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Abstract

The object detection is a challenging problem in com-

puter vision with various potential real-world applications.

The objective of this study is to evaluate the deep learn-

ing based object detection techniques for detecting drones.

In this paper, we have conducted experiments with differ-

ent Convolutional Neural Network (CNN) based network

architectures namely Zeiler and Fergus (ZF), Visual Geom-

etry Group (VGG16) etc. Due to sparse data available for

training, networks are trained with pre-trained models us-

ing transfer learning. The snapshot of trained models is

saved at regular interval during training. The best mod-

els having high mean Average Precision (mAP) for each

network architecture are used for evaluation on the test

dataset. The experimental results show that VGG16 with

Faster R-CNN perform better than other architectures on

the training dataset. Visual analysis of the test dataset is

also presented.

1. Introduction

An object can be any physical quantity with semi-rigid

structure and sometimes a repeatable pattern. Object detec-

tion in natural environment is a challenging task due to high

variation among the objects of the same type. Additionally,

changes in appearance, illumination, and viewpoint signifi-

cantly reduces the performance of an object detector. Most

of the object detectors perform poorly in the case of changes

to the scale and deformation. Occlusion and background

clutter/noise adds more complexity to the object detector.

Traditional object detection systems are variants of the

following pipeline: Firstly, find potential objects and their

bounding boxes, then do feature extraction, and finally clas-

sify using a good classifier. Selective Search (SS) [19] en-

joyed being the state-of-the-art for detection on PASCAL

VOC [6], ILSVRC [17], MS COCO [11] etc. competi-

tions. HOG [3] and SIFT [14] are the popular choices for

feature extractions. A classifier is applied on image pyramid

to overcome problems with scale and thus help in reduction

of false positives. A non-maxima suppression technique is

generally used to remove redundant bounding boxes.

A relatively more recent traditional object detection

technique uses Deformable Part-based Models (DPM) [7].

DPM uses HOG detector as a root filter and high-resolution

part-based filters for different parts. These models are based

on handcrafted features which have low-representation abil-

ity for the objects and therefore does not perform well in the

challenging environment.

On the contrary, current state-of-the-art object detectors

such as R-CNN [9], Fast R-CNN [8], Faster R-CNN [16],

YOLO [15], SSD [12] etc. are based on convolutional neu-

ral networks (CNN) and have outperformed the traditional

techniques. The key to the success of CNNs is their ability

to extract/learn generic features.

Furthermore, the advancement in computational re-

sources such as high-performance GPUs and its easy avail-

ability through the use of high-performance cloud comput-

ing platforms, played an important role in the recent success

of neural networks. Deep learning so far has been success-

fully applied to the traditional machine learning problems

such as segmentation [13] and detection [16]. The features

extracted by deep learning architectures are more expressive

and robust than their traditional machine learning counter-

part. Deep learning currently holds a state-of-the-art posi-

tion in almost every task in machine learning and computer

vision.

In this study, we have extensively carried out experi-

mentation with state-of-the-art object detectors based on
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Figure 1: Sample images from competition dataset with

ground-truth annotations

deep learning to detect drones in the Drone-vs-Bird detec-

tion challenge. The challenge is to detect and differentiate

drones from near by flying birds as shown in Fig 1. The

challenge dataset is quite complex because of varying il-

lumination, scale change, and viewpoint variation. Misuse

of small drones for illegal activities namely smuggling of

drugs, terrorism activities, forms the motivation of the chal-

lenge. Hence, surveillance and tracking of drones is very es-

sential to prevent unforeseen situations and security threats.

The remainder of the paper is organized as follows. In

Section 2, the current state-of-the-art object detection tech-

niques are discussed. Section 3, presents the proposed

methodology and analysis of the experimental results are

presented in Section 4. Finally, the paper is concluded in

Section 5.

2. Literature review

In this section, the current state-of-the-art methods for

object detection using Deep Convolutional Neural Net-

works (CNN) are discussed. In particular, a brief overview

of R-CNN [9], Fast R-CNN [8], Faster R-CNN [16], and

YOLO [15] is presented. In general, an object detector

works in two steps: identifying objects candidates, and clas-

sifying the candidates to a specific object type/class based

on a confidence score. Among the most widely used meth-

ods for finding object candidates there are Selective Search

[19], CPMC [2], MCG [1], Edge boxes [21], etc. SS [19],

CPMC [2], and MCG [1] operates at pixel level and merge

them if they have similar low-level features. On the con-

trary, Edge boxes [21] are based on sliding window tech-

nique and are faster than the pixel based methods.

In CNN, regions in the input image are connected with

the region in the output layer in the form of local connec-

tions. This is in contrast to the traditional feedforward neu-

ral networks where every input layer is fully connected with

output layer. A filter is convolved with the input image to

compute the output, and the weights of the filter are learned

in the training phase for a particular task. Deep CNN is a

compositional model in which features are extracted in a hi-

erarchy of layers. The lower layers in the network represent

low-level features such as edges, and the middle layers rep-

resent blob-like structures. Finally, the last layers extract

high-level features such as shapes and complex structures.

Recent advances in object detection techniques pre-

sented the community with Region-Based Convolutional

Neural Network (R-CNN) and its successors (Fast and

Faster R-CNN). R-CNN [9] uses Selective Search (SS) to

compute ( 2k) object proposals of different scales and po-

sitions. For each of these proposals, image regions are

warped to fixed size (227X227) pixels. The warped im-

age regions are then fed to the CNN for detections. The

proposed network architecture uses classification head for

classifying region into one of the classes. The SS does not

necessarily provide perfect proposals. Therefore, to make

up for the slightly wrong object proposals, regression head

uses linear regression to map predicted bounding boxes to

the ground-truth bounding boxes. R-CNN is very slow at

test time where every individual object proposals are passed

through CNN. The feature extracted are cached to the disk.

Finally, a classifier such as SVM is trained in an offline

manner. Therefore, the weights of the CNN did not have

the chance to update itself in response to these offline part

of the network. Moreover, the training pipeline of the R-

CNN is complex.

In Fast R-CNN [8] the order of the extracting region of

proposals and running the CNN is exchanged. In this archi-

tecture whole image is passed once through the CNN and

the regions are now extracted from convolutional feature

map using ROI pooling. This change in architecture reduces

the computation time by sharing the computation of convo-

lutional feature map between region proposals. The region

proposal are projected to the corresponding spatial part of

convolutional feature volume. Finally, fully connected layer

expect the fixed size feature vector and therefore the pro-

jected region is divided into grid and Spatial Pyramid Pool-

ing (SPP) is performed to get fixed size vector. SPP deals

with the variable window size of pooling operation and thus

end-to-end training of the network is very hard. The genera-

tion of the region proposals is the bottle neck at the test time.

In above mentioned approaches, CNN was used only for re-

gression and classification. The idea was further extended

to use CNN also for region proposals. The latest offspring

from the R-CNN family, the Faster R-CNN [16] proposed

the idea of small CNN network called Region Proposal Net-

work (RPN), build on top of the convolutional feature map.

A sliding window is placed over feature map in reference

to the original image. The notion of anchor box is used to

capture object at multiple scales. The center of the anchor

box having different aspect ratio and size coincide with the



center of sliding window. RPN generates region proposals

of different sizes and aspect ratios at various spatial loca-

tions. RPN is a two layered network which does not add

to the computation of overall network. Finally, regression

provides finer localization with the reference to the sliding

window position.

Although Faster R-CNN and its predecessors perform

well with high accuracy, they are computationally very ex-

pensive and time consuming, make them undesirable for

real-time applications. Faster-RCNN works at a rate of 7

frames per second, while maintaining high accuracy.

Recent attempts in the development of object detectors

with real-time applications as target, YOLO [15] and Sin-

gle Shot MultiBox Detector(SSD) [12] were developed.

YOLO [15] follow completely different approach from re-

gion proposals and sliding windows based approaches. It

divides the image into a grid of cells. Each cell then predicts

the bounding box and class for the object. The predicted

bounding box with the high score of confidence shows the

certainty of the object. Bounding box and class predic-

tion together provide the final score for the object cate-

gory. The SSD method is based on a feed-forward convo-

lutional neural network which generates fixed-sized bound-

ing boxes along with the confidence scores for each class.

Non-maxima suppression is used to refine and produce final

detection results.

Based on the brief investigation of the state-of-the-art,

Faster R-CNN was considered in this study for experiments

on drone detection. Different CNN architectures were used

with Faster R-CNN for analysis.

3. Proposed methodology

It is a study which considers various state-of-the-art

methods using deep CNN. We have used Caffe [10] deep

learning library for our experiments. The Caffe-based pre-

trained models are publically available for most of the ob-

ject detectors. As there are less number of images for deep

learning system to learn from scratch. Therefore to take full

advantage of network architectures, we have used transfer

learning from ImageNet [4] to fine-tune our models. The

fine-tuning process helps our system to converge faster and

perform better. We have used various network architectures

such as ZF [20], VGG16 [18], and VGG M 1024 [18] to

train the system and evaluate the performance on the test

dataset. ZF is a 8 layered architecture containing 5 con-

volutional layers and 3 fully-connected layers. Similarly,

VGG16 is a 16 layered architecture that has 13 convolu-

tional layers and 3 fully connected layers.

4. Experimental results

4.1. Dataset

We have comprehensively carried out experimentation

on the Bird-Vs-Drone dataset. This dataset contains 5
MPEG4-coded videos taken at different time. There are

2727 frames having a resolution of 1920X1080. The drone

appears in the scene at a different scale, viewpoint, and illu-

mination. The annotations are only provided for the drones.

The objective is to detect drones and also at the same time

not to confuse with birds. The annotations provide width,

height and top left (x,y) coordinate for the ground truth

bounding box of the drone. For experiments, these annota-

tions are converted to various formats compatible with dif-

ferent object detection methods.

4.2. Performance on training dataset

We trained our models with Nvidia Quadro P6000 GPU

with a learning rate of 0.0001 and batch size of 64. The

RPN batch size is kept constant at 128 for region based

proposal networks. We have analyzed the performance of

each network architecture at a different iteration. In train-

ing, the snapshot of trained models are saved at the interval

of 10k. Among all the iterations, best results obtained for

each network architectures are reported in Table 1. Detec-

tions with overlap greater than the 50% Intersection Over

Union (IOU) threshold with the corresponding ground-truth

bounding box are considered as true positive and all other

detections as false positive as shown in Eq. 1 [5].

IOU = area (Bpred ∩Bgt) /area (Bpred ∪Bgt) (1)

where Bpred and Bgt denotes predicted bounding box and

ground truth bounding box respectively. The ground truth

box with no matching detection are considered false nega-

tive detection. To evaluate the detection performance, we

use Average Precision calculated from the area under the

Precision-Recall (PR) curve [5]. While, mAP is used for a

set of detections and is the mean over classes, of the inter-

polated AP for each class.The reported results show the best

performance of VGG16 is 0.66(mAP ) at the 80kthiteration

and ZF is 0.61(mAP ) at the 100kth iteration. The complete

analysis is provided in the graph given in Fig. 2.

4.3. Visual analysis of test results

We evaluate the best trained model of each network ar-

chitecture on test dataset. The performance can be seen

on sample frames from test dataset in Fig 3. The first row

shows the input frames from original test dataset. The sec-

ond row shows the detection results using VGG16, and the

third shows the result using ZF model. The fourth row show

the result of VGG M 1024.
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Figure 3: Results on test dataset

5. Conclusions

In this paper, we have evaluated different object detec-

tor for detection of drones. It is demonstrated through ex-

perimentation that the V GG16 perform better on training

dataset.The results can be improved if the birds are also an-

notated. Considering bird as a separate class will reduce

Models Iteration mAP

ZF [20] 100k 0.61

VGG16 [18] 80k 0.66

VGG CNN M 1024 [18] 90k 0.60

Table 1: Performance of various network architectures on

training dataset.

false positives and the trained model will be able to clearly

differentiate between birds and drones.
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