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Abstract—In this paper a Discrete-Time Sliding-Mode
based controller design for high accuracy motion
control systems is presented. The controller is
designed for a general SISO system with nonlinearity
and external disturbance. Closed-Loop behavior of
the general system with the proposed control and
Lyapunov stability is shown and the error of the
closed loop system is proven to be within an o(7%). The
proposed controller is applied to a stage driven by a
piezo drive that is known to suffer from hysteresis
nonlinearity in the control gain. Proposed SMC
controller is proven to offer chattering-free motion
and rejection of the disturbances represented by
hysteresis and the time variation of the piezo drive
parameters. As a separate idea to enhance the
accuracy of the closed loop system a combination of
disturbance rejection method and the SMC controller
is explored and its effectiveness is experimentally
demonstrated. Closed-loop experiments are presented
using PID controller with and without disturbance
compensation and Sliding-Mode Controller with and
without disturbance compensation for the purpose of
comparison.

1. INTRODUCTION

Piezoelectric actuators have shown a great potential in
applications that require submicrometer down to
nanometer motion. The advantages that piezoelectric
actuators offer are the absence of friction and stiction
characteristics that exist in other actuators. Thus,
piezoelectric actuators are ideal for very high-precision
motion applications. The main characteristics of
piezoelectric actuators are: extremely high resolution in
the nanometer range, high bandwidth up to several kilo
hertz range, a large force up to few tons, and very short
travel in the submillimeter range [1]. In all of applications
the accuracy of positioning is very important and in many
cases the closed loop control is the only answer. Despite
this there are many attempts [2], [3] to drive piezoelectric
actuators as an open loop system with fine compensation
of the hysteresis nonlinearity in one or another way.

Despite the fact that a piezoelectric actuator is a
distributed parameters system, modeling for control
purposes is based on a lumped parameters system. It is
possible to drive piezoelectric actuators with either
voltage or charge as input. A piezoelectric actuator driven
by voltage as input will exhibit nonlinearity between the
input (voltage) and output (position). This nonlinearity is
mainly due to the parasitic hysteresis characteristics of
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piezoelectric crystals. It has been shown in many other
works [2] that hysteresis behavior does not exist in the
case of a piezoelectric actuator driven by charge and that
the actuator exhibits almost linear behavior between
charge and position. A major difficulty in using piezo-
electric actuators is the hysteresis effect which causes
large positioning errors. There are many techniques used
in order to handle the nonlinearities brought by this effect
such as feedback and model-based feedforward control.
Also in [4], iterative method is used in order to find the
hysteresis that compensates feedforward input for high-
precision positioning. In [5], both the hysteresis and
dynamic creep effects are given importance and operator
based inverse feedforward controller is applied. It has
been shown that this controller works well for highly
dynamic operation and that it is simple and inexpensive
for mechatronic devices with hysteresis characteristics.
There has been also research on the mathematical
modeling of hysteresis, such as in [2], [3], [6], [7] and [8]
where new results for the modeling of physical hysteresis
and its applications in dynamic research are shown. In [2]
complex and accurate model of hysteresis is presented, but
is hard to implement and too complex for control
applications. In [3], [6], and [7] simpler models of
hysteresis are proposed, however, those models fail to
precisely represent hysteresis behavior throughout the
whole range of input voltage of the piezoelectric actuator.

In this paper the sliding mode methods are applied in
the design of a high-accuracy piezo actuator position. The
solution proposed here combines the sliding mode
controller and the disturbance rejection method in order to
achieve high accuracy in the actuator trajectory tracking.
For the disturbance estimation a sliding mode observer
based disturbance compensation method is used here. By
manipulating model of a piezo actuator in a form where
nonlinearities due to hysteresis are presented as an
additive disturbance acting together with external force to
the mechanical system a simple second order observer is
designed to estimate lumped disturbance.

As a final extension of the work, a disturbance observer
based on the lumped parameter model of the piezo-stage
proposed in, [2], will be experimentally shown to improve
the overall performance of the closed-loop system.

II. CONTROLLER DESIGN AND ANALYSIS

A. Controller Design
Consider the general system defined below

%= f(x)+ Bu (1)
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Here, it is assumed that f'and B are smooth, continuous
and bounded. The aim is to drive the states of the system
into the set S defined by

s={: 6" —x)=o(x,x") =0} @

Here G is a positive constant, x is the state vector, x, is
the reference vector and it will be assumed to be smooth

and continuous, and o(x,x")is the function defining the
sliding mode manifold.

The derivation of the control law starts with the
selection of the Lyapunov function,/ (o), and an
appropriate form of the derivative of the Lyapunov
function, ¥ (o). Lyapunov function selection such that it
is positive definite

2

V(o) = % 3)

Hence the derivative of the Lyapunov function is
V(o) =006 @)

In order to guaranty the asymptotic stability of
solutiono(x,x") =0, the derivative of the Lyapunov
function is selected to be

V(o)=-Do{ (o) ®)

Here D is a positive constant and {(o) should be
selected such that the sliding mode motion on manifold
o(x,x")=0 1is gurantied and that reaching time to the
manifold is finite. Selecting (5) in the form
V(o) =-Do’ - Dnol|o|=-Do¢ (o), >0 guaranty

required condition where M can be selected as a small
positive constant. Hence, if control can be determined
from (4) and (5), the stability of the solution (5) will be

guaranteed since V(o)>0, V(0)=0 and V(O') <0,
V(O) =0 . By combining (4) and (5) the following result is
obtained

o(6+D¢(0))=0 (6)
A solution for (6) is as follows
6+D¢(0)=0 (7)
The derivative of the sliding function is as follows
6 =Gl -%)=Gi" - Gi ®)

From (8) and using (1)
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6=Gi" - Gf - GBu(1) = GBlu,, - u(t))
&~

GBu,,

)

If (9) is inserted in (7) and the result is solved for the
control

u(t)=u,, +(GB)"' D{(0o) (10)

It can be seen from (9) that u,, is difficult to calculate.
Using the fact that u,, is a continuous function since it is a
function of x” and f that are assumed smooth and
continuous, (9) can be written in discrete-time form after
applying Euler’s approximation,

D=0 _ Gpfy,, 4 -ut) (11

S

Here T, is the sampling time andke Z*. It is also
necessary to write (10) in discrete-time form just as it was

done before
u(kT,) =u,,(kT,)+(GB)" D{(o(kT,)) (12)

If (11) is solved for the equivalent control, the following
is obtained

ey (KT,) = u(kT, ) +(GB)1(““" D)~ o¢ ) J (13)

T

s

Since the system is causal, and control cannot be
dependent on a future value of o, the only way to estimate
the current value of the equivalent control is by
approximating by a single-step backward value computed
from (14) as follows,

O ;O-k—lJ (14)

S

Uy, Slhgg, | =Upg + (GB)_I(

Here u,, (ori,, (kT,)) is the estimate of the current

value of the equivalent control. If (14) is inserted in (12)

U =t + (GB)_I (Dg(o-)k +O-/{;O-“J (15)

s

It easily seen that the above control law is derived from
discrete-time approximations based on the continuous-
time equations. Hence, it must be shown that the above
control satisfies the original conditions based on which it
was designed. These conditions are the Lyapunov
condition and existence of Sliding Mode.



B.  Closed-Loop Behavior with the Approximated
Control

As a consequence of the approximations that were
made in the derivation of the discrete-time control law
some deviations in the sliding surface from the desired
sliding manifold may exist. This deviation of the sliding
surface from the desired manifold at each sampling instant
will be analyzed. Analysis of the inter-sampling behavior
of the sliding surface will also be analyzed. Considering
(1), the derivative of the sliding surface is given by

6(t) = Gli" —i)=Gi" — Gf — GBu(1) (16)
The discrete-time equivalent of the sliding manifold can
be obtained by taking the integral on both sides of (16)
from kT to (k+1)T,

(k+1)T;
J' (6&" - G - GBu( Ji
kT,

s

Oy1 —Of =

an

Applying a sample and hold to the control input between
consecutive samples u(t) = u, for kT, <t < (k+ DT,

(k+1)T;
| (6&" - Gf i - 7,GBu,
kT,

s

Oy1 —O0f =

(18)

Using the assumptions that x"and f are smooth and
bounded, the integrations in (18) can be approximated by
using Euler’s integration

Orn =0, + TGl — £, )-T.GBu, +OT)  (19)
Here O(T,") is the error introduced due to Euler’s

integration, [3]. If the control defined by (15) is
introduced into (19)

Oyl = Oy +TSG(5C1€ _fk)

(20)
~T,GBu, , —~T,Do; — 0, +0,_; +O(T,%)
After some simplifications (20) is reduced to
O+l :TsG(xl’; _fk)_TsGBuk—l 21

~T,Do, +0,_ +O(T,%)

If T, SG()'C,?_1 - k—l) is added and subtracted from the r.h.s
of (21), the following is obtained

Oy = TsG(xI: _fk )_TSG(XI:—I _fk—l )_TsDo-k (22)
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+ TSG().C/:—I = fia )— I,GBuy_ +04 + O(Tsz)

0;-0,,+0(T}%)

After some simplifications, (22) becomes

Op =04 ~T,Do, +T,G(AT —Af J+OT2)  (23)
Here Ax; =x; —x;_andAf, = f; — f4_;- Note that if
D=1/T,, then the rhs of (23) is of order O(T.),

keeping in mind that x" and f are smooth and continuous.
Hence,

O = O(T,") (24)
Hence, it is shown that the maximum deviation from the
sliding surface at each sampling instant is of order O(T}?).
Next, it will be shown that the inter-sampling deviation of
the sliding surface from the desired manifold is also of
order O(T}%).

Consider the inter-sampling instant of ¢ = k7, + 7 where

0<7<T,.If (16) is integrated on both sides from kT to
kT, +7

kT +7
oI, +0)-0, = | (65" - G - GBu) e
i,

(25)

Applying the sample and hold to the control and Euler’s
integration to the remaining integral gives

o(kT, +7) = 0, + 1G] - f, )~ 1GBu, +O(r?)  (26)
If the control defined by (15) is introduced into (26)
27)

-0y _Ti(o-k —0,,)+0(?)

s

If TG()&]:,I - fk—l) is added and subtracted from the r.h.s
of (21) and D =1/T, , the following is obtained

o(kT; +7) =0, +TLG(Ts(A"C/: _Afk))_TiO-k _Tio-k

' 8
L6l - i) e o vouwty

s

N s
0, =0, +0(I")

Further simplifications lead to



OUT, +7)=0, ~—— 0, + - GlT, a5 - a7, )+ o) (29

N s

If x" and fare smooth and continuous then

U%ﬂ+ﬂ=@—%ﬁm+m#)

s

(30)

Note that ifo, = O(T, .?)as was shown previously then

the maximum intersampling value of the sliding function
is O(T,%). Hence,

o(kT, +7)=O(T,%) 31)

C. Lyapunov Stability Analysis of the Closed-Loop
System
In this section it will be shown that with discrete-time
control defined by (15) it is possible to satisfy the
Lyapunov conditions (4) and (5) in discrete-time.
Starting with the definition of the Lyapunov function in
discrete-time

V, =0} (32)

The difference of two consecutive values of the
Lyapunov function in discrete-time can be given by

Vi =Vi =04 — 0 (33)

Here it is required that V,,, -V, <0foro, #0.

Vk+l _Vk <0 for

|Gk| > O(T?) . The condition V., —¥, <0 means that

However, it will be shown that

Opy —0;p <0 (34)
If (24) is inserted into (34),
_ 4 2
Vi =V =0I5) -0} (35)

Note that if |o|>O(T7)thenV;,, =V, <0. Thus,

(35) shows that o, is always converging towards a
boundary of O(7,%) around the desired sliding-manifold
and (31) shows that once o, reaches O(7,%) boundary it
will tend to stay in that boundary.

III. IMPLEMENTATION ON A PIEZO-STAGE

In this work a piezo-stage that consists of a piezo-drive
integrated with a sophisticated flexure structure for motion
amplification is used. The flexure structure is wire-EDM-
cut and is designed to have zero stiction and friction.
Figure 1 shows the piezo-drive integrated flexure
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structure. In addition to the absence of internal friction,
flexure stages exhibit high stiffness and high load
capacity. Flexure stages are also insensitive to shock and
vibration. However, since the piezo-drive exhibits non-
linear hysteresis behavior, the overall system will also
exhibit the same behavior.

The dynamics of the piezo-stage can be represented by
the following second-order differential equation coupled
with hysteresis in the presence of external forces

My ¥ +cyy+kyy=Tu@)-h(y.u)-F,,  (36)

Here m,; denotes the effective mass of the stage, y
denotes the displacement of the stage, c.; denotes the
effective damping of the stage, k.7 denotes the effective
stiffness of the stage, 7' denotes the electromechanical
transformation ratio, # denotes the input voltage and %(y,u)
denotes the non-linear hysteresis that has been found to be
a function of y and u, [1], and F,, is the external force
acting on the stage.

The structure of model (36) is showing that, from the
mechanical motion the hysteresis may be perceived as a
disturbance force that satisfy matching conditions. This
means that the sliding mode based control should be able
to reject the influence of the hysteresis nonlinearity on the
mechanical motion. At the same time it is obvious that the
lumped disturbance consisting of the external force acting
on the system and the hysteresis can be estimated, thus
allowing the application of the disturbance rejection
method in the overall system design.

Fig. 1. Structure of a flexure piezo-stage

To facilitate the writing of the control law, (36) is written
into the state-space form

X =y=x,
k .
X2=j}=_ix1_qix2+ ! u- a h(y,u)——=- (39)
Meyy My Moy My My
From here it can be seen that the input matrix is
T
T
B= {0 } (40)
Mefy
The matrix G for this case will be selected to be
G={1 1} (41)



Here 4 is a positive constant. Hence, the controller will be
in the following form

me i O,—0,_
, =u,, + T” (Dg“ (ak)+%] (42)

The results that it will be shown in this section are for the
case of SMC and for comparison purposes PID results
will also be shown. Figures 2 and 3 depict the tracking of
the piezo-stage for a 0.25Hz sinusoidal reference.

IV. DISTURBANCE OBSERVER

A.  Design and Analysis of the Disturbance Observer

The structure of the observer is based on (36) under the
assumption that all the plant parameter uncertainties,
nonlinearities and external disturbances can be
represented as a lumped disturbance. As it is obvious, y is
the displacement of the plant and is measurable. Likewise,
u(?) is the input to the plant and is also measurable. Hence,
the nominal structure of the plant is defined as follows

myy+eyy+kyy=Tyult)-F,
F; =Tyh+AT(v,, +v, )+ Amp + Acy + Aky

mn

(43)

Here my, cy, ky and Ty are the nominal plant parameters
while Am, Ac, Ak and AT are the uncertainties of the plant
parameters. Since y and u(f) are measured the proposed
observer is of the following form

myy+eyy+kyd=Tyu—Tyu, (44)

Here p is the estimated position u is the plant control
input and u. is the observer control input. If y can be
forced to track y then obviously F, =T, u_ . The observer

controller that is used is in the SMC framework. Selecting
the following sliding manifold

Gops = Aoy (r=3)+ (7= ) (45)

here A, is a positive constant. If o,,, is forced to zero
then p is forced to track y. The controller used is

(o}

obs, - O-ohs kel
— | (0

T T

K

m
eff
uc,( = uc,(,l + - (Dobs é/(o-ohs,( )+

The frequency response of the disturbance observer
output with respect to the disturbance is depicted in the
Fig. 4. The response shown is for the case when the
sampling time is 100us and the controller parameters
being Dy, = Agp, =1/T .

359

— Yea

=== Yreference

0.015

— Ctracking

& [um]

0015

Fig. 2. Sinusoidal reference tracking with SMC

. L L . . . L
0 1 2 5] 4 5] B 7 g
[sec]

Fig. 3. Sinusoidal reference tracking with PID controller

0.4

02r

n2t

gnitude (dB)

N4t

06k

TN“:"F:I’ Ma

et

Phase (deg)
= &
I

. . .
10 10 10’ 10 10 10
Frequency (rad/sec)

Fig. 4. Magnitude and Phase Plots of the Observer Response



B.  Closed-Loop Experiments with Disturbance
Compensation

The disturbance observer shown above was
implemented with closed-loop control. The observer
implementation is depicted in the Fig. 5. The experiments
show a notable improvement in tracking for the cases of
Sliding mode controller and PID controller.

Piezoelectric

Yrer 4 +, u
—=(O—=|control}>

]

Actuator

Linear Plant
Model

SM
u, Controller

Fig. 5. Closed-Loop control with disturbance compensation
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Fig. 6. Sinusoidal reference tracking with the SMC and disturbance
compensation

Fig. 7. Sinusoidal reference tracking with PID and disturbance
compensation
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5. CONCLUSION

In this paper the robustness of a designed discrete-time
Sliding mode controller was shown. It was also shown
that the controller can push the states of the system to an
O(T,?) boundary around the desired sliding manifold.
Experiments were also conducted to show the
effectiveness of the controller. As an extension, it was
shown that the inclusion of disturbance compensation via
disturbance observer can improve the overall closed-loop
system.

REFERENCES:

[1] BiZhang and Zhenqi Zhu, “Developing a Linear Piezomotor with
Nanometer Resolution and High Stiffness,” IEEE/ASME
Transactions on Mechatronics, Vol. 2, No. 1, pp. 22-29, 1997.

[2] M. Goldfarb, and N. Celanovic, “Modeling Piezoelectric Stack
Actuators for Control of Micromanipulation,” IEEE Control
Systems Magazine, Vol. 17, pp. 69-79, 1997.

[3] R.Banning, W.L. de Koning and J. M. T. A. Adriaens, “Modeling
Piezoelectric  Actuators,” IEEE/ASME  Transactions on
Mechatronics, Vol. 5, pp. 331-341, No. 4, 2000.

[4] [K. K. Leang and S. Devasia, “Iterative Feedforward
Compensation of Hysteresis in Piezo Poisitioners”, Proceedings of
the 42nd IEEE Conference on Decision and Control, Hawai, USA,
2003.

[5] P. Krejei and K. Kuhnen, “Inverse control of systems with
hysteresis and creep”, IEE Proceedings on Control Theory
Applications, Vol. 148, No. 3, pp. 185-192, 2001.

[6] R. Banning, W.L. de Koning, J. M. T. A. Adriaens and K.R
Koops, “State-space analysis and identification for a class of
hysteretic systems,” Automatica, 37(12), pp. 1883-1892, 2001.

[71 Ben M. Chen, Tong H. Lee, Chang-Chieh Hang, Yi Guo and Siri
Weerasooriya, “An Hoo Almost Disturbance Decoupling Robust
Controller Design for a Piezoelectric Bimorph Actuator with
Hysteresis,” IEEE Transactions on Control Systems Technology,
Vol. 7, No. 2, pp. 160-174, 1999.

[8] Y. I Somov, “Modeling Physical Hysteresis and Control of a Fine
Piezo-drive”, Proceedings of the International Conference on
Physics and Control, Vol. 4, pp. 1189-1194, 2003.

[91 J. H. Xu, “Neural Network Control of Piezo Tool Positioner”,
Canadian Conference on Electrical and Computer Engineering,
Vol. 1, pp. 333-336, 1993.

[10] K. K. Tan, Tong Heng Lee and Huixing X. Zhou,“Micro-
Positioning of Linear-Piezoelectric Motors Based on a Learning
Nonlinear PID Controller,” IEEE/ASME Transactions on
Mechatronics, Vol. 6, No. 4, pp. 428-436, 2001.

[11] S. B. Chang, S. H.Wu, and Y. C. Hu, “Submicrometer Overshoot
Control of Rapid and Precise Positioning,” J. Amer. Soc. Precision
Eng., vol. 20, pp. 161-170, 1997.

[12] V. I Utkin, “Sliding mode control in discrete-time and difference
systems,” Variable Structure and Lyapunov Control, Alan S.I.
Zinober (Ed.) Springer-Verlag London Limited. 1994, pp. 87-107.

[13] K.D. Young, V.I. Utkin, and U. Ozguner, “A control engineer's
guide to sliding mode control,” IEEE Transactions on Control
Systems Technology, Vol. 7, No. 3, 1999.

[14] W.-C. Su, S. V. Drakunov, and U. Ozguner, “An O(T2) Boundary
Layer in Sliding Mode for Sampled-Data Systems”, IEEE
Transactions on Automatic Control, Vol. 45, No. 3, 2000.

[15] K. Ohnishi, M. Shibata and T. Murakami, “Motion Control for
Advanced Mechatronics,” IEEE Transactions on Mechatronics,
Vol. 1, No. 1, pp. 56-67, 1996.

[16] S. C. Chapra, & R. P. Canale. (Singapore: WCB/McGraw-Hill,
1998). Numerical methods for engineers (3rd Edition) [Book]



