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Abstract This work concerns linearization methods for

efficiently solving the Richards equation, a degenerate

elliptic-parabolic equation which models flow in sat-

urated/unsaturated porous media. The discretization of

Richards’ equation is based on backward Euler in time

and Galerkin finite elements in space. The most valuable

linearization schemes for Richards’ equation, i.e. the New-

ton method, the Picard method, the Picard/Newton method

and the L−scheme are presented and their performance

is comparatively studied. The convergence, the computa-

tional time and the condition numbers for the underly-

ing linear systems are recorded. The convergence of the

L−scheme is theoretically proved and the convergence of

the other methods is discussed. A new scheme is pro-

posed, the L−scheme/Newton method which is more robust

and quadratically convergent. The linearization methods are

tested on illustrative numerical examples.
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1 Introduction

There are plenty of societal relevant applications of mul-

tiphase flow in porous media, e.g. water and soil pollu-

tion, CO2 storage, nuclear waste management, or enhanced

oil recovery, to name a few. Mathematical modelling and

numerical simulations are powerful, well-recognized tools

for predicting flow in porous media and therefore for under-

standing and finally solving problems like the ones men-

tioned above. Nevertheless, mathematical models for mul-

tiphase flow in porous media involve coupled, non-linear

partial differential equations on huge, complex domains and

with parameters which may vary on multiple order of mag-

nitudes. Moreover, typical for the type of applications we

mentioned are long term time evolutions, recommending

the use of implicit schemes which allow large time steps.

Due to these, the design and analysis of appropriate numer-

ical schemes for multiphase flow in porous media is a very

challenging task. Despite of intensive research in the last

decades, there is still a strong need for robust numerical

schemes for multiphase flow in porous media.

In this work we consider a particular case of two-phase

flow: flow of water in soil, including the region near the

surface where the pores are filled with water and air (unsat-

urated zone). By considering that the pressure of air remains

constant, i.e. zero, water flow through saturated/unsaturated

porous media is mathematically described by Richards’

equation

∂tθ(Ψ ) − ∇ · (K(θ(Ψ ))∇(Ψ + z)) = f, (1)

which has been proposed by L.A. Richards in 1930 (see

e.g. [6]). In Eq. 1, Ψ denotes the pressure head, θ the water
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content, K stands for the hydraulic conductivity of the

medium, z for the height against the gravitational direction

and f for a source term. Based on experimental results,

different curves have been proposed for describing the

dependency between K , θ and Ψ (see e. g. [6]), yielding the

non-linear model (1). In the saturated zone, i.e. where the

pores are filled only with water, we have θ and K constants

and Ψ ≥ 0. Whenever the flow is unsaturated, θ and K are

non-linear, monotone functions and Ψ < 0. We point out

that Richards’ equation degenerates when K(θ(Ψ )) → 0

(slow diffusion case) or when θ ′ = 0 (fast diffusion case).

The regions of degeneracy depend on the saturation of the

medium; therefore these regions are not known a-priori and

may vary in time and space. In this paper we concentrate on

the fast diffusion case, therefore Richards’ equation will be

a non-linear, degenerate elliptic-parabolic partial differen-

tial equation. Typically for this case is also the low regularity

of the solution [1]. The non-linearities and the degeneracy

make the design and analysis of numerical schemes for the

Richards’ equation very difficult.

The first choice for the temporal discretization is the

backward Euler method. There are two reasons for this: the

need of a stable discretization allowing large time steps and

the low regularity of the solution which does not support

any higher order scheme. As regards the spatial discretiza-

tion there are much more options possible. Galerkin finite

elements were used in [2, 3, 9, 22, 24, 32], often together

with mass lumping to ensure a maximum principle [8].

Locally mass conservative schemes for Richards’ equation

were proposed and analysed in [10, 11] (finite volumes), in

[16] (multipoint flux approximation) or [4, 5, 26, 29, 34, 35]

(mixed finite element method). The analysis is performed

mostly by using the Kirchhoff transformation (which com-

bines the two main non-linearities in one) [1, 4, 26, 28,

34] or, alternatively, by restricting the generality, e.g. to the

strictly unsaturated case [3, 29]. To deal with the low reg-

ularity of the solution, a time integration together with the

use of Green’s operator is usually necessary [4, 22].

The systems to be solved in each time step after tempo-

ral and spatial discretization are non-linear and one needs an

efficient and robust algorithm to solve them. The main lin-

earization methods which are used for the Richards equation

are: Newton (also called Newton–Raphson in the liter-

ature) method, Picard method, modified Picard method,

the L−scheme, and combination of them. The Newton

method, which is quadratically convergent was very suc-

cessfully applied to Richards’ equation in e.g. [7, 8, 20, 23,

27]. The drawback of Newton’s method is that it is only

locally convergent and involves the computation of deriva-

tives. Although the use of the solution of the last time

step to start the Newton iterations improves considerably

the robustness of Newton’s method, in the degenerate case

(saturated/unsaturated flow) the convergence is ensured

only when a regularization step is applied and under addi-

tional constraints on the discretization parameters, see [27]

for details. The Picard method is, although widely used,

not a good choice when applied to Richards’ equation as

clearly shown in [8, 20]. In [8] is proposed an improve-

ment of the Picard method, resulting in a new method called

modified Picard. This method coincides with the Newton

method in the case of a constant conductivity K or when

applied to Richards’ equation together with the Kirchhoff

transformation. The modified Picard method is only linearly

convergent, but more robust than Newton’s method. An effi-

cient combination of the modified Picard and the Newton

method, the Picard/Newton method is proposed in [20].

For the sake of completeness we mention also the accel-

erated Picard method [21] for Richards’ equation and the

semi-smooth Newton method [19] and L−method [30] for

two-phase flow in porous media, as valuable linearization

methods.

The L−method is the only method which uses the mono-

tonicity of θ(·). It was proposed for Richards’ equation in

[25, 32, 36]. The method is robust and linearly convergent,

and does not involve the computation of any derivatives.

Moreover, the convergence rate does not depend on the

mesh size. The linear systems arising after using the L-

scheme are much better conditioned than the corresponding

systems for Newton or modified Picard methods. Due to

these, the L-scheme is in many situations even faster than

the Newton method, although being only linear convergent.

In the case of a constant K or when applied to Richards’

equation together with the Kirchhoff transformation, one

can improve the convergence of the L−method by adap-

tively computing L, this being the idea of the Jäger–Kačur

method [15]. The choice of the Jacobian matrix for L would

lead to Newton’s method, therefore in this case all the three

methods (Newton, modified Picard and L−scheme) will

coincide. It is worth to mention that both the L−method

and the modified Picard method can be seen as quasi-

Newton (or Newton-like) methods. We refer to [18] for

a comprehensive presentation of Newton’s method and its

variants.

In order to combine the robustness of the L-method with

the speed of Newton’s method, we propose in this paper

a mixed L-scheme/Newton. The idea is the same as in

the case of the modified Picard/Newton method in [20]:

compute a few iterations with the robust scheme (now the

L-scheme) before switching to Newton’s method. The new

mixed method performs best w.r.t. robustness and computa-

tional time from the all considered linearization schemes, as

our numerical tests are clearly showing.



Comput Geosci (2016) 20:341–353 343

To summarize, this paper concentrates on linearization

methods for Richards’ equation, and its new contributions

are:

– A comprehensive study on the most valuable lin-

earization methods for Richards’ equation: the New-

ton method, the modified Picard, the Picard/Newton

method and the L−scheme. The study includes numeri-

cal convergence, CPU time and condition number of the

resulting linear systems.

– The design of a new scheme based on the L−scheme

and Newton’s method, the L−scheme/Newton method

which is robust and quadratically convergent.

– Provides the theoretical proof for the convergence of the

L−scheme for Richards’ equation (without using the

Kirchhoff transformation) and discuss the convergence

of modified Picard and Newton methods. The analy-

sis furnishes new insights and helps towards a deeper

understanding of the linearization schemes.

The present paper can be seen as a continuation of the

works [8] and [20], and it is written in a similar spirit. We

added in the study the L−schemes (including a new scheme

combining Newton’s method with the L−scheme) and we

focus now on 2D numerical results (the two mentioned

papers based their conclusions on 1D simulations). We

present illustrative examples, with realistic parameters so

that the computations are relevant for practical applications.

The paper is structured as follows. In the next section

the variational formulations (continuous and fully discrete)

of Richards’ equation are presented together with the con-

sidered linearization schemes. In Section 3 we discuss the

theoretical convergence of the methods. The next section

concerns the numerical results. The paper is ending with a

concluding section.

2 Linearization methods for Richards’ equation

Throughout this paper we use common notations in the

functional analysis. Let Ω be a bounded domain in IRd , d =
1, 2 or 3, having a Lipschitz continuous boundary ∂Ω . We

denote by L2(Ω) the space of real valued square integrable

functions defined on Ω , and by H 1(Ω) its subspace con-

taining functions having also the first order derivatives in

L2(Ω). Let H 1
0 (Ω) be the space of functions in H 1(Ω)

which vanish on ∂Ω . Further, we denote by 〈·, ·〉 the inner

product on L2(Ω), and by ‖·‖ the norm of L2(Ω). Lf stays

for the Lipschitz constant of a Lipschitz continuous function

f (·).
We consider to solve the Richards Eq. 1 on (0, T ] × Ω ,

with T denoting the final time and with homogeneous

Dirichlet boundary conditions and an initial condition given

by Ψ (0, x) = Ψ 0(x) for all x ∈ Ω . We will use linear

Galerkin finite elements for this study, but the lineariza-

tion methods considered can be applied to any discretization

method. We restrict the formulations and analysis to homo-

geneous Dirichlet boundary conditions just for the sake of

simplicity, the extension to more general boundary con-

ditions being straightforward (the numerical examples in

Section 4 involve general boundary conditions). The contin-

uous Galerkin formulation of Eq. 1 reads as:

Find Ψ ∈ H 1
0 (Ω) such that there holds

〈∂tθ(Ψ ), φ〉 + 〈K(θ(Ψ )) (∇Ψ + ez) , ∇φ〉 = 〈f, φ〉, (2)

for all φ ∈ H 1
0 (Ω), with ez := ∇z. Results concerning the

existence and uniqueness of solutions of Eq. 2 can be found

in several papers, e.g. [1].

For the discretization in time we let N ∈ N be strictly

positive, and define the time step τ = T/N , as well as

tn = nτ (n ∈ {1, 2, . . . , N}). Furthermore, Th is a regular

decomposition of Ω ⊂ IRd into closed d-simplices; h stands

for the mesh diameter. Here we assume Ω = ∪T ∈Th
T ,

hence Ω is assumed polygonal. The Galerkin finite element

space is given by

Vh :=
{

vh ∈ H 1
0 (Ω)| vh|T ∈ P1(T ), T ∈ Th

}

, (3)

where P1(T ) denotes the space of linear polynomials on

any simplex T . For details about this finite element space

and the implementation we refer to standard books, like e.g.

[18].

By using the backward Euler method in time and the

linear Galerkin finite elements defined above in space, the

fully discrete variational formulation of Eq. 2 at time tn
reads as:

Let n ∈ {1, . . . , N} and Ψ n−1
h ∈ Vh be given. Find Ψ n

h ∈
Vh such that there holds
〈

θ
(

Ψ n
h

)

−θ
(

Ψ n−1
h

)

, vh

〉

+ τ 〈K
(

θ
(

Ψ n
h

)) (

∇Ψ n
h +ez

)

,

∇vh〉 = τ 〈f n, vh〉, (4)

for all vh ∈ Vh. At the first time step we take Ψ 0
h = PhΨ

0 ∈
Vh, with Ph : H 1

0 (Ω) → Vh being the standard projection.

We assume in the next that the fully discrete schemes above

have a unique solution and we refer to [2, 3, 9, 24] for a

proof.

At this point, dealing with the doubly non-linear charac-

ter of Richards’ equation due to the relations K(θ) and θ(Ψ )

is essential. We will briefly present in the following the main

linearization methods used to solve the non-linear prob-

lem (4): the Newton method, the modified Picard method

(called simply Picard’s method below, when does not exist

a possibility of confusion) and the L−schemes.
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We denote the discrete solution at time level n (which is

now fixed) and iteration j ∈ N by Ψ
n,j

h henceforth. The

iterations are always starting with the solution at the last

time step, i.e. Ψ
n,0
h = Ψ n−1

h . The Newton method to solve

(4) reads as:

Let Ψ n−1
h , Ψ

n,j−1
h ∈ Vh be given. Find Ψ

n,j

h ∈ Vh, so

that

〈

θ
(

Ψ
n,j−1
h

)

, vh

〉

+
〈

θ ′
(

Ψ
n,j−1
h

) (

Ψ
n,j

h − Ψ
n,j−1
h

)

, vh

〉

+τ
〈

K
(

Ψ
n,j−1
h

) (

∇Ψ
n,j

h + ez

)

, ∇vh

〉

+τ
〈

K ′
(

Ψ
n,j−1
h

) (

∇Ψ
n,j−1
h + ez

) (

Ψ
n,j

h − Ψ
n,j−1
h

)

, ∇vh

〉

= τ
〈

f n, vh

〉

+
〈

θ
(

Ψ n−1
h

)

, vh

〉

, (5)

holds for all vh ∈ Vh. Newton’s method is quadratically,

but only locally convergent. As mentioned above, although

Ψ
n,0
h := Ψ n−1

h might be an appropriate choice, failure of

Newton’s method can occur (see [27] and the numerical

examples given below).

The modified Picard method was proposed by [8] and

reads:

Let Ψ n−1
h , Ψ

n,j−1
h ∈ Vh be given. Find Ψ

n,j

h ∈ Vh, so

that

〈

θ
(

Ψ
n,j−1
h

)

, vh

〉

+
〈

θ ′
(

Ψ
n,j−1
h

) (

Ψ
n,j

h − Ψ
n,j−1
h

)

, vh

〉

+τ
〈

K
(

Ψ
n,j−1
h

) (

∇Ψ
n,j

h + ez

)

, ∇vh

〉

= τ 〈f n, vh〉

+
〈

θ
(

Ψ n−1
h

)

, vh

〉

, (6)

holds for all vh ∈ Vh. The modified Picard method was

shown to perform much better than the classical Picard

method [8, 20]. The idea is to discretize the time non-

linearity quadratically, whereas the non-linearity in K is

linearly approximated. The method is therefore linearly

convergent. The method still involves the computation of

derivatives and in the degenerate case might also fail to

converge (see the numerical examples in Section 4).

The L−method was proposed for Richards’ equation by

[25, 32, 36] and it is the only method which exploits the

monotonicity of θ(·). The L−scheme to solve the non-linear

problem (4) reads:

Let Ψ n−1
h , Ψ

n,j−1
h ∈ Vh and L > 0 be given. Find

Ψ
n,j

h ∈ Vh, so that

〈

θ
(

Ψ
n,j−1
h

)

, vh

〉

+ L
〈

Ψ
n,j

h − Ψ
n,j−1
h , vh

〉

+τ
〈

K
(

Ψ
n,j−1
h

) (

∇Ψ
n,j

h + ez

)

, ∇vh

〉

= τ 〈f n, vh〉 +
〈

θ
(

Ψ n−1
h

)

, vh

〉

,

(7)

holds for all vh ∈ Vh. To ensure the convergence of

the scheme, the constant L should satisfy L ≥ Lθ (:=
supΨ |θ ′(Ψ )|) (see Section 3 for details). The L−scheme

is robust and linearly convergent. Furthermore, the scheme

does not involve the computation of any derivatives. The

key element in the L−scheme is the addition of a stabi-

lization term L
〈

Ψ
n,j

h − Ψ
n,j−1
h , vh

〉

, which together with

the monotonicity of θ(·) will ensure the convergence of the

scheme.

Remark 1 We note that the scheme presented above is

slightly different from the one considered in [32], where

K
(

Ψ n−1
h

)

was taken instead of K
(

Ψ
n,j−1
h

)

. Moreover, the

schemes [25, 36] are considering the Kirchhoff transforma-

tion, which is not the case in the present work.

Remark 2 It is to be seen that in the case of a constant K , the

methods (5) and (6) coincide. Moreover, if L is replaced by

the Jacobian matrix in Eq. 7 one obtains again the modified

Picard scheme (6).

Any of the linearization methods presented above leads

to a system of linear equations for Ψ
n,j

h (more precisely,

the unknown will be the vector d
n,j

h with the components

of Ψ
n,j

h in a basis of Vh). The derivatives of the water con-

tent and the hydraulic conductivity in case of the modified

Picard scheme and Newton’s method can be computed ana-

lytically or by a perturbation approach as suggested by [12]

and occurring integrals are approximated by a quadrature

formula.

For stopping the iterations, we adopt a general criterion

for convergence given by

∥

∥

∥d
n,j

h − d
n,j−1
h

∥

∥

∥ ≤ εa + εr

∥

∥

∥d
n,j

h

∥

∥

∥ , (8)

with the Euclidean norm ‖ · ‖ and some constants εa > 0

and εr > 0. The tolerances εa and εr in criterion (8)

are both taken as 10−5 in all numerical simulations in this

paper as proposed by [20]. We refer to [14] for possible

improvements of the stopping criterion.

The Newton method is the only method out of the

proposed three which is second order convergent. Neverthe-

less, it is not that robust as the other, linearly convergent,

methods. In order to increase the robustness of Newton’s

method one can perform first a few (modified) Picard

iterations, this being the combined Picard/Newton scheme

proposed in [20]. The Picard/Newton method is shown to

perform better than both the Newton and the modified

Picard method [20]. We propose in this paper also a com-

bination of the L−scheme with the Newton method, the
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L−scheme/Newton method. The mixed methods are based

upon the idea to harness the robustness of the L−scheme

or the modified Picard scheme initially and to switch to

Newton’s method e.g. if

∥

∥

∥d
n,j

h − d
n,j−1
h

∥

∥

∥ ≤ δa + δr

∥

∥

∥d
n,j

h

∥

∥

∥ , (9)

is satisfied for δa, δr > 0, similar to criterion (8). However,

an appropriate choice of the parameters δa, δr is intricate

and heavily dependent on the problem, for which reason a

switch of the method after a fixed number of iterations may

be an alternative. As shown in Section 4 this new method

incorporating the L−scheme seems to perform best with

respect to computing time and robustness.

3 Convergence results

In this section we will rigorously analyse the convergence

of the L−scheme and discuss the convergence of Newton’s

and modified Picard’s method. We denote by

en,j = Ψ
n,j

h − Ψ n
h , (10)

the error at iteration j . A scheme is convergent if en,j → 0,

when j → ∞.

The following assumptions on the coefficient func-

tions and the discrete solution are defining the frame-

work in which we can prove the convergence of the L−
scheme.

(A1) The function θ(·) is monotonically increasing and

Lipschitz continuous.

(A2) The function K(·) is Lipschitz continuous and there

exist two constants Km and KM such that 0 < Km ≤
K(θ) ≤ KM < ∞, ∀θ ∈ IR.

(A3) The solution of problem (4) satisfies ‖∇Ψ n
h ‖∞ ≤

M < ∞, with ‖ · ‖∞ denoting the L∞(Ω)-norm.

We can now state the central theoretical result of this

paper.

Theorem 1 Let n ∈ {1, . . . , N} be given and assume (A1)

- (A3) hold true. If the constant L and the time step are

chosen such that (16) below is satisfied, the L−scheme (7)

converges linearly, with a rate of convergence given by

√

√

√

√

L

L + Kmτ

C2
Ω

. (11)

Proof By subtracting (4) from (7) we obtain for any vh ∈
Vh and any j ≥ 1
〈

θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

, vh

〉

+ L〈en,j − en,j−1, vh〉

+τ
〈

K
(

Ψ
n,j−1
h

)

∇Ψ
n,j

h − K
(

Ψ n
h

)

∇Ψ n
h , ∇vh

〉

+τ
〈(

K
(

Ψ
n,j−1
h

)

− K
(

Ψ n
h

)

)

ez, ∇vh

〉

= 0.

By testing the above with vh = en,j and doing some

algebraic manipulations one gets
〈

θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

, en,j−1
〉

+
〈

θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

, en,j − en,j−1
〉

+
L

2

∥

∥

∥en,j
∥

∥

∥

2
+

L

2

∥

∥

∥en,j − en,j−1
∥

∥

∥

2
−

L

2

∥

∥

∥en,j−1
∥

∥

∥

2

+τ
〈

K
(

Ψ
n,j−1
h

)

∇en,j , ∇en,j
〉

+
〈(

K
(

Ψ
n,j−1
h

)

− K
(

Ψ n
h

)

)

∇Ψ n
h , ∇en,j

〉

+τ
〈(

K
(

Ψ
n,j−1
h

)

− K
(

Ψ n
h

)

)

ez, ∇en,j
〉

= 0,

(12)

or, equivalently
〈

θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

, en,j−1
〉

+
L

2

∥

∥

∥en,j
∥

∥

∥

2

+L
2

∥

∥en,j − en,j−1
∥

∥

2 + τ
〈

K
(

Ψ
n,j−1
h

)

∇en,j , ∇en,j
〉

=
L

2

∥

∥

∥en,j−1
∥

∥

∥

2
−

〈

θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

, en,j − en,j−1
〉

−
〈(

K
(

Ψ
n,j−1
h

)

− K
(

Ψ n
h

)

)

∇Ψ n
h , ∇en,j

〉

−τ
〈(

K
(

Ψ
n,j−1
h

)

− K
(

Ψ n
h

)

)

ez, ∇en,j
〉

.

(13)

By using now the monotonicity of θ(·), its Lipschitz con-

tinuity (A1), the boundedness (from below) and Lipschitz

continuity of K(·), i.e. (A2), the boundedness of ∇Ψ n
h , and

the Young and Cauchy-Schwarz inequalities one obtains

from Eq. 13

1

Lθ

∥

∥

∥θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

∥

∥

∥

2
+

L

2

∥

∥

∥en,j
∥

∥

∥

2

+
L

2

∥

∥

∥en,j − en,j−1
∥

∥

∥

2
+ τKm

∥

∥

∥∇en,j
∥

∥

∥

2

≤
L

2

∥

∥

∥en,j−1
∥

∥

∥

2
+

1

2L

∥

∥

∥θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

∥

∥

∥

2

+
L

2

∥

∥

∥en,j − en,j−1
∥

∥

∥

2
+

τ(M + 1)2L2
K

2Km
∥

∥

∥

(

θ
(

Ψ
n,j−1
h

)

− θ
(

Ψ n
h

)

)∥

∥

∥

2
+

τKm

2

∥

∥

∥∇en,j
∥

∥

∥

2
.

(14)
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After some obvious simplifications, the inequality (14)

becomes

L‖en,j‖2 + τKm‖∇en,j‖2

+

(

2

Lθ

−
1

L
−

τ(M + 1)2L2
K

Km

)

∥

∥

∥θ
(

Ψ
n,j−1
h

)

−θ
(

Ψ n
h

)

∥

∥

∥

2

≤ L‖en,j−1‖2.

(15)

Finally, by choosing L > 0 and the time step τ such that

2

Lθ

−
1

L
−

τ(M + 1)2L2
K

Km

≥ 0 (16)

and by using the Poincare inequality (recall that en,j ∈
H 1

0 (Ω))

‖en,j‖ ≤ CΩ‖∇en,j‖, (17)

from Eq. 15 follows the convergence of the scheme (7)

‖en,j‖2 ≤
L

L + Kmτ

C2
Ω

‖en,j−1‖2. (18)

We continue with some important remarks concerning

the result above and the implications to the convergence of

the Newton and modified Picard methods.

Remark 3 In the case of a constant hydraulic conductivity

K (or if we refer to Richards’ equation after Kirchhoff’s

transformation and without gravity, see e.g. [25]), the condi-

tion for convergence of the L−scheme (7) simply becomes

L ≥
Lθ

2
(19)

and there is no restriction on the time step size. Further-

more, the assumptions (A2) and (A3) are not necessary in

this case.

Remark 4 The rate of convergence (11) depends on Km, τ

and L, but it is independent of the mesh size. Smaller L

or larger time steps are resulting in a faster convergence.

We also emphasize that larger hydraulic conductivities will

imply a faster convergence as well.

Remark 5 In the general case, the optimal choice is L =
Lθ and τ = Km

Lθ (M+1)2L2
K

. The restriction on the time step

size (after choosing L = Lθ ) is τ ≤ Km

Lθ (M+1)2L2
K

, which is

relatively mild because it does not involve the mesh size or

any regularization parameter.

Remark 6 The convergence of the L−scheme is global, i.e.

independent of the initial choice. Nevertheless, it is obvi-

ously beneficial if one starts the iterations with the solution

of the last time step.

Remark 7 The convergence of the modified Picard method

and of the Newton method is studied in [27] for the case

of constant K or for Richards’ equation after Kirchhoff’s

transformation and without gravity. A regularization step is

in this case necessary to ensure the convergence. The cor-

responding convergence condition to Eq. 16 will look like

τ ≤ Cǫ3hd , (20)

with ǫ denoting the regularization parameter and h the mesh

size, d the spatial dimension and C a constant not depend-

ing on the discretization parameters. A similar condition

is derived also for the Jäger–Kačur scheme, see [27]. We

remark that the condition (20) is much more restrictive

than the condition (16). The proofs in [27] are done for

mixed finite element based discretizations, but the proof for

Galerkin finite elements is similar. The condition (20) is

derived by using some inverse estimates and it is in practice

quite pessimistic. Nevertheless, we emphasize the fact that

the convergence is ensured only when doing a regulariza-

tion step (reflected by the ǫ in Eq. 20) and this is what one

sees in practice as well (see Section 4).

Remark 8 One can extend the convergence proof in [27]

for Newton’s and modified Picard’s methods to the gen-

eral case of a non-linear K and saturated/unsaturated flow.

Under a similar assumption (A2) for the modified Picard

and an assumption involving also the Lipschitz continuity

of the derivative of K for Newton’s method one can show

the convergence of the methods. The modified Picard will

be linearly convergent, whereas Newton’s method will con-

verge quadratically. The condition of convergence will be

similar to Eq. 20 for both methods. From the theoretical

point of view, only a quantitatively increased robustness

for the Picard method comparing with Newton’s method

should be expected, i.e. when e.g. the mesh size becomes

smaller if one of the method fails then also the other one

(see Fig. 2, where Newton’s methods is not converging and

modified Picard converges, but increasing the number of

elements leads to divergence for the modified Picard or

Picard/Newton methods as well). This is not the case with

the L−scheme, which is clearly the most robust out of the

considered methods, see Section 4.

Remark 9 By using error estimates derived as mentioned in

the remark above, one can construct an indicator to predict

the convergence of Newton’s method. Based on this, one can

design an adaptive algorithm for using the L−scheme only
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when necessary. Nevertheless, because the L−iterations are

so cheap and the resulting linear systems are (much) better

conditioned, it seems that the L−scheme/Newton is almost

that fast as the Newton method. In Example 1 in Section 4

we even experienced that the L−scheme/Newton was faster

than the Newton method. Therefore, we simply recommend

the use of the L−scheme/Newton with a fixed number of

L−iterations (4-5), without any indicator predictions. It the

case of convergence failing, one should as a response auto-

matically increase the number of L−iterations. We never

experienced the need of more than 11 L−iterations in order

to guarantee the convergence of the L−scheme/Newton.

4 Numerical results

In this section, numerical results in two spatial dimen-

sions are presented. The considered linearization schemes:

the Newton method, the modified Picard method,

Picard/Newton, the L−scheme and the L−scheme/Newton

are comparatively studied. We focus on convergence, com-

putational time and the condition number of the underlying

linear systems. We consider two main numerical examples,

both based on realistic parameters. The first one was devel-

oped by us, the second is a benchmark problem from [31].

Different conditions are created by varying the parameters.

The sensitivity of the schemes w.r.t. the mesh size h is

particularly studied. All computations were performed on

a Schenker XMG notebook with an Intel Core i7-3630GM

processor.

The relationships K(Ψ ) and θ(Ψ ) for both examples are

provided by the van Genuchten–Mualem model, namely

θ(Ψ ) =

{

θR + (θS − θR)
[

1
1+(−αΨ )n

]
n−1
n

, Ψ ≤ 0,

θS , Ψ > 0,

K(Ψ ) =

⎧

⎨

⎩

KSθ(Ψ )
1
2

[

1 −
(

1 − θ(Ψ )
n

n−1

)
n−1
n

]2

, Ψ ≤ 0,

KS , Ψ > 0,

(21)

in which θS and KS denote the water content respectively

the hydraulic conductivity when the porous medium is fully

saturated, θR is the residual water content and α and n are

model parameters related to the soil properties. We com-

pute the derivatives of K and θ analytically whenever they

arise. The evaluation of integrals is executed by applying a

quadrature formula accurate for polynomials up to a degree

of 4.

Remark 10 The use of automatic differentiation might

speed up the Newton method, but the concerns regarding

the robustness will remain. This and the fact that most

of the codes for solving Richards’ equation do not have

implemented automatic differentiation, were the reasons to

compute the derivatives as mentioned above.

4.1 Example 1

This example deals with injection and extraction in the

vadose zone Ωvad located above the groundwater zone Ωgw.

The composite flow domain is Ω = Ωvad ∪ Ωgw defined as

Ωvad = (0, 1)× (−3/4, 0) and Ωgw = (0, 1)× (−1, −3/4].
We choose the van Genuchten parameters α = 0.95, n =
2.9, θS = 0.42, θR = 0.026 and KS = 0.12 in parametriza-

tion (21). The choice n > 2 implies Lipschitz continuity

of both θ and K . Constant Dirichlet conditions Ψ ≡ Ψvad

on the surface ŴD = (0, 1) × {0} and no-flow Neumann

conditions on ŴN = ∂Ω \ ŴD are imposed. The initial

pressure height distribution is discontinuous at the transi-

tion of the groundwater to the vadose zone and is given by

Ψ 0 ≡ Ψvad on Ωvad and Ψ 0 = Ψ 0(z) = −z − 3/4 on Ωgw.

We investigate two initial pressure heights in the vadose

zone, Ψvad ∈ {−3, −2}. In the vadose zone, we select a

source term taking both positive and negative values given

by f = f (x, z) = 0.006 cos(4/3πz) sin(2πx) on Ωvad,

whereas we have f ≡ 0 in the saturated zone Ωgw.

We examine the numerical solutions after the first time

step for τ = 1. A regular mesh is employed, consisting of

right-angled triangles whose legs are of length h = �x =
�z for h ∈

{

1
10

, 1
20

, 1
30,

1
40

, 1
50

, 1
60

, 1
70

, 1
80

}

(the mesh size is

actually h
√

2). The parameters regulating the switch for the

mixed methods are taken as δa = 2 and δr = 0. The compu-

tation using the L−scheme was carried out with parameter

L slightly greater than Lθ = supΨ θ ′(Ψ ) = 0.2341 for

the given van Genuchten parametrization, to be specific

L = 0.25. However, as pointed out in the analysis, when the

influence of the non-linear K is not that big (see Remark 3),

a constant L bigger than Lθ

2
is enough for the convergence.

According to our experience, this is the limit relevant for the

practice. Hence, we performed another computation with

parameter L = 0.15. For the mixed L−scheme/Newton we

chose L = 0.15 as well.

The results for Example 1 are presented in Figs. 1, 2, 3,

4, 5, and 6 and discussed in detail below.

4.1.1 Convergence

In case of higher initial moisture in the vadose zone, that

is Ψvad = −2, convergence was observed for all methods

and all investigated meshes. For the choice Ψvad = −3,

Newton’s method failed on each mesh, the modified Picard

scheme exhibited convergence only for h ≥ 1
40

, whereas

both parametrizations of the L−scheme converged on all

meshes. This is consistent with the theoretical findings in

Section 3, in particular with Remark 8.
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Fig. 1 Numbers of iterations for several mesh sizes, Ψvad = −2

4.1.2 Number of iterations

The required numbers of iterations are depicted in Figs. 1

and 2. Missing markers indicate that the iteration has not

converged. For either value of Ψvad, the smaller parame-

ter L = 0.15 in the L−scheme yielded the criterion for

convergence to be fulfilled after fewer iterations than L =
0.25.

For Ψvad = −2, the modified Picard scheme required less

iterations than the L−scheme on coarse meshes, but for h ≤
1
40

, it needed at least as many iterations as the L−scheme

with L = 0.15. Newton’s method featured an even smaller

number of iterations which was found to be independent

of the mesh size in our computation. The number of iter-

ations for the mixed Picard/Newton scheme did not differ

significantly from the one for Newton’s method, while the

mixed L−scheme/Newton needed the least iterations on

each mesh.

For Ψvad = −3, the modified Picard scheme had a ben-

efit over the L−scheme in view of the number of iterations

whenever it converged, although the number of iterations

increased considerably as the mesh became finer. The mixed

schemes gave the best results with respect to the number

of iterations, the application of the mixed Picard/Newton

scheme however being limited to coarse meshes.

Fig. 2 Numbers of iterations for several mesh sizes, Ψvad = −3

Fig. 3 Computation times for several mesh sizes, Ψvad = −2

4.1.3 Computation time

Figure 3 shows the computation times for Ψvad = −2.

Although the modified Picard scheme needed less iterations

than the L−scheme with L = 0.25, the differences of com-

putation times were small, since the modified Picard scheme

requires the computation of matrices including θ ′(Ψ ). For

Newton’s method, K ′(Ψ ) has to be calculated in addition.

Nevertheless, it converged more rapidly than the modi-

fied Picard scheme for h ≤ 1
40

. As reported by [20],

combination of the modified Picard scheme and Newton’s

method further improved the performance in terms of com-

putation time. However, both L−scheme with L = 0.15

and mixed L−scheme/Newton exhibited faster convergence

than the mixed Picard scheme on dense grids, the mixed

L−scheme/Newton only taking 65.6% of computation time

compared to the mixed Picard/Newton scheme for h = 1
80

.

The computation times for Ψvad = −3 are presented in

Fig. 4. The mixed schemes computed the solution faster

than the non-mixed schemes on each mesh, the mixed

L−scheme/Newton taking roughly half the computation

time in comparison to the non-mixed L−scheme with L =
0.15. In Table 1 we present also computations for several

time step sizes and fixed h = 1
40

. One clearly see that

with increasing time step size, the mixed scheme performed

much better than the Newton or Picard/Newton schemes.

For τ = 2 only the L−schemes are converging, with mixed

L-scheme being the fastest. For the smallest time step, τ =

Fig. 4 Computation times for several mesh sizes, Ψvad = −3
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Fig. 5 Condition numbers for several mesh sizes, Ψvad = −2

0.001 the Picard/Newton scheme was faster than the mixed

L-scheme.

4.1.4 Condition numbers

In light of the accuracy of the numerical results, it is inter-

esting to examine the condition numbers of the left-hand

side matrices in the system of linear equations for the coef-

ficient vector. Estimations for the condition numbers with

respect to L1(Ω), denoted by ‖ · ‖1 calculated using the

MATLAB function condest() are plotted in Figs. 5 and 6

for the non-mixed methods, averaged over all iterations.

They did hardly differ from each other at several itera-

tion steps and condition numbers for the mixed methods

corresponded approximately to the ones of the respective

non-mixed method in each iteration. For both values of Ψvad,

the L−scheme with L = 0.25 featured the lowest condition

numbers, followed by its counterpart with L = 0.15. In case

of Newton’s method being convergent, it exhibited higher

condition numbers than the L−scheme. In all computations,

the condition numbers in the modified Picard scheme were

the highest, furthermore, they increased most rapidly when

it came to denser meshes.

All methods required more iterations and computation

time when the vadose zone was taken to be dryer initially

and the arising matrices were worse-conditioned than for the

moister setting.

Fig. 6 Condition numbers for several mesh sizes, Ψvad = −3

4.2 Example 2 (benchmark problem)

In order to compare the linearization methods in the numer-

ical simulation of a recognized benchmark problem, we

consider an example used by [13, 17] and [31] amongst

others. It describes the recharge of a groundwater reservoir

from a drainage trench in two spatial dimensions (Fig. 7).

The domain Ω ⊂ R
2 represents a vertical section of the sub-

surface. On the right hand side of Ω , the groundwater table

is fixed by a Dirichlet condition for the pressure height for

z ∈ [0, 1]. The drainage trench is modelled by a transient

Dirichlet condition on the upper boundary for x ∈ [0, 1].
On the remainder of the boundary ∂Ω , no-flow conditions

are imposed. Hence, the left boundary can be construed as

symmetry axis of the geometry and the lower boundary as

transition to an aquitard. Altogether, the geometry is given

by

Ω = (0, 2) × (0, 3),

ΓD1
= {(x, z) ∈ ∂Ω | x ∈ [0, 1] ∧ z = 3},

ΓD2
= {(x, z) ∈ ∂Ω | x = 2 ∧ z ∈ [0, 1]},

ΓD = ŴD1
∪ ŴD2

,

ΓN = ∂Ω \ ŴD.

The initial and boundary conditions are taken as

Ψ (t, x, z) =

⎧

⎨

⎩

−2 + 2.2 t/ΔtD, on ΓD1
, t ≤ �tD,

0.2, on ΓD1
, t > �tD,

1 − z, on ΓD2
,

−K(Ψ (t, x, z))(∇Ψ (t, x, z) + ez) · n = 0 on ΓN ,

Ψ 0(x, z) = 1 − z on Ω,

in which n denotes the outward pointing normal vector.

Initially, a hydrostatic equilibrium is thus assumed. The

computations are undertaken for two sets of parameters

adopted from [33], characterizing silt loam respectively Beit

Netofa clay. For both soil types, the solution is computed

over N = 9 time levels. The time unit is 1 day and dimen-

sions are given in meters. The van Genuchten parameters

employed as well as the parameter ΔtD governing the time

evolution of the upper Dirichlet boundary, the time step τ

and the simulation end time T are listed in Table 2. We

used a regular mesh consisting of 651 nodes. The simula-

tions invoking the L−scheme were carried out with L =
supΨ θ ′(Ψ ) (referred to as L−scheme 1) and with L slightly

smaller (referred to as L−scheme 2) for both soil types, that

is L = 4.501 · 10−2 and L = 3.500 · 10−2 for the silt loam

soil and L = 7.4546 · 10−3 and L = 6.500 · 10−3 for the

clay soil. The mixed methods switched to Newton’s method

when condition (9) held true for δa = 0.2 and δr = 0.
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Table 1 Computation times

for several time step sizes,

Ψvad = −3

Scheme CPU time [s] Iterations Scheme CPU time [s] Iterations

τ = 2 τ = 0.1

L−scheme 0.25 368 48 L−scheme 0.25 319 41

L−scheme 0.15 246 32 L−scheme 0.15 219 28

Picard no convergence Picard 207 20

Newton no convergence Newton no convergence

L−scheme/Newton 129 13 (9/4) L−scheme/Newton 107 10 (6/4)

Picard/Newton no convergence Picard/Newton 123 10 (6/4)

τ = 1 τ = 0.01

L−scheme 0.25 411 49 L−scheme 0.25 241 31

L−scheme 0.15 269 32 L−scheme 0.15 163 20

Picard 241 23 Picard 145 14

Newton no convergence Newton no convergence

L−scheme/Newton 134 14 (11/3) L−scheme/Newton 92 8 (4/4)

Picard/Newton 160 13 (9/4) Picard/Newton 97 8 (5/3)

τ = 0.5 τ = 0.001

L−scheme 0.25 372 47 L−scheme 0.25 1120 145

L−scheme 0.15 242 31 L−scheme 0.15 743 95

Picard 228 22 Picard 83 8

Newton no convergence Newton 105 7

L−scheme/Newton 138 13 (8/5) L−scheme/Newton 106 8 (2/6)

Picard/Newton 138 12 (9/3) Picard/Newton 98 8 (5/3)

All the considered linearization methods converged for

both soil types. The pressure profiles computed with mixed

L−scheme 2/Newton at time T are presented in Fig. 8 and

are as expected for this benchmark problem. Table 3 shows

the total numbers of iterations, the computation times and

the average of the estimated condition numbers of the left-

hand side matrices with respect to ‖ · ‖1, in case of mixed

methods split up in the two involved schemes. In what fol-

lows, the foregoing numerical indicators, i.e. the number

Fig. 7 Geometry for Example 2

of iterations, the computational time and the condition

numbers are to be discussed in detail.

4.2.1 Numbers of iterations

As to the non-mixed methods, it is not surprising that more

complex methods yielded smaller numbers of iterations, i.e.

Newton’s method converged after the fewest iterations, fol-

lowed by the modified Picard scheme. L−scheme 2 had the

Table 2 Simulation parameters for Example 2

Silt loam Beit Netofa clay

Van Genuchten parameters:

θS 0.396 0.446

θR 0.131 0.0

α 0.423 0.152

n 2.06 1.17

KS 4.96 · 10−2 8.2 · 10−4

Time parameters:

ΔtD 1/16 1

Δt 1/48 1/3

T 3/16 3
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Fig. 8 Pressure profiles after 4.5 [h] for silt loam (left) and 3 [d] for

Beit Netofa clay (right)

edge over L−scheme 1, but still needed some more itera-

tions than the modified Picard scheme for both soil types.

The numbers of iterations of the mixed methods exhibit a

salient result: the advantage of the modified Picard scheme

over the L−scheme with regard to the number of iterations

vanished when coupling the schemes to Newton’s method

and the mixed L−scheme 2/Newton required less iterations

than the mixed Picard/Newton scheme. This suggests that

Table 3 Comparison of the linearization methods for Example 2

Silt loam Beit Netofa clay

Total number of iterations:

L−scheme 1 74 74

L−scheme 2 65 72

Picard 58 69

Newton 31 48

L−scheme 1 / Newton 46 (26/20) 54 (28/26)

L−scheme 2 / Newton 40 (22/18) 54 (28/26)

Picard / Newton 43 (25/18) 55 (29/26)

Total computation time [s]:

L−scheme 1 231 237

L−scheme 2 210 225

Picard 234 285

Newton 184 289

L−scheme 1 / Newton 200 247

L−scheme 2 / Newton 180 243

Picard / Newton 213 278

Averaged condition number [103]:

L−scheme 1 6.84 51.2

L−scheme 2 7.86 56.0

Picard 90.1 321

Newton 90.1 321

L−scheme 1 / Newton 6.84/90.1 51.2/321

L−scheme 2 / Newton 7.86/90.1 56.0/321

Picard / Newton 9.01/90.1 321/321

the L−scheme stands out due to a rapid approach towards

the solution in the first iteration steps. Among all methods,

Newton’s method provided convergence after the least num-

ber of iterations for both van Genuchten parametrizations.

4.2.2 Computation times

When it comes to the comparison of computation times, it

is striking that the performances of the methods substan-

tially varied between the simulations for silt loam and Beit

Netofa clay. While Newton’s method featured the shortest

computation time among the non-mixed methods in case

of silt loam owing to the low number of required itera-

tions, computation in case of the clayey soil took long using

Newton’s method as compared to the L−scheme. In the

silt loam simulation, computation times of the L−scheme

were clearly greater than the ones of Newton’s method, but

switching to Newton’s method vastly improved the compu-

tation time so that the L−scheme 2/Newton turned out to

be the fastest method. In contrast, the computation times for

the clay soil demonstrate that in some cases, switching to

Newton’s method may even be disadvantageous. Although

the mixed L−scheme/Newton converged in fewer itera-

tion steps than the non-mixed ones, changing to Newton’s

method provoked a deterioration of the computation time.

This might indicate that the L−scheme be less susceptible

to parametrizations of the hydraulic relationships lacking of

regularity than the modified Picard scheme and Newton’s

method since the hydraulic conductivity for the parametriza-

tion of the Beit Netofa clay is not Lipschitz continuous.

The modified Picard scheme was found to be the slowest

method for the silt loam soil, the computation time for Beit

Netofa clay was barely less than the one related to Newton’s

method.

4.2.3 Condition numbers

In view of the condition numbers of the left-hand side

matrices, the L−scheme excelled for both soil types: The

condition numbers with either value of L were remarkably

lower than the ones arising when Newton’s method or the

modified Picard scheme were employed, to be more spe-

cific by a factor of minimum 11 for the silty soil and still

by a factor of minimum 5 for the clayey soil. Apparently,

incorporation of the derivative of the water content entailed

a considerable deterioration of the condition. The virtual

equality of the condition numbers for the modified Picard

scheme and Newton’s method was probably due to the prox-

imity of the solution to a hydrostatic equilibrium which

caused the only term distinguishing Newton’s method from

the modified Picard scheme in Eq. 5 to be small because of

∇Ψ n
h ≈ −ez.



352 Comput Geosci (2016) 20:341–353

5 Conclusions

In this paper we considered linearization methods for the

Richards equation. The methods were comparatively stud-

ied w.r.t. convergence, computational time and condition

number of the resulting linear systems. The analysis was

done in connection with Galerkin finite elements, but the

schemes can be applied to any other discretization method

as well, and similar results are expected. We focused

on the Newton method, the modified Picard method, the

Picard/Newton and the L−scheme. We proposed also a

new mixed scheme, the L−scheme/Newton which seems to

perform best. We conducted a theoretical analysis for the

L−scheme for Richards’ equation, showing that it is robust

and linearly convergent. We also discussed the convergence

of the modified Picard and Newton methods.

The L−scheme is very easy to be implemented, does not

involve the computation of any derivatives and the resulting

linear systems are much better conditioned as the modified

Picard or Newton methods. Although it is only linearly con-

vergent, it seems to be not much slower than the Newton

(or Picard/Newton) method, and in some cases even faster.

The L−scheme is the only robust one, a result which can

be shown theoretically and it is supported by the numerical

findings. Only a relatively mild constraint on the time step

length is required. Furthermore, when the hydraulic conduc-

tivity K is a constant, there is no restriction in the time step

size. In this case the only condition necessary for the global

convergence of the L−method is L ≥ Lθ

2
.

We proposed a new mixed scheme, the L−scheme/New-

ton which is more robust than Newton but still quadrati-

cally convergent. This new mixed method performed best

from all the considered methods with respect to compu-

tational time. Even in cases when Newton converges, the

L−scheme/Newton seems to be worth, being faster in the

examples considered.

The present study is based on two illustrative numeri-

cal examples, with realistic parameters. The examples are

two dimensional. One of the examples is a known bench-

mark problem. The numerical findings are sustaining the

theoretical analysis.
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