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Abstract. In this paper the relationship between Bayes’ rule and the Evidential 
Reasoning (ER) rule is explored. The ER rule has been uncovered recently for 
inference with multiple pieces of uncertain evidence profiled as a belief distri-
bution and takes Dempster’s rule in the evidence theory as a special case. After 
a brief introduction to the ER rule the conditions under which Bayes’ rule be-
comes a special case of the ER rule are established. The main findings include 
that the normalisation of likelihoods in Bayesian paradigm results in the degrees 
of belief in the ER paradigm. This leads to ER-based probabilistic (likelihood) 
inference with evidence profiled in the same format of belief distribution. Nu-
merical examples are examined to demonstrate the findings and their potential 
applications in probabilistic inference. It is also demonstrated that the findings 
enable the generalisation of Bayesian inference to evidential reasoning with in-
accurate probability information with weight and reliability.  
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1 Introduction 

The evidential reasoning (ER) rule has been established recently for conjunctive com-
bination of independent evidence with weights and reliabilities [16]. It constitutes a 
general conjunctive probabilistic reasoning process and reveals that the combined 
degree of joint support for a proposition from two pieces of independent evidence 
constitutes two parts in general: the bounded sum of their individual support and the 
orthogonal sum of their collective support. The ER rule is based on the orthogonal 
sum operation and as such inherits the basic properties of being associative and com-
mutative, which means that it can be used to combine multiple pieces of evidence in 
any order without changing the final results. It also satisfies common sense synthesis 
axioms that any rational probabilistic reasoning process should follow. 

The ER rule takes the original ER algorithm [12, 13, 14, 15] as a special case  
when the reliability of evidence is equal to its weight and the weights of all pieces of 
evidence are normalised. It is proven that Dempster’s rule in the theory of evidence 
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[2, 3, 7, 9] is also a special case of the ER rule when each piece of evidence is fully 
reliable. The ER rule enhances Dempster’s rule for combining pieces of fully reliable 
evidence that are highly or completely conflicting through a new reliability perturba-
tion analysis, thus resolving the non-definition and counter intuitive problems associ-
ated with Dempster’s rule [5, 6, 17].  

In the ER rule, a frame of discernment is composed of a set of hypotheses that are 
mutually exclusive and collectively exhaustive as in the theory of evidence [7]. It is 
assumed that basic probabilities can be assigned to not only singleton hypotheses but 
also to any of their subsets, thereby allowing a piece of evidence to be profiled by a 
belief distribution (BD) defined on the power set of the frame of discernment. BD is 
regarded as the most natural and flexible generalisation of conventional probability 
distribution in the sense that the former allows inexact reasoning at whatever level of 
abstraction [4] and on the other hand reduces to the latter precisely if basic probabili-
ties are assigned to singleton hypotheses only.  

Bayesian inference is regarded as a classical and rigorous probabilistic reasoning 
process. Much attention has been paid to generalise Bayesian inference. Dempster’s 
pioneer work [2, 3] is among the most prominent, in which Dempster asserted that the 
ordinary likelihood function based on a sample from a general multinomial population 
is proportional to the upper probability of the hypothesis. Shafer [7, 8] and Smets [11] 
proposed belief functions to show that the application of Dempster’s rule on these 
belief functions can approximate Bayesian inference in general when sample size is 
very large [8] but only lead to the same result as Bayes’ rule for a rather special case 
with a single frequency distribution, which however is rare in practice if any. Aickin 
[1] proposed to construct credibility functions and modify Dempster’s rule to make 
likelihood inference very nearly a special case of the Dempster–Shafer theory, which 
leads to computations that are quite different from those of Smets. In Aickin’s ap-
proach, a credibility function is generated by dividing all likelihoods with the maxi-
mum likelihood for each sample, which is consistent with Demspter’s aforementioned 
assertion but is not meant to show that Dempster’s rule can be reduced to Bayes’ rule 
for equivalent likelihood inference from sample data.  

Our research is rooted in Dempster’s original work on multivalued mapping from 
sample space to hypothesis space. In this paper, we intend to show the novel results 
generated from our new research that the ER rule, which takes Dempster’s rule as a 
special case when all observations are fully reliable, is the same as Bayes’ rule in 
likelihood inference if likelihoods are normalised for mapping observations from 
sample space to hypothesis space. In this way, any evidence generated from observa-
tions can be equivalently profiled in the same format as belief distribution for consis-
tent knowledge representation and inference, whilst in Bayesian inference evidence is 
represented in different formats of prior probability and likelihood. The generalisation 
of Bayesian inference to evidential reasoning is also investigated in the context of 
information acquisition from ambiguous observations and inaccurate diagnoses.  
Numerical examples are examined to show how evidential reasoning can be con-
ducted to implement and generalise Bayesian inference in situations where data are 
not accurate. It is also shown how important evidence reliability can be in inference. 
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The rest of the paper is organised as follows. In Section 2, the concepts and  
properties of the ER rule are briefly introduced. In Section 3, the conditions under 
which the ER rule reduces to Bayes’ rule are established. Section 4 presents a study 
on generalising Bayesian inference to evidential reasoning. Two numerical examples 
are examined. The paper is concluded in Section 5.  

2 Brief Introduction to the ER Rule 

In this section, the ER rule established recently [16] is briefly introduced. Suppose 
},,{ 1 NhhΘ =  is a set of mutually exclusive and collectively exhaustive hypotheses. 

Θ  is referred to as a frame of discernment. The power set of Θ  consists of N2  sub-

sets of Θ , denoted by Θ2  or )(ΘΡ , as follows 

}},,,{, },,{,},,{},{,},{,{2)( 111211 ΘhhhhhhhhΘΡ NNN

Θ
−∅==             (1) 

In the framework of the ER rule, a piece of evidence je  is represented as a random 

set and profiled by a belief distribution (BD) as follows 

( ){ }1 , , , ,, =⊆∀=  ⊆Θ jjj pΘpe
θ θθ θθ                                    (2) 

where ( )jp , , θθ  is an element of evidence je , representing that the evidence points to 

proposition θ , which can be any subset of Θ  or any element of )(ΘΡ  except for the 

empty set, to the degree of jp ,θ , referred to as probability or degree of belief in gen-

eral. ( )jp , , θθ  is referred to as a focal element of je  if 0, >jpθ .  

Associated with evidence je  is a reliability, denoted by jr , which represents the 

ability of the information source, where je  is generated, to provide correct assess-

ment or solution for a given problem (Smarandache et al., 2010). The reliability of a 
piece of evidence is the inherent property of the evidence, and in the ER framework 
measures the degree of support for or opposition against a proposition given that the 
evidence points to the proposition. In other words, the unreliability of a piece of evi-
dence sets a bound within which another piece of evidence can play a role in support 
for and opposition against different propositions.  

On the other hand, evidence je  can also be associated with a weight, denoted by 

jw . The weight of a piece of evidence shares the same definition as that of its reliabil-

ity. The former is not different from the latter if all pieces of evidence are measured in 
the same joint space. When different pieces of evidence are acquired from different 
sources and measured in different ways, however, the weight of evidence can be used 
to reflect its relative importance in comparison with other evidence and determined 
according to who uses the evidence. This means that weight jw  can be subjective and 

different from reliability jr  in situations where different pieces of evidence are gener-

ated from different sources and measured in different ways.  
To combine a piece of evidence with other evidence, it is necessary to take into ac-

count the above three elements of the evidence: its belief distribution, reliability and 
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weight. In the ER rule, this is achieved by defining a so-called weighted belief distri-
bution with reliability as follows 

( ) ( ){ }jΘPjj mΘPΘmm ),(,
~ ),( ; ,~ , ⊆∀= θθ θ                                   (3) 

where jm ,
~

θ  measures the degree of support for θ  from je  with both the weight and 

reliability of je  taken into account, defined as follows 
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where jjj pwm ,, θθ = . ( )jjjrw rwc −+= 11,  is a normalisation factor, which is uniquely 

determined to satisfy 1~~
),(, =+ ⊆ jΘPΘ j mm

θ θ  given that 1, = ⊆Θ jp
θ θ . Note that there 

would be jw = jr  or jjj prm ,, θθ =  if all pieces of evidence are measured in a joint 

space, or jp ,θ  for each piece of evidence is given by the same probability function. 

Compared with Shafer’s discounting method, the critical difference is that in the ER 
rule, the degree of residual support (after discounting) is earmarked to the power set 
for redistribution instead of assigning it specifically to the frame of discernment. 

If two pieces of evidence 0e  and 1e  are independent in that the information that 0e  

carries does not depend on whether 1e  is known or not and vice versa, the combined 

degree of belief to which 0e  and 1e  jointly support proposition θ , denoted by )2(,epθ , 

is then generated by the orthogonal sum of their weighted belief distributions with 
reliability (i.e. 0m  and 1m ), given as follows 
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The recursive formulae of the ER rule are also given to combine multiple pieces of 
evidence in any order.  

It is proven that Dempster’s rule is a special case of the above ER rule when each 
piece of evidence je  in question is assumed to be fully reliable, or jr =1 for all j.  

3 Equivalence between the ER Rule and Bayes’ Rule 

This section is aimed to provide the exact conditions under which a special case of the 
ER rule, the same as Dempster’s rule, reduces to Bayes’ rule.  

Let 0e  stand for old evidence that is profiled with the prior probabilities of the hy-

potheses in the frame of discernment },,{ 1 NhhΘ = , or  

( ){ } =
===

N

i iii pNiphe
1 000 1 ,,1, , ,                                          (6) 
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where 0ip  is the probability to which evidence 0e  points to hypothesis ih , or 

)( 00 ehpp ii = . 

Let ijc  stand for the likelihood to which the jth test result ( je ) is expected to occur 

given that the ith hypothesis ( ih ) is true and evidence 0e  is known, or 

),( 0ehepc ijij = , with 1
1

= =

L

j ijc  for Ni ,,1= , as shown in Table 1. Given that a 

test result 1e  is observed as new evidence, Bayes’ rule can be used to generate poste-

rior probability that both 0e  and 1e  support hypothesis ih  as follows 

( ) ( ) ( )
( ) ( ) =

= N

n nn

ii

i

ehpehep

ehpehep
eehp

1 001

001

01

,

,
,                                          (7) 

Table 1. Likelihoods 

Hypothesis 
Test result 

1e   je   Le  

1h  
11c   jc1   Lc1  

            
ih  

1ic   ijc   iLc  

            
Nh  

1Nc   Njc   NLc  
 

While Bayes’ rule is rigorous, the combination of old evidence 0e  with new evi-

dence 1e  in Equation (7) is not symmetrical [7], in the sense that the old evidence is 

profiled as a probability distribution over the set of hypotheses ih  for Ni ,,1= , 

whilst the new evidence is characterised by likelihoods over the set of test results je   

( Lj ,,1= ) for a given hypothesis. This asymmetry underpins Bayesian inference as 

a process of updating knowledge once new evidence becomes available. However, 
this can cause confusion if multiple pieces of evidence are not particularly classified 
as old and new and need to be combined in any order. Nevertheless, it is desirable that 
both old and new evidence is represented in the same format for combination. 

Let ijp  stand for the degree of belief that test result je  points to hypothesis ih , 

with 1
1

= =

N

i ijp  for Lj ,,1= . Test result je  can then be profiled over the set of 

hypotheses symmetrically in the same way as for evidence 0e  as follows 

 ( ){ } =
===

N

i ijijij pNiphe
1

1 ,,1, , ,   Lj ,,1=                      (8) 

ijp  can be generated from likelihood ijc . The following results establish the equiva-

lence conditions under which Bayes’ rule is a special case of the ER rule with 1=jr  

for all j, which constitutes a symmetrical evidence combination process. 
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Theorem 1. If all tests to generate likelihoods in Table 1 are conducted independent-
ly, the relationship between likelihood ijc  and degree of belief ijp  is given by 

 =
=

N

n njijij ccp
1

 for Ni ,,1=  and Lj ,,1=                    (9) 

Let )2(,ehi
p  stand for the combined degree of belief to which both 0e  and je  sup-

port hypothesis ih . We then have the following result. 

Corollary 1. Under the same conditions as for Theorem 1, if probability is assigned 
only to singleton hypothesis, each piece of evidence is fully reliable and the degrees 
of belief are given by Equations (9), the ER rule reduces to Bayes’ rule, or 

( )0)2(, ,eehpp jiehi
=                                              (10) 

The numerical example below is used to demonstrate how the above results could 
be applied to symmetrical Bayesian inference via equivalent evidential reasoning. 

Example 1. Suppose independent tests and diagnoses for a sample of 10000 persons 
in a population are shown in Table 2. We are interested to find the probability to 
which a person from the population already has AIDS if the person has his first HIV 
test that is positive. 

Table 2.  Experimental Data 

Sample Data 
Test Result 

Total Diagno-
sis 

HIV Positive ( 1e

) 
HIV Negative ( 2e )

Hypotheses
AIDS ( 1h ) 95 5 100 

No AIDS ( 2h ) 990 8910 9900 

Total Test 1085 8915 10000 
 

 
What needs to be identified is the degree of belief, denoted by )2(,1 ehp , to which 1h  

is supported by both pieces of evidence: the prior AIDS distribution of the population 
as revealed by the experiment ( 0e ) and a positive HIV test result ( 1e ). From Equation 

(9), the prior probabilities ( )0110 ehpp =  and ( )0220 ehpp = , and likelihoods 11c  and 

21c  for the two pieces of evidence 0e  and 1e  can be generated from the experimental 

data given in Table 2 as follows 

( ) 01.0
10000

100
0110 === ehpp , ( ) 99.0

10000

9900
0220 === ehpp ; 

( ) 95.0
100

95
, 01111 === ehepc , ( ) 1.0

9900

990
, 02121 === ehepc  

9048.0
05.1

95.0

1.095.0

95.0

2111

11
11 ==

+
=

+
=

cc

c
p , 0952.0

05.1

1.0

2111

21
21 ==

+
=

cc

c
p
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Equation (5) with 110 == rr  can then be used to calculate )2(,1 ehp  as follows 

0876.0
99.00952.001.09048.0

01.09048.0

20211011

1011
)2(,1

=
×+×

×=
+

=
pppp

pp
p eh  

From the conventional Bayesian analysis, the same result can be generated as follows 

( ) ( ) ( )
( ) ( ) ( ) ( ) 0876.0

99.01.001.095.0

01.095.0

,,

,
,

0202101011

01011

011 =
×+×

×=
+

=
ehpehepehpehep

ehpehep
eehp  

4 Generalisation of Bayesian Inference to Evidential Reasoning 

Bayesian inference as shown in the previous section is rigorous but requires accurate 
prior probabilities and likelihoods in the sense that each test must lead to exactly one 
of the L test results and each test result must be diagnosed to belong to exactly one of 
the N hypotheses. Such accuracy is desirable and should always be pursued. However, 
ambiguous test results and inaccurate diagnoses are common in real experiments. This 
section is aimed to investigate how the above “accurate” and “rigorous” Bayesian 
inference can be generalised for rigorous reasoning with evidence generated from 
ambiguous tests and inaccurate diagnoses.  

Let θ  stand for a proposition representing a set of diagnoses, jc ,θ  for the genera-

lised likelihood to which the jth test result ( je ) is expected to occur given proposition 

θ , with 1
1 , = =

L

j jcθ  for any },,{ 1 NhhΘ =⊆θ , and jp ,θ  for the belief degree to 

which the jth test result points to proposition θ , with 1, = ⊆Θ jp
θ θ  for any Lj ,,1= . 

Belief degree jp ,θ  can be generated from generalised likelihood jc ,θ  as follows. 

Corollary 2. Suppose the same conditions as for Theorem 1 are held. If all tests for 
generating generalised likelihood jc ,θ  are conducted independently, the relationship 

between jc ,θ  and jp ,θ  is given by: 

 ⊆
=

ΘA jAjj ccp ,,, θθ  for Θ⊆θ  and Lj ,,1=                   (11) 

 
Example 2. Suppose there are imprecise experimental data for a population, as shown 
in Table 3. It is also assumed that the experimental data can represent the prior AIDS 
distribution of the population with a 95% level of reliability and an AIDS diagnosis 
from a HIV test can be regarded to be 98% reliable. What is the probability to which a 
person from the population already has AIDS if the person’s first HIV test turns out to 
be positive, given that the person’s HIV test result and the experimental data are re-
garded to be of equal importance in the inference? 
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Table 3. Experimental Data under Uncertainty 

Diagnosis 
HIV test result Total diag-

nosis Positive 1e Negative 2e  Unknown e 

AIDS 1h  95 5 0 100 

No AIDS 2h  980 8860 10 9850 

Unknown { }21,hhΘ = 5 7 38 50 

Total test 1080 8872 48 10000 
 
The belief degrees for the evidence of the prior AIDS distribution ( 0e ) for the pop-

ulation are given by 01.010000/10010 ==p , 985.010000/985020 ==p , =0Θp  

005.010000/50 = , as shown in Table 3. 
The generalised likelihood 1θc  and belief degree 1θp  for the evidence of positive 

HIV test result ( 1e ) are calculated in Table 3 by 95.0100/9511 ==c , 9850/98021 =c  

0995.0= , 1.050/51 ==Θc , and then 

8264.0
1495.1

95.0

12111

11
11 ==

++
=

Θccc

c
p , 0866.0

1495.1

0995.0
21 ==p , 087.0

1495.1

1.0
1 ==Θp . 

The reliabilities and weights of 0e  and 1e  are given by 0r =0.95, 1r =0.98 and 

5.010 == ww . Note that the weights are normalized here with 110 =+ ww  for illustra-

tion purpose. In general, such normalisation is not always required. The degrees of 
individual support for θ  from 0e  and 1e  are calculated by 

005.001.05.01000,1
=×== pwmh , 4925.02000,2

== pwmh , 0025.0000 == ΘΘ pwm ; 

4132.0826.05.01111,1
=×== pwmh , 0433.02111,2

== pwmh , 0435.0111 == ΘΘ pwm  

Equation (5) can then be used to combine 0e  and 1e  to count their joint support by 

( ) ( ) 0241.011ˆ
1,010,1,0,1,00,1)2(, 1111111

=+++−+−= hΘΘhhhhheh mmmmmmmrmrm  

( ) ( ) 0549.011ˆ
1,010,1,0,1,00,1)2(, 2222222

=+++−+−= hΘΘhhhhheh mmmmmmmrmrm  

         
( ) ( ) 0023.011ˆ

101001)2(, =+−+−= ΘΘΘΘeΘ mmmrmrm  

The belief degrees to which 0e  and 1e  both support θ  are finally generated by 

2964.0
0813.0

0241.0

0023.00549.00241.0

0241.0
ˆˆˆ

ˆ

)2(,)2(,)2(,

)2(,

)2(,

21

1

1
==

++
=

++
=

eΘeheh

eh

eh mmm

m
p  

    
6753.0

0813.0

0549.0
)2(,2

==ehp , and 0283.0
0813.0

0023.0
)2(, ==eΘp  

The ambiguity and inaccuracy in the experiment are retained by )2(,eΘp  in the 

above final results. As such, the probability to which the person has AIDS is not pre-
cise but between 0.2964 and 0.3247 ( )2(,1 ehp + )2(,eΘp ). The probability to which the 

person does not have AIDS is between 0.6753 and 0.7036 ( )2(,2 ehp + )2(,eΘp ).  

It should be noted that the reliability of evidence plays an important role in infe-
rence and should be estimated with care and rigor. For instance, if both pieces of  
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evidence are assumed to be fully reliable in Example 2, or 0r = 1r =1, it can be shown 

that there will be 0716.0)2(,1
=ehp , =)2(,2 ehp 0.926 and 0024.0)2(, =eΘp , meaning a 

much smaller probability (0.0716 to 0.0740) of having AIDS with much smaller am-
biguity (0.0024). Such results are quite different from the results generated above for 

0r =0.95 and 1r =0.98, but justifiable as evidence 0e  is against the first hypothesis 

“AIDS” much more than evidence 1e  against the second hypothesis “No AIDS”. 

5 Concluding Remarks 

In this paper, the recently established evidential reasoning (ER) rule was briefly intro-
duced. The relationship between Bayes’ rule and the ER rule was then investigated 
and their equivalence conditions were provided. This study shows that Bayesian in-
ference can be conducted in a symmetrical process in the ER paradigm where each 
piece of evidence is profiled in the same format of belief distribution. This on one 
hand facilitates the combination of evidence in any order for Bayesian inference. On 
the other hand, experimental data can be used to acquire evidence. In this study, 
Bayesian inference was generalised to take into account ambiguous test results and 
inaccurate diagnoses in experiment. This can help conduct inference in a realistic yet 
rigorous manner without having to make unnecessary assumptions about inaccurate or 
missing data. The two examples demonstrated the implementation processes of 
Bayesian inference in the ER paradigm. Finally, it is important to note that the reli-
ability of evidence plays an important role in inference and needs to be estimated 
using domain specific knowledge with care and rigor.  
 
Acknowledgement. This work was partly supported by the European Commission 
under the grant No.: EC- GPF-314836. 

References 

1. Aickin, M.: Connecting Dempster-Shafer belief functions with likelihood-based inference. 
Synthese 123(3), 347–364 (2000) 

2. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Annals 
of Mathematical Statistics 38, 325–339 (1967) 

3. Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical 
Society, Series B 30, 205–247 (1968) 

4. Gordon, J., Shortliffe, E.H.: A method for managing evidential reasoning in a hierarchical 
hypothesis space. Artificial Intelligence 26(3), 323–357 (1985) 

5. Haenni, R.: Shedding new light on Zadeh’s criticism of Dempster’s rule of combination. 
In: The 7th International Conference on Information Fusion (FUSION) (2005) 

6. Murphy, C.K.: Combining belief functions when evidence conflicts. Decision Support 
Systems 29, 1–9 (2000) 

7. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton 
(1976) 



 A Study on Generalising Bayesian Inference to Evidential Reasoning 189 

 

8. Shafer, G.: Belief functions and parametric models. Journal of the Royal Statistical Socie-
ty, Series B 44, 322–352 (1982) 

9. Shafer, G., Pearl, J.: Readings in Uncertain Reasoning. Morgan Kaufmann Publishers, 
Inc., San Mateo (1990) 

10. Smarandache, F., Dezert, J., Tacnet, J.M.: Fusion of sources of evidence with different im-
portances and reliabilities. In: The 2010 13th IEEE Conference on Information Fusion 
(FUSION), pp. 1–8 (2010) 

11. Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Baye-
sian theorem. International Journal Approximate Reasoning 9(1), 1–35 (1993) 

12. Xu, D.L., Yang, J.B., Wang, Y.M.: The ER approach for multi-attribute decision analysis 
under interval uncertainties. European Journal of Operational Research 174(3), 1914–1943 
(2006) 

13. Yang, J.B.: Rule and utility based evidential reasoning approach for multiattribute decision 
analysis under uncertainties. European Journal of Operational Research 131, 31–61 (2001) 

14. Yang, J.B., Xu, D.L.: On the evidential reasoning algorithm for multiattribute decision 
analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics Part A: 
Systems and Humans 32(3), 289–304 (2002) 

15. Yang, J.B., Wang, Y.M., Xu, D.L.: The Evidential reasoning approach for MADA under 
both probabilistic and fuzzy uncertainties. European Journal of Operational Re-
search 171(1), 309–343 (2006) 

16. Yang, J.B., Xu, D.L.: Evidential reasoning rule for evidence combination. Artificial Intel-
ligence 205, 1–29 (2013) 

17. Zadeh, L.A.: A mathematical theory of evidence. AI Magazine 55, 81–83 (1984) 
 
 


	A Study on Generalising Bayesian Inference to Evidential Reasoning
	1 Introduction
	2 Brief Introduction to the ER Rule

	3 Equivalence between the ER Rule and Bayes’ Rule

	4 Generalisation of Bayesian Inference to Evidential Reasoning
	5 Concluding Remarks
	References


