. However, this assumption may not be ex-

tended to real-life cases where the system may vary a

lot. Thus, in reality, generalization would require data

with high variance obtained under different conditions

and this is a challenge.

Due to these reasons, we observe a significant degradation

of performance in a non-stationary environment as the com-

plexity of the problem increases.

C. MODERATE COMPLEXITY PROBLEM

In this section, we study 1) Multi-user single-cell OFDM

and 2) Multi-user multi-cell single-carrier communication

scenarios.

1) Multi-user single-cell OFDM

We assume a single-cell OFDM system with N = 32 sub-

carriers and U = 4 users as specified in Section III-B1. We

assume that there is no interference if the BS does not allocate

the same subcarrier to multiple users. A dataset is generated

with the non-stationarity factor k = 10, then labeled using

the greedy optimization strategy in [41] and split as shown in

Fig. 2.

As explained in Section III-B1, each subcarrier is allocated

to a unique user and thus, all the other subcarriers have

zero power allocation at that time. This leads to a highly

biased and sparse set Pt. Due to this sparsity, a single DNN

model cannot be employed. In such a scenario the DNN

“adapts” to predict the zeros in the output labels. Thus, the

converged model predicts values close to zero which is not

optimal. If we represent sparse data in an n-dimensional vec-

tor space, they are not clustered closely together. This makes

the learning process of the DNN inefficient. To address this

problem, we propose a design with two separate sequential

DNN models for each sub-problem (subcarrier and power

allocation) as illustrated in Fig. 8. DNN model A predicts

the subcarrier allocation algorithm, while the DNN model B
predicts the power allocation algorithm (water filling).

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SINR

DNN

Model A

�1�1� �1�2� �1�3� �1�4�

�2�1� �2�2� �2�3� �2�4�

Allocated subcarriers

DNN

Model B
�1�1� �2�2� �2�3� �1�4�

Power allocation

�1�1� �2�2� �2�3� �1�4�

Allocated SINR

Concatenate

Subcarrier

allocation

Power

allocation

FIGURE 8: DNN model for single-cell OFDM case.

• The DNN Model A predicts subcarrier allocation and

has a different architecture. The DNN has one hidden

layer with 200 nodes. The input layer has (N×U) nodes

with each node representing the normalized channel

gain gub (n). The output layer has (N × U) nodes with

each node representing the binary value for the sub-

carrier allocation. A different approach could be to use

lower granularity of CSI such as received signal strength

indicator that would impact the performance while the

methodology would not change. Each layer uses ReLU

as the activation function except for the last layer which

uses a Sigmoid function. The problem is a multi-class

multi-label problem where the users are assumed to be

the classes and each user can be labeled with multiple

subcarriers. Therefore, binary cross-entropy loss func-

tion was chosen for the DNN [13]. The output refers to

the subcarrier allocation: A true value would mean that

a subcarrier is allocated to that user and if the value is

false, then it is not allocated.

• Model B predicts the power allocation. Since the label-

ing algorithm (water filling) for this subproblem is the

same as in Section V-B, we use the DNN model with the

same architecture.

The combined DNN was evaluated by calculating the average

value of the relative sum-rate given by Eq. (15) where r̂t is

the sum-rate obtained from the DNN output and rt denotes

the optimal sum-rate obtained through the greedy optimiza-

tion approach described in [41].

We observed the variation of the relative sum-rate while

changing different parameters. Initially, the non-stationarity

was changed to see its effect in a different system setup. Next,

we change the problem complexity with a specific focus

on studying the effect of user activity. Finally, we modify

the model architecture and study the effect of incorporating

memory models to handle the ageing problem.

� � � � � � �� ��
���
�������k

��

��

��

	�

	�

��
�

��
��
��

�
��
��
��
�
��

�
��
R t

U=4
N=32

�����������

�
�
���������������
�
������
�
�
�����������������
�
������

FIGURE 9: Variation of average relative sum-rate with non-
stationarity on seen and unseen datasets.

a) Variation of performance with non-stationarity

The variation of the average relative sum-rate Rt with the

non-stationarity k is shown in Fig. 9. Two examples of

datasets with seen and unseen (Lt, Mt) pair values were gen-

erated as shown in Fig. 7. The average relative sum-rate Rt is

low for the unseen data with lower values of non-stationarity

factor k. This is because the DNN is trained with a dataset

with samples from a near non-stationary environment and

thus is overfit and biased. Thus, when the model predicts the

power allocation for a data sample which is from an unseen

environment with high movement, the performance is poor.

However, as the non-stationarity factor k of the training set

increases, the DNN model generalizes the behavior of the

mobile radio (i.e. non-stationary) environment and thus, the

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

average relative sum-rate Rt of seen and unseen datasets

converge. 5G and beyond targets a highly dynamic wireless

communication (e.g. users in vehicles, industrial IoT devices,

etc). Therefore, it is critical to do comprehensive study on

how algorithms behave in dynamic conditions as mentioned

above.

b) Impact of the non-deterministic user activity

Next, we analyze the effect of varying problem complexity.

We observed that increasing the complexity by changing

parameters such as N and U results in a lower performance

similar to Section V-B. However, we note that in reality,

parameters such as B and N remain fixed during the oper-

ation of a system, but the number of users U could change

depending on user movements. When the total number of

users U changes, the size of the input vector changes as

well. In a fully connected DNN, the layer sizes cannot be

changed dynamically. Thus, if U changes, a new DNN would

have to be trained. In such a case multiple trained DNNs

would be required for continuous operation. If we arrange the

channel gain information in a 2D matrix, with users in one

dimension and subcarriers in the other, we can assume that

each element in the matrix is spatially co-related. This spatial

correlation can be modeled through convolution kernels. In

a later section, we propose a Convolution Neural Network

(CNN) to estimate the power allocation instead of a DNN

to tackle the problem of non-deterministic user activity (See

Section V-D).

c) Recurrent Neural Networks with LSTM cells to study

limitations associated with non-stationarity

The ageing problem of supervised learning models in a non-

stationary environment occurs due to the dynamic nature of

the observed data. This time-variant property can be modeled

using memory elements. To study the effect of such networks

the DNN was modified by incorporating Long short-term

memory (LSTM) cells. LSTM cells are a type of recurrent

neural networks (RNN) which use “memory cells” to main-

tain the state information for a longer period. LSTM cells

use complex architecture, which overcomes issues such as

vanishing and exploding gradient which are seen in RNNs

with simple feedback loops [54].

The DNN model B (which predicts the power allocation)

was modified by adding an LSTM layer at the input layer.

Moreover, RNN models require historic data in addition to

current data. Thus, the dataset was modified such that each

data sample included the channel gain values of the previous

10 time-steps. Our results indicated that after the update of

the model with the LSTM cells a similar trend is observed

as illustrated by Fig. 6a. This occurs since the training data

still only contains the stationary channel values and the RNN

model is biased towards this training data which results

in poor performance in a non-stationary environment. We

concluded that the ageing problem occurs due to the training

process. The dependency of supervised learning models on

�
�

�

�
�

�

� � �
���

�

� � �
�

�

� � � � � � � �

�
�

��

�
�

��

� �
���

��

� � � �
�

��

u : user

�
�

�

��� �
��

�

�
�

��� �
��

�
�

��� �
��

��� ��� ��� ��� ��� ��� ��� ��� ���

�
�

��

��� �
��

��

�
�

��� �
��

�
�

��� �
��

S : State space

u : user

A : Power levels

DQN

FIGURE 10: State and Action Space of proposed DQN imple-
mentation for Multi-cell Single-carrier system.

the training data leads to the ageing effect, and this cannot be

rectified by modifying the Neural Network architecture.

2) Multi-user multi-cell single-carrier

We consider a single carrier system with B BSs and U users

that are randomly located as specified in Section III-B2. In

reality, the bth BS allocates time slots to each user u ∈ Ub in a

weighted manner in order to maintain fairness. For simplicity,

we assume that the bth BS always connects to a particular

user u and decides the power allocation to minimize interfer-

ence. Note that due to this assumption, B = U in this case

study. However, in the high complexity case, we remove this

assumption and consider a more realistic system.

As discussed in Section V-A, the ageing problem of the

DNN makes it unsuitable under non-stationary channel con-

ditions. However, when trained till saturation, the DNN was

able to perform better in comparison as shown in Fig. 6c.

In this section, we extend the study further to find if this

observation holds. Thus, we compare the performance of

both the DNN and DQN models under different conditions.

For the DQN model, we employ a similar methodology as

in [27], [28] with minor changes to the model architecture

and the training parameters. While these works focus on

the optimal converged performance, our study focuses on

the variation of performance during training under different

problem complexities and analyses the reason for any varia-

tion of performance during the training phase.

A dataset is generated by Eq. (1) with Lt = 1. In this

dataset, a single sample represents Gt; the set of channel gain

values {g11 , . . . , g
U
B} between all the users and BSs for a given

time t. The data are labeled using the WMMSE algorithm

[42] and split as shown in Fig. 2.

18 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

a) DNN model approach

We utilize a DNN with 5 hidden layers, each containing 300

nodes as described in Section IV-B1. The DNN takes the

gub values as the input and output the corresponding power

allocation for each user pub . In a single carrier system, the

power violation is not an issue since the BS has only one

carrier and there is no possibility of allocating power higher

than the maximum power allocation. Therefore, we omit the

regularization part in Eq. (12) and thus. the loss function is

the MSE.

b) DQN model approach

The DQN implementation requires the problem to be con-

verted to an MDP as specified in Section IV-B2. Since this

is a single carrier system, the second MDP formulation

proposed in Section IV-B2 is used. In the proposed DQN

design, at time t, the channel gain values are represented by

Gt = {g11 , . . . , g
U
B} and the power allocation decisions at

each step i are represented by Pt(i) = {p1, . . . , pB} for all

the BSs as illustrated in Fig. 4. Furthermore, Rt(i) represents

all the corresponding sum-rates {r1, . . . , rB} for all the BSs

at step i. Using these terms, for this case study we define the

state space, action space and reward as follows:

• State space - The state space for a U = 10 system

has the values concatenated/stacked together is shown

in Fig. 10. It is composed of the current channel gain

values of each user and interfering users Gt, previous

power allocation for each user Pt(i − 1), and previous

rate of each user Rt(i−1) stacked together. We can use

this state space to predict an action that will estimate the

power levels of all BSs. But estimating the power levels

of all the users simultaneously will require an action

space of size AU . This is not practical for DQNs since

the action space increases exponentially. Therefore, in

a single step i, we observe the state of a single user

(i.e. a row in state space as shown in Fig. 10). Let’s call

this the observable state. Using this observable state, we

predict the BS power level for that particular user using

the DQN. Similarly, we predict the power level for all

the users in step i and after that, we proceed to step i+1.

We can reduce the size of state space to U×3 and action

space to A through this methodology.

• Action Space - The action space of a DQN is finite.

However, since the power allocations in our case can

have infinite values, the total power was divided into

A+1 discrete power levels as A = {(j × Pmax)/A; 0 ≤
j ≤ A}. Fig. 10 shows the action space for U = 10 users.

• Reward - We use the sum-rate which is given by Eq. (7)

as the reward for the DQN. Note that this also corre-

sponds to the summation of individual rewards Rt(i).

Finally, the value estimator of the DQN as illustrated in

Fig. 4 is a fully connected neural network. It has 3 hidden

layers each with 128 nodes. The input layer has (U x 3)

nodes. The output layer has A nodes. Each layer uses ReLU

as the activation function except for the last layer which uses

�� �� �� ��� ��� ��� ��� ���

"��������" �� �U

�����

�����

�����

�����

�����

�����

�����

�����

�����

	
#�

��
��

��
��

��
�!
��

��
!��

��
��

��
 �

�
��

��
�
�

��������$���	�����!���

���$���	�����!���

�
���$���	�����!���

FIGURE 11: Variation of prediction time with number of users.

the linear function. The DQN uses the MSE as the loss and

the model is trained using the epsilon greedy policy with

a vanishing epsilon value from 0.8 to 0.01 as specified in

Table 5.

Our discussions are centered around the two metrics: the

relative performance and the prediction efficiency of learning

models. The relative performance is measured using the

relative sum-rate given by Eq. (15), where r̂t denotes the

sum-rate calculated using the DQN/DNN models, while rt
denotes the sum-rate given by the WMMSE algorithm. The

efficiency is defined by the time taken to predict the power

allocation of a unit sample. The variation of the relative

performance and the efficiency with the number of users is

shown in Fig. 13 and Fig. 11 respectively.

c) Efficiency of learning models

As shown in Fig. 11, the prediction time increases as the

complexity of the problem increases. The increment in the

prediction time of the DNN is negligible whereas the incre-

ment in the DQN model is slightly higher, and the increment

of WMMSE time is exponential. This exponential increase in

the prediction time of WMMSE algorithms can be attributed

to its iterative optimization technique to find the solution.

Therefore, we conclude that WMMSE is very inefficient

compared to other models.

Note

The DNN takes comparatively less time to predict the power

allocation after training the model since the prediction time

depends only on the number of parameters in the DNN

model. However, since DNNs require a labeled dataset to be

trained, the training time of DNNs would be increased due to

VOLUME 4, 2016 19

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

� ��� ��� ��� ���

$���!����#!�������� �"���"

�

��

��

��

��

���

�
��
�#
�%
��
"$
�
�!
�#
��
R t

��&�!��
��!����#

����	 �"������!�$
���	 �"�����!������

�
�!
�
$

����	

��
���&�!�������#���
��'��$����&�!�������#���
���������&�!�������#���

(a) First 1K episodes.

� ����� ����� ����� �����

$���!����#!�������� �"���"

�

��

��

��

��

���

�
��
�#
�%
��
"$
�
�!
�#
��
R t

���%�!�����

�����
 �"�����!������

����

	�
���&�!�������#���
��'��$����&�!�������#���
���������&�!�������#���

(b) 100K episodes.

FIGURE 12: Variation of Relative sum-rate of DQN through-
out the training.

the inefficiency of the WMMSE algorithm (since the dataset

would have to be labeled first by WMMSE). Therefore,

DQNs act as suitable alternatives since they do not require to

be pre-trained as DNNs, and the increment in the prediction

time with problem complexity is low compared to WMMSE

algorithm. Due to these two reasons, DQNs are preferred

for low-latency application. However, the prediction time per

sample for this case study (∼ 25ms) is much higher than the

millisecond latency required by 6G applications. Therefore,

�� �� �� �� �� 	�
� �� �� ���
�%���"�!��%#�"#��

��

��

��

��

	�

�

��

��

� � ����
��!��$�! ���! &�"����
����
��!��$�! ���&�"����
�����!'�"�
��!��$�!
��(��%���!'�"�
��!��$�!
�� �!���!'�"�
��!��$�!

FIGURE 13: Variation of relative sum-rate Rt with number of
users U .

real life application would require computationally powerful

devices and optimized models to achieve the latency require-

ments.

d) Relative sum-rate of DQN during training

First, we study the variation of the performance of the

DQN throughout the training process and compare it with

the optimal performance given by the WMMSE algorithm.

Furthermore, the reward (sum-rate) from random power al-

location and maximum power allocation strategies are also

considered for comparative study15. The variation of the

reward throughout the training process is shown in Fig. 12a

and Fig. 12b. “Warm-up” phase is defined by the first 100

episodes followed by the training phase. Note that during

the warm-up phase, the relative performance of the DQN

is nearly equal to the random power allocation method.

However, after the saturation (convergence) phase the relative

performance of the DQN is much higher than the random

and maximum power allocation ratios. This confirms that the

DQN has been adequately trained.

We note here that the DQN is initially untrained and

would perform poorly compared to the DNN and WMMSE

algorithms. Therefore, when the overall average performance

of the DQN is compared with other models, this would also

include the warm-up phase and the reward increment phase

which have lower performance compared to the saturation

value. So, in order to compare the optimal performance, we

consider two performance metrics for the DQN: The overall

15In random power allocation strategy, power is allocated to each user
randomly. In the maximum power allocation strategy, the maximum power
of each BS (Pmax) is assigned

20 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

K
e

rn
a

l=
 (

2
,3

)

F
ilt

e
rs

 =
 3

2

H
t
(B

x
U

x
N

+
1

)

K
e

rn
a

l=
 (

2
,3

)

F
ilt

e
rs

 =
 3
2

K
e

rn
a

l=
 (

2
,3

)

F
ilt

e
rs

 =
 3

2

R
e

L
u

R
e

L
u

R
e

L
u

P
t
(B

x
U

x
N

)

K
e

rn
a

l=
 (

2
,3

)

F
ilt

e
rs

 =
 3

2

R
e

L
u

Input/output layer

Activation layer

Convolution layer

FIGURE 14: Proposed DNN model to predict power allocation of multi-cell OFDM case.

DQN performance and the converged DQN performance.

The overall DQN performance was measured by considering

the time-averaged relative sum-rate till convergence. The

converged DQN performance was measured using the time-

averaged relative sum-rate on a new dataset with epsilon=0

after training the DQN till convergence.

e) Relative sum-rate of learning models

Fig. 13 shows the overall and converged relative perfor-

mance of the DQN together with DNN, random power, and

maximum power allocation techniques. From the figure, we

observe that, as the number of users increases, the perfor-

mance of both these models degrade. This is attributed to

the increase in problem complexity with the number of users.

However, the degradation of the performance of DNN is sig-

nificantly higher. This occurs since the DNN is a supervised

learning model, and as such requires more training data and

higher complexity model. However, the DNN model has the

same complexity and thus may not be able to model a more

complex problem. A complex DNN model would be required

as the problem complexity increases. However, as discussed

in the previous section, this would make the DNN inefficient

and would not be a suitable solution.

As opposed to DNNs, DQNs show low degradation of

performance as the problem complexity (number of users)

increases. Further, we observe a performance gap between

the overall performance and converged performance of the

DQN. This occurs due to the initial low performance of DQN

during the training phase as shown in Fig. 12a. We note that

the overall performance degrades more in comparison to the

converged performance as the problem complexity increases.

This occurs since the DQN model requires more time to

converge (higher number of training episodes) as the problem

complexity increases resulting in a longer training phase and

thereby a lower overall performance. This would be a major

concern for high complexity problems since convergence

takes time and cannot be guaranteed in a highly mobile

environment as shown in Fig. 6c.

These results indicate that the performance of the DNN, in

terms of both the time consumption and the relative sum-rate,

degrades as the complexity of the problem increases. On the

other hand, even though the WMMSE algorithm provides op-

timal performance, it has poor efficiency at higher complexity

cases. Thus, we conclude that the proposed DQN model

would be more suitable for this case study since it provides

a good trade-off between performance and efficiency when

compared to the iterative optimal algorithms.

We note here that the application of this model is limited to

smaller systems, and extending it to larger systems, consid-

ering information from all BSs requires a large observation

to the DQN. In addition, DQN predicts a single action from

a predefined discrete set of actions leading to unmanageable

action space. Thus, extending this model to real life beyond

5G applications which consist of larger networks with mul-

tiple subcarriers requires further studies. In what follows,

we propose a DNN based unsupervised learning method for

resource allocation in large realistic network scenario.

D. HIGH COMPLEXITY PROBLEM

We assume a multi-user multi-cell OFDM system with a

varying number of subcarriers N having B BSs and U
randomly located users. In this scenario we first consider

a non-stationary system. The data generation methodology

from the single-cell OFDM case study is extended to multi-

cell scenario. That is, we calculate the channel gain for each

subcarrier between a given BS and all users in the wireless

network (including users in other BSs). Then we have a 2D

matrix of channel gain information Gt of size U × N and

calculate the channel gain for all the BSs, stack them to form

a 3D matrix G
3
t of size B × U × N . Each user is assumed

to be connected to the closest BS. The user’s connectivity is

represented in an adjacency matrix At of size B × U , where

element At,b,u = 1 if user u is connected to the BS b and

0 otherwise. The dataset consists of 1000 samples and each

sample consists of channel gain information (G3
t) and BS-

user connectivity information (At) for a given time t.

For each user in the system we need to predict two vari-

ables: (i) power allocation, and (ii) subcarrier allocation. In

this case study, we define a single DNN model to predict

power allocation Pt and assume subcarriers are allocated

equally to all users. Current mobile systems use a distributed

system where each cell’s decisions are taken independently

of their neighbor’s CSI. However, in 5G New radio, the

Central Unit and Distributed Unit functional split architec-

ture allows for coordination for performance features, load

management, real-time performance optimization.

We propose a DNN model that inputs G
3
t and At from

the input layer as illustrated in Fig. 14. We concatenate At

along the dimension of the subcarriers in G
3
t to construct

the 3D input matrix. Thus, the size of the input matrix is

B×U × (N +1). The proposed DNN model consists of four

convolution layers with kernel size (2, 3) and 32 filters. Each

VOLUME 4, 2016 21

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 15: Variation of labeling, training, and prediction time
with the number of subcarriers.

layer is passed through a ReLu activation function to make

the input-output correlation non-linear. The model predicts

power allocation Pt from the output layer as shown in

Fig. 14. We propose an unsupervised DNN model with a loss

function that does not require labeled data to train. The loss

function consists of the sum-rate and the power regulation

constraint introduced in Eq. (12). The loss function is given

as,

Υ =
∑

b∈B

(

−
∑

u∈Ub

∑

n∈N

log2[1 + γu
b (n)] +

β

∣

∣

∣

∣

∣

(

∑

u∈Ub

∑

n∈N

p̂ub (n)

)

− Pmax

∣

∣

∣

∣

∣

2




(17)

where γu
b (n) is given by Eq. (11). First, we measure the

variation of sum-rate and prediction time with the number

of subcarriers through different techniques. Then, we ana-

lyze the distribution of power, sum-rate, and user-rate. The

proposed model is compared with the suboptimal SLSQP

solution [44] and the random power allocation strategy.

We also consider the greedy water filling algorithm from

Section V-C1 by applying it to each BS independently. In

addition, a supervised model with similar architecture as

the proposed unsupervised model, but with the loss function

proposed in Eq. (12) is also considered.

1) Variation of efficiency of the proposed DNN model

We consider a wireless system with B = 2 and U = 4,

while the number of subcarriers N varies from 16 to 64. A

relatively low number of users and BSs were chosen for this

comparative study since the suboptimal algorithm chosen as a

FIGURE 16: Variation of average sum-rate with the number
of subcarriers.

benchmark takes a long time to calculate the power allocation

for large datasets. In Fig. 15 consider the case where there

exist N = 16 subcarriers. DNN takes around 0.7 ms to

predict the power allocation per sample in the dataset, while

it takes around two minutes per sample with SLSQP solution

[44]. The dataset consists of 1000 samples. Thus, for the

bench-marking process itself takes around 2min × 1000 ≈
33.3 hours. This is because [44] takes multiple iterations to

converge to a computationally exhaustive solution. To train

the DNN, it takes around 14ms× 1000 = 14 s per epoch and

a total training time of 14 s × 100 = 1400 s. 6G applications

aim at sub-msec latency. The proposed unsupervised method

predicts the power allocation several orders less than the

suboptimal solution and it is close to the expected latency

requirement of 6G applications. In addition, since the un-

supervised learning model is independent of the labeling

algorithm, the retraining time required in non-stationary envi-

ronment is significantly lower than that of supervised models.

However retraining is still in the order of minutes and thus the

usage of DNNs are detrimental in highly dynamic wireless

environment which require constant retraining.

When the number of subcarriers increases, the time taken

for the suboptimal SLSQP algorithm [44] increases exponen-

tially as illustrated in Fig. 15. This is because the SLSQP

algorithm in [44] takes more time to compute each itera-

tion because of the large vector representing the state. This

implies that when the number of BSs and users increases,

the time taken for [44] increases exponentially as well. For

example, in this wireless system, it takes around 1 minute

to predict power allocation using a sample from the dataset

for a given time t. For the system with N = 64 subcarriers

22 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Maximum sum-rate.

(b) Total power allocation.

FIGURE 17: Cumulative probability distribution of sum-rate
and total power allocation for each BS.

having B = 2 BSs and U = 16 randomly located users,

it takes around 1 hour to predict a sample. Thus, in order

to predict the complete dataset, it will take 1000 hours or

roughly 41 days. As a result, using a linear programming

methods [44] for large wireless systems with multiple BSs

and/or crowded areas is not practical because of the long time

for computation.

FIGURE 18: Cumulative probability distribution of sum-rate of
each user in a BS.

2) Variation of average sum-rate with the number of

subcarriers

Fig. 16 illustrates the variation of average sum-rate in a multi-

user multi-cell OFDM system with B = 2 and U = 4, while

the number of subcarriers N varies from 4 to 32. We also

compare the average sum-rate of the proposed model on the

seen data and unseen data (See Fig. 7). When the number

of subcarriers increases the average sum-rate increases in

all methods since we keep the bandwidth of a subcarrier

constant. Therefore, larger the number of subcarriers, higher

bandwidth to transmit data. But it is clear that the proposed

method gives a higher sum-rate regardless of the number of

subcarriers. Furthermore, when considering unseen data, we

observe a drop in performance in the proposed method as the

number of subcarriers increases (N=32). This occurs since

the model’s ability to generalize decreases as the model as the

problem complexity increases. As a result, the performance

on unseen data decreases with problem complexity.

Next, we compare the cumulative sum of the probabil-

ity distribution of sum-rate and total power from different

algorithms as shown in Fig. 17. The proposed model im-

proves the sum-rate in comparison to other methods. This is

because the proposed model uses an unsupervised learning

technique that considers all CSI from all BSs and the inter-

cell interference through the loss function. Furthermore, the

proposed loss function penalizes high power allocation when

power violation occurs, and as a result, the proposed model

violates the total power allocation constraint less frequently

in comparison as given in Fig. 17b.

Fig. 18 illustrates how the sum-rate of each user is dis-

tributed with different power allocation algorithms. We ob-

VOLUME 4, 2016 23

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

serve that the water filling algorithm shows a high variation of

user rate, while the proposed algorithm has a lower variation

and higher average user rate in comparison. We conclude that

the proposed method gives a higher rate for all the users,

which results in a higher sum-rate of the entire network.

Note

Reinforcement learning through the proposed DQN model

becomes a challenge in this high complexity case study due

to the exponential increase of the state and action spaces.

An increase in the problem complexity leads to an unman-

ageable action space of the DQN. However, instead of using

DQNs, policy gradient optimization reinforcement learning

approaches that can estimate multiple actions in a single step

can be used. In addition to overcoming the limitations related

to finite action space, this can also reduce the number of

steps required to estimate a solution (or simply complete an

episode). Furthermore, dimensionality reduction techniques

such as auto-encoder can be used to manage the increased

complexity. Thereby, the reinforcement learning approaches

would have a comparatively smaller observation space as

opposed to the current model which uses the whole CSI space

as an observation. In addition, the proposed unsupervised

learning model uses a loss function that does not rely on a

labeled dataset. This can be used as the reward function in re-

inforcement learning techniques to train the model optimally.

However, these type of reinforcement learning methods are

hard to train and pose many challenges. Thus, their perfor-

mance and limitations are interesting future works.

VI. CONCLUSION

This paper presented a comprehensive comparison study

on practical design limitations for resource management of

learning in a non-stationary radio environment. We study the

sum-rate maximization problem in multiple network scenar-

ios with different complexities.

Through our case studies, we observe specific limitations

of learning models such as power violation, sparse out-

put, performance degradation with non-deterministic user

activity, etc. We analyzed and proposed solutions to these

issues and such limitations make the applicability of learning

methods for wireless physical layer problems challenging

tasks. However, two prominent issues that exist commonly

for many wireless applications are the ageing effect and

the high computational complexity. Through our studies, we

showed that the ageing effect results in poor performance

in highly complex and highly mobile radio environments.

Furthermore, the low latency requirements for beyond 5G

applications combined with the high computational require-

ment to train learning models act as a limitation for the

application of learning models for interactive applications.

To this end, we highlighted the importance of a generalized

unbiased dataset for efficient training of learning models and

show that a trade-off between the computational efficiency

and prediction accuracy can be balanced with the proper

choice and design of the learning architecture. While we

show that reinforcement learning techniques provide a good

balance between performance and efficiency while handling

the ageing problem effectively, we also highlight that con-

temporary learning methods are limited to the applications

for non-interactive services.

Finally, we observed that the drop in performance under

rapidly changing, fast-fading conditions was insignificant in

the low complexity case study. On the other hand, increas-

ing the problem complexity to observe the issues that arise

under fast-fading conditions is not viable through DQNs as

they pose many limitations and challenges when applied to

high complexity problems. Thus, the effect of fast-fading

condition must be studied using a different reinforcement

learning model which could handle high complexity. In

order to achieve optimal performance in a rapidly varying

environment, faster convergence is required and this can be

achieved by changing the problem formulation or differ-

ent components and hyperparameters of the learning model

such as the learning policy, the actor-critic algorithms, and

the policy optimization algorithms [55]. The effect of fast-

fading nature on different performance-related issues such as

optimal performance, convergence rate, etc. based on these

modifications will be addressed as a separate comprehensive

study in the future.

In addition, the low-latency and high reliability require-

ments of interactive 6G applications raise challenges for the

application of deep learning techniques. Thus, further studies

must be conducted to improve the efficiency of reinforce-

ment learning techniques and ensure robustness in highly

mobile radio environments. Modification such as dimension-

ality reduction (autoencoders), training optimization [56],

and policy gradient optimization [57] could be used to handle

the shortcoming observed in reinforcement learning and this

raises interesting questions regarding the training challenges

and the applications for real-world problems which should

be addressed in the future. The last point is energy efficiency

of the future wireless with learning. It is not clear what will

be the limitations of signal processing and computational

resources at the mobile terminals and how this will limit

learning capability.

REFERENCES

[1] F. Tariq, M. R. A. Khandaker, K. Wong, M. A. Imran, M. Bennis and M.

Debbah, “A Speculative Study on 6G,” IEEE Wireless Communications,

Vol. 27, No. 4, pp. 118-125, Aug. 2020.

[2] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis

and P. Fan, “6G Wireless Networks: Vision, Requirements, Architecture,

and Key Technologies,” IEEE Vehicular Technology Magazine, Vol. 14,

No. 3, pp. 28-41, Sept. 2019.

[3] M. S. Elbamby, C. Perfecto, M. Bennis and K. Doppler, “Toward low-

latency and ultra-reliable virtual reality,” IEEE Network, Vol. 32, No. 2,

pp.78-84, 2018.

[4] H. Gacanin and M. Di Renzo, “Wireless 2.0: Towards an Intelligent Radio

Environment Empowered by Reconfigurable Meta-Surfaces and Artificial

Intelligence,” IEEE Vehicular Technology Magazine, Special Section,

2020.

[5] W. Saad, M. Bennis and M. Chen, “A Vision of 6G Wireless Systems:

Applications, Trends, Technologies, and Open Research Problems,” IEEE

Network, Vol. 34, No. 3, pp. 134-142, May/June 2020.

24 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[6] H. Gacanin, “Autonomous Wireless Systems with Artificial Intelligence:

A Knowledge Management Perspective,” IEEE Vehicular Technology

Magazine, Special issue on 6G: What is Next?, Vol. 14, No. 3, pp. 51-59,

Sept. 2019.

[7] I. F. Akyildiz, A. Kak and S. Nie, “6G and Beyond: The Future of Wireless

Communications Systems,” IEEE Access, Vol. 8, pp. 133995-134030,

2020.

[8] H. Gacanin and M. Wagner, “Artificial Intelligence Paradigm for Customer

Experience Management in Next-Generation Networks: Challenges and

Perspectives,” IEEE Network Magazine, Vol. 33, No. 2, March/April 2019.

[9] N. Kato, B. Mao, F. Tang, Y. Kawamoto and J. Liu, “Ten Challenges in

Advancing Machine Learning Technologies toward 6G,” IEEE Wireless

Communications, Vol. 27, No. 3, pp. 96-103, June 2020.

[10] G. Gui, M. Liu, F. Tang, N. Kato and F. Adachi, “6G: Opening New

Horizons for Integration of Comfort, Security and Intelligence,” IEEE

Wireless Communications, 2020.

[11] C. Zhang, P. Patras and H. Haddadi, “Deep learning in mobile and wireless

networking: A survey,” IEEE Communications Surveys & Tutorials, Vol.

23, No. 3, pp. 2224 - 2287, March 2019.

[12] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, Vol. 521,

No. 7553, pp. 436-444, May 2015.

[13] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT press, First

Edition, 2016.

[14] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu and N. D. Sidiropoulos,

“Learning to Optimize: Training Deep Neural Networks for Interference

Management,” IEEE Transactions on Signal Processing, Vol. 66, No. 20,

pp. 5438-5453, Oct. 2018.

[15] U. Challita, L. Dong and W. Saad, “Proactive Resource Management

for LTE in Unlicensed Spectrum: A Deep Learning Perspective,” IEEE

Transactions on Wireless Communications, Vol. 17, No. 7, pp. 4674-4689,

July 2018.

[16] F. Zhou, X. Zhang, R. Q. Hu, A. Papathanassiou and W. Meng, “Re-

source Allocation Based on Deep Neural Networks for Cognitive Radio

Networks,” 2018 IEEE/CIC International Conference on Communications

in China (ICCC), pp 40-45, Beijing, China, Aug. 2018.

[17] S. F. Li, M. Y. Jiang, A. M. Dong and D. F. Yuan, “Adaptive Subcarrier,

Bit and Power Allocation Based on Hopfield Neural Network for Multiuser

OFDM,” Applied Mechanics and Materials, Vol. 325-326, pp. 1706-1711,

June 2013.

[18] S. Tseng, Y. Chen, C. Tsai and W. Tsai, “Deep-Learning-Aided Cross-

Layer Resource Allocation of OFDMA/NOMA Video Communication

Systems,” IEEE Access, Vol. 7, pp. 157730-157740, 2019.

[19] Y. Shen, Y. Shi, J. Zhang and K. Letaief, “LORM: Learning to Optimize

for Resource Management in Wireless Networks with Few Training Sam-

ples,” IEEE Transactions on Wireless Communications, Vol. 19, No. 1, pp.

665-679, Jan. 2020.

[20] A. Zappone, L. Sanguinetti and M. Debbah, “User Association and Load

Balancing for Massive MIMO through Deep Learning,” 52nd Asilomar

Conference on Signals, Systems, and Computers, pp. 1262-1266, CA,

USA, 2018.

[21] T. O’Shea and J. Hoydis, “An Introduction to Deep Learning for the

Physical Layer,” in IEEE Transactions on Cognitive Communications and

Networking, Vol. 3, No. 4, pp. 563-575, Dec. 2017.

[22] H. Huang, W. Xia, J. Xiong, J. Yang, G. Zheng and X. Zhu, “Unsupervised

Learning-Based Fast Beamforming Design for Downlink MIMO,” IEEE

Access, Vol. 7, pp. 7599-7605, 2019.

[23] H. Huang, Y. Peng, J. Yang, W. Xia and G. Gui, “Fast Beamforming

Design via Deep Learning,” IEEE Transactions on Vehicular Technology,

Vol. 69, No. 1, pp. 1065-1069, Jan. 2020.

[24] W. Lee, “Resource Allocation for Multi-Channel Underlay Cognitive

Radio Network Based on Deep Neural Network,” IEEE Communications

Letters, Vol. 22, No. 9, pp. 1942-1945, Sept. 2018.

[25] F. Liang, C. Shen, W. Yu and F. Wu, “Power Control for Interference Man-

agement via Ensembling Deep Neural Networks,” IEEE/CIC International

Conference on Communications in China (ICCC), pp. 237-242, 2019.

[26] M. Eisen and A. Ribeiro, “Optimal Wireless Resource Allocation With

Random Edge Graph Neural Networks,” IEEE Transactions on Signal

Processing, Vol. 68, pp. 2977-2991, 2020.

[27] Y. S. Nasir and D. Guo “Multi-Agent Deep Reinforcement Learning

for Dynamic Power Allocation in Wireless Networks,” IEEE Journal on

Selected Areas in Communications, Vol. 37, No. 10, pp. 2239 - 2250, 2019.

[28] F. Meng, P. Chen and L. Wu, “Power Allocation in Multi-User Cellular

Networks with Deep Q Learning Approach,” 2019 IEEE International

Conference on Communications (ICC), pp. 1-6, Shanghai, China, 2019.

[29] F. Shah-Mohammadi and A. Kwasinski, “Deep Reinforcement Learning

Approach to QoE-Driven Resource Allocation for Spectrum Underlay

in Cognitive Radio Networks,” 2018 IEEE International Conference on

Communications Workshops (ICC Workshops), pp. 1-6, Kansas City,

USA, 2018.

[30] A. Kwasinski, W. Wang and F. S. Mohammadi, “Reinforcement Learning

for Resource Allocation in Cognitive Radio Networks,” Machine Learning

for Future Wireless Communications, pp.27-44, 2020.

[31] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah and W.

Jiang, “Dynamic Reservation and Deep Reinforcement Learning Based

Autonomous Resource Slicing for Virtualized Radio Access Networks,”

IEEE Access, Vol. 7, pp. 45758-45772, 2019.

[32] G. Sun, K. Xiong, G. O. Boateng, D. Ayepah-Mensah, G. Liu and W.

Jiang, “Autonomous Resource Provisioning and Resource Customization

for Mixed Traffics in Virtualized Radio Access Network,” IEEE Systems

Journal, Vol. 13, No. 3, pp. 2454-2465, Sept. 2019.

[33] R. Li, Z. Zhao, Q. Sun, C. I C. Yang, X. Chen, M. Zhao, H. Zhang, “Deep

Reinforcement Learning for Resource Management in Network Slicing,”

IEEE Access, Vol. 6, pp. 74429-74441, 2018.

[34] H. Ye, G. Y. Li and B. F. Juang, “Deep Reinforcement Learning Based

Resource Allocation for V2V Communications,” IEEE Transactions on

Vehicular Technology, Vol. 68, No. 4, pp. 3163-3173, April 2019.

[35] H. Gacanin, E. Perenda and R. Atawia, “Self-Deployment of Non-

stationary Wireless System by Knowledge Management with Artificial

Intelligence,” IEEE Transactions on Cognitive Communications and Net-

working, Vol. 5, No. 4, pp. 1004-1018, Dec. 2019.

[36] H. Gacanin, E. Perenda, S. Karunarathne and R. Atawia, “Self-

optimization of Wireless Systems with Knowledge Management: An

Artificial Intelligence Approach,” IEEE Transactions on Vehicular Tech-

nology, Vol. 68, No. 10, pp. 9682-9697, Oct. 2019.

[37] E. Hyytiä, H. Koskinen, P. Lassila, A. Penttinen, J. Roszik and J. Vir-

tamo, “Random waypoint model in wireless networks,” Networks and

algorithms: Complexity in physics and computer science, Helsinki, Vol.

590, 2005.

[38] J. G. Proakis, Digital Communications, 3rd edition. McGraw-Hill, 1995.

[39] H. Gacanin, M. Salmela and F. Adachi, “Performance Analysis of Analog

Network Coding with Imperfect Channel Estimation in a Frequency-

Selective Fading Channel,” IEEE Transactions on Wireless Communica-

tions, Vol. 11, No. 2, pp. 742-750, Feb. 2012.

[40] Q. Qi, A. Minturn and Y. Yang, “An efficient water-filling algorithm

for power allocation in OFDM-based cognitive radio systems,” 2012

International Conference on Systems and Informatics (ICSAI2012), pp.

2069-2073, Yantai, China, May 2012.

[41] C. Y. Wong, R. S. Cheng, K. B. Lataief and R. D. Murch, (1999).

“Multiuser OFDM with adaptive subcarrier, bit, and power allocation,”

IEEE Journal on selected areas in communications, Vol. 17, No. 10, pp.

1747-1758, Oct. 1999.

[42] Q. Shi, M. Razaviyayn, Z. Q. Luo, Zhi-Quan and C. He, “An Iteratively

Weighted MMSE Approach to Distributed Sum-Utility Maximization for

a MIMO Interfering Broadcast Channel,” IEEE Transactions on Signal

Processing, Vol. 59, No. 9, pp. 4331 - 4340, Sept. 2011.

[43] Z.Q. Luo and W. Yu, “An introduction to convex optimization for com-

munications and signal processing,” IEEE Journal on Selected Areas in

Communications, Vol.24, No.8, pp.1426-1438, Aug. 2006.

[44] Z. Yang, C. Pan, H. Xu, J. Shi and M. Chen, “Power Control and Resource

Allocation for Multi-Cell OFDM Networks With Load Coupling,” IEEE

Access, Vol. 6, pp. 15969-15979, 2018.

[45] S. Ruder, “An overview of gradient descent optimization algorithms,”

2016. arXiv preprint arXiv:1609.04747.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

2014. arXiv preprint arXiv:1412.6980.

[47] R. Caruana, S. Lawrence and C. L. Giles, “Overfitting in neural nets:

Backpropagation, conjugate gradient, and early stopping,” Advances in

neural information processing systems, pp. 402-408, Vancouver, Canada,

2001.

[48] Y. Bengio, “Practical recommendations for gradient-based training of deep

architectures,” Neural networks: Tricks of the trade. Lecture Notes in

Computer Science, Vol. 7700, pp. 437-478. Springer, Berlin, Heidelberg.

2012.

[49] S. Haykin, Neural Networks and Learning Machines., Pearson Education

India, 3rd Edition, 2010.

[50] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, A

Bradford Book, 2nd Edition, 2018.

VOLUME 4, 2016 25

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3040133, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[51] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath,

“Deep Reinforcement Learning: A Brief Survey,” IEEE Signal Processing

Magazine, Vol. 34, No. 6, pp. 26-38, Nov. 2017.

[52] CPU Performance, https://setiathome.berkeley.edu/cpu_list.php, Feb,

2020 (accessed on Feb. 27, 2020).

[53] M. Bennis, M. Debbah and H. V. Poor, “Ultrareliable and low-latency

wireless communication: Tail, risk, and scale,” Proceedings of the IEEE,

Vol. 106, No. 10, pp.1834-1853, Sept. 2018.

[54] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long

short-term memory (lstm) network,” Physica D: Nonlinear Phenomena,

Vol. 404, pp.132306, March 2020.

[55] L. Liu and U. Mitra, “On Sampled Reinforcement Learning in Wireless

Networks: Exploitation of Policy Structures,” IEEE Transactions on Com-

munications, Vol. 68, No. 5, pp. 2823-2837, May 2020.

[56] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot and N. De

Freitas, “Dueling network architectures for deep reinforcement learning,”

International conference on machine learning, pp. 1995-2003, New York,

USA, 2016.

[57] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver

and D. Wierstra, “Continuous control with deep reinforcement learning,”

2015. arXiv preprint arXiv:1509.02971

SUREN SRITHARAN is an undergraduate stu-

dent in the Computer Engineering program at the

University of Peradeniya, Sri Lanka and will be

graduating in 2020 with a BS in Computer En-

gineering. He has a strong interest in the field of

Machine Learning, Algorithmic programming and

Optimization with applications specifically related

to Machine Vision and Wireless Communication.

HARSHANA WELIGAMPOLA is pursuing

B.Sc. degree on Computer Engineering in Uni-

versity of Peradeniya, Sri Lanka. His research

interests include Artificial Intelligence, Neural

Networks, Optimization and Image Processing.

HARIS GACANIN [IEEE SM’12, IEICE SM’12]

received his Dipl.-Ing. Degree in Electrical engi-

neering from the University of Sarajevo in 2000. In

2005 and 2008, respectively, he received MSc and

Ph.D. from Tohoku University in Japan. He was

with Tohoku University from 2008 until 2010 first

as Japan Society for Promotion of Science post-

doctoral fellow and later, as Assistant Professor.

In 2010, he joined Alcatel-Lucent (now Nokia)

where he led the research department at Nokia Bell

Labs. Currently, he is a full (chair) professor at RWTH Aachen University in

Germany. His professional interests are related to broad area of digital signal

processing and artificial intelligence with applications in communication

systems. He has 200+ scientific publications (journals, conferences and

patent applications) and invited/tutorial talks. He is an Associate Editor of

IEEE Communications Magazine and previously serviced at IEICE Trans-

actions on Communications and IET Communications. He is IEEE VTS

Distinguished Lecturer and he acted as a general chair and technical program

committee member of various international conferences. He is a recipient

of several Nokia’s awards for innovations, IEICE Communication System

Study Group (2015) Award, the 2013 Alcatel-Lucent Award of Excellence,

the 2012 KDDI Foundation Research Award, the 2009 KDDI Foundation

Research Grant Award, the 2008 Japan Society for Promotion of Science

(JSPS) Postdoctoral Fellowships for Foreign Researchers, the 2005 Active

Research Award in Radio Communications, 2005 Vehicular Technology

Conference (VTC 2005-Fall) Student Paper Award from IEEE VTS Japan

Chapter and the 2004 Institute of IEICE Society Young Researcher Award.

26 VOLUME 4, 2016

