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Abstract: The estimation of vehicle lateral speed, a critical variable for vehicle
stability control, four-wheel-steering and other advanced dynamic control
systems, is studied in this paper. We presented three different approaches,
one each from three categories: transfer function approach, state-space
approach, and kinematics approach. The first two methods rely on a vehicle
dynamic (bicycle) model, and the last approach is based on the kinematics
relationship of measured signals. The basic formulation of all three methods
assumed that the road bank angle is negligible, and thus needs to be enhanced
by a road bank angle estimation algorithm to work satisfactorily when the
road bank is significant. The performance of these three (enhanced) methods
are investigated using simulation and experimental data. For the
experimental verification, we present four cases: nominal (high friction,
flat road), banked road, low-friction, and low-friction-near-spin. Weakness
of the three estimation algorithms is discussed.
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1 Introduction

Lateral speed is one of the most important vehicle dynamic variables for Vehicle
Stability Control (VSC) systems and is also crucial for other chassis control functions
such as four-wheel-steering. While vehicle lateral speed can be directly measured by
instrumental sensors such as optical sensors or GPS sensors, there are practical issues
such as cost, accuracy and reliability that inhibit production vehicles from using these
sensors at present or in the near future. Therefore, the estimation of vehicle lateral
speed based on other vehicle input/output signals is an important topic and has been
widely discussed in the literature.

Senger and Kortum [1] developed a vehicle handling model and tyre model to
estimate the lateral speed. Their approach assumed that the tyres were operating in
the linear region with known cornering stiffness. Cao [2] used a combined parameter
and state estimation approach to accommodate unknown and varying cornering
stiffness. However, the effectiveness of Cao's method with steering angle, vehicle
speed and lateral acceleration as the only measurements is doubtful (from our
experience) and the method is unlikely to overcome the challenges that arise from
road bank variations. Kaminaga and Naito [3] applied a standard Lyapunov-based
adaptive observer technique for side-slip estimation. The algorithm was found to
provide satisfactory robustness for cornering stiffness variation on flat road surfaces.
Experimental results provided in their paper show that the side slip angle estimation
error is roughly below 3 degrees. Liu and Peng [4] proposed a different identification
scheme for simultaneous state and parameter estimation to overcome the unknown
vehicle parameters. However, the observer stability is only proven for the case of time
invariant cornering stiffness and/or road surfaces. It is further observed in their
paper that the proposed methodology requires one to two cycles of vehicle
manoeuvres before the estimation converges to satisfactory performance with time
invariant cornering stiffness. Its performance under real driving conditions has not
been adequately verified.

Farrelly and Wellstead [5] proposed both a physical modelling approach as well
as a kinematics modelling approach. In their physical modelling approach, the
observer can be tuned to perform despite certain parameter changes. For example, it
can be designed to be robust under cornering stiffness variation in the front axle, or
in the rear axle. However, the observer will not work reliably when both front and
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rear cornering stiffness are unknown and/or varying. As for their kinematics
approach, the observer has been shown to provide satisfactory performance
whenever the vehicle yaw rate is non-zero. Fukada [6] suggested a combined
observer/direct integration method. The method strove to balance the robustness of
modelling error (provided by direct integration) and that of signal bias (provided by
tyre model feedback). A road bank/slant estimate was also provided. In this dual
approach, the lateral velocity estimate depends on the road bank estimate that, in
turn, depends on the lateral velocity estimate. While this may `result in a complex
system and a risk of instability', the issues were empirically resolved. The
experimental results on flat road show excellent performance in a double lane
change manoeuvre but significant error (about 40% less than the actual) in a J-turn
manoeuvre. The J-turn manoeuvre on snow is inherently difficult for this approach
since the signal to noise ratio was small (as vehicle side drifted slowly) and the tyres
were in non-linear regions. This method was subsequently refined, and integrated
into a Vehicle Stability Control system [7]. The control results seem to suggest that
the estimation was improved and is satisfactory for VSC.

Sasaki and Nishimaki [8] suggested a neural network method for side-slip angle
estimation. The proposed form of the I/O relationship is ��k� 1� � F�r�k�; . . . ;
r�kÿ n�; ay�k�; . . . ; ay�kÿ n��, where �; r; ay are vehicle side slide angle, yaw rate and
lateral acceleration, respectively. This equation seems fundamentally flawed because
vehicle longitudinal speed greatly influences vehicle lateral dynamics and thus the
omission of this key variable severely limited the credible range of the above
equation. Furthermore, when there is any change in tyre/road friction characteristics,
or when the road is banked, this neural-network solution, which is feed-forward in
nature, will not work satisfactorily.

Hac and Simpson [9] developed an algorithm that uses wheel speeds and vehicle
lateral acceleration measurement, and a friction coefficient estimation scheme
enhanced nonlinear vehicle model to estimate yaw rate and lateral speed
simultaneously. The experimental results, especially those on icy surfaces, are
impressive. However, the effect of another important factor ± road bank angle, is not
adequately addressed.

In summary, the lateral speed (or side slip angle) estimation problem has been
actively studied over the last decade. However, there have been few comparison
studies between representative methods, and thus it will be the main focus of this
paper. We will focus on the discussion and comparison of three representative
methodologies: a transfer function approach, the state-space approach by Liu and
Peng [4], and the kinematics approach by Farrelly and Wellstead [5]. First,
simulations are performed under ideal conditions to see their best case performance
by using clean data generated by the TruckSim2 software (www.trucksim.com). It is
understood that since the standard bicycle model does not include the effect of the
road bank angle, any algorithm that is developed based on the original bicycle model
may not be robust against road bank angle perturbation (which is the case for all
three methods). Therefore, a road bank estimation `plug-in' is introduced to enhance
the performance of these three methods under a banked-road scenario.

Subsequently, performance and robustness of the three `enhanced' algorithms
under real-world driving situations are studied by post-processing experimental
vehicle test data from various road and manoeuvre conditions. In particular, we
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focus on performance evaluation of these algorithms on low friction or banked road
surfaces. The comparison of the three approaches, especially their weakness, will
then be discussed.

2 Estimation methods

2.1 Transfer function approach

The basis of this estimation method is the bicycle vehicle model, which describes the
vehicle lateral and yaw dynamics of a 2-axle, 1-rigid body ground vehicle (see Figure 1).
The bicycle model can be represented in the form
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where vx is the vehicle forward speed, v is the vehicle lateral speed, r is the yaw rate, m
is the vehicle mass, Iz is the yaw moment of inertia, Cf and Cr are the front and rear
cornering stiffness (per tyre). �f is the front wheel steering angle, and a and b are the
distance from vehicle centre of gravity to front and rear axles, respectively.

Figure 1 2 DOF (bicycle) model
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If we re-write Equation (1) in a simpler form:

_v
_r

� �
� a1 a3

a2 a4

� �
v
r

� �
� b1

b2

� �
�f �2�

then it is straightforward to write the transfer functions from steering to the two
states as

H�!v � sb1 ÿ a4b1 � a3b2
s2 ÿ s�a1 � a4� � a1a4 ÿ a2a3

�3�
and

H�!r � sb2 � a2b1 ÿ a1b2
s2 ÿ s�a1 � a4� � a1a4 ÿ a2a3

: �4�

The basic idea of the transfer function method is as follows: we can first use the
available measurements (steering angle and yaw rate) to obtain a least-square fit for
the transfer function shown in Equation (4) in real time. This optimal ARMAmodel,
which best describes the vehicle yaw motion in the discrete-time format, will then be
converted into the continuous-time where best-guess parameters of the transfer
function for the yaw rate output (Equation (4)) can be obtained. Since the parameter
b2, which is the coefficient of the `s' term of the numerator polynomial of Equation

(4), is related to the front tyre cornering stiffness in a simple form (b2 � 2aCf

Iz
, see

Equation (1)), it is straightforward to calculate a best-guess front cornering stiffness,

Cf, the value of which can be used to compute b1 � 2Cf

m
. These values can then be

plugged into the constant term of the numerator polynomial of Equation (4),
a2b1 ÿ a1b2, to calculate the rear tyre cornering stiffness Cr. Finally, using the
computed tyre cornering stiffness values, the numerator polynomial of the lateral
speed transfer function shown in Equation (3) can be calculated. Since the two
transfer functions share the same denominator, the transfer function in Equation (3)
is completely known, based on which the vehicle lateral speed can be estimated.

Since the discrete time ARMA identification process requires only measured
variables in three history steps, the adaptation for tyre/road characteristics change is
expected to be fast and thus a responsive estimation can be obtained. It is important
to point out that the basic idea of this approach is simple. In practice, we frequently
found that the identified least-square model becomes unstable or very lightly
damped, especially when the vehicle yaw rate is rising quickly, responding to fast
steering input. Under these circumstances, we will discard these unstable models, and
just keep using the non-updated (but stable and well-damped) model as our best
guess. This modification is necessary to keep the estimated tyre cornering stiffness
positive, and to ensure that the model prediction is reasonable. This threshold value
was found to have a significant effect on the final estimation results.

2.2 State-space approach

The idea presented in the previous section can be easily extended to construct a
state-space method, based on which vehicle lateral speed can be estimated. However,
this two-step approach relies heavily on the structure of the transfer function and
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might be very sensitive to uncertainties, such as variation in other vehicle parameters
(m, Iz, etc.) The adaptive algorithm developed by Liu and Peng [4] uses a one-step
strategy. The algorithm was developed to estimate states and unknown parameters
simultaneously for nonlinear time invariant systems which depend affinely on the
unknown parameters. The lateral speed estimation problem was used in their paper
as a case study example to show the possibility to estimate vehicle lateral speed under
uncertain road friction conditions. Due to the fact that tyre cornering stiffness of the
two axles is generally unknown and are the main source of model uncertainties,
Equation (1) can be rewritten to reflect the need to estimate these unknown
parameters. The linearly parameterised form of Equation (1) is

_x � Ax� u�

y � r
�5�

where

x � v
r

� �
; A � a1 a3

a2 a4

� �
;
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The adaptive observer is then
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All the variables with a subscript `n' denote the nominal values of that variable. For
example, Cfn is the nominal value of Cf, and so forth. The unknown variables �âi
denote the deviation of ai from their nominal values (entries in the An matrix), which

are to be estimated. If the observer gain is selected as K � �k1; k2�
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where C � �0 1�, then the closed-loop state matrix is stable when k1 and k2 are
properly selected, according to the nominal vehicle parameters. When �Ax, �Ay and
� are constant (slow varying), these unknown parameters, as well as the state
variables are estimated by using a standard state observer (which uses estimated
parameters for its model), together with a parameter update law, which is gain-varied
based on the calculation of a set of augmented states. The equations are too
numerous to recite completely in this paper. Interested readers are referred to the
original paper by Liu and Peng for details [4]. This estimator, like most other
adaptive algorithms, requires a persistent excitation condition to achieve small
estimation errors. In other words, when the vehicle is driving straight, the vehicle
parameters will not be updated accurately. In other words, if the transition from high
friction to low friction road surfaces occur during a straight section of the roadway,
this algorithm will need some time to correct its estimation, and thus it might suffer
slow convergence transiently. The most important design parameters of this
estimator were found to be the observer gains k1 and k2, which need to be tuned
properly according to the trade-off between noise rejection and convergence speed.
We also found it necessary to constrain the estimated parameter values, to ensure
that they stay within reasonable values governed by the physical parameters.

2.3 Kinematics approach

The kinematics approach proposed by Farrelly and Wellstead [5] is very promising as
the stability of the observer/convergence of estimation error has been shown for all
non-zero yaw rates. In this paper we integrated their methodology with a physical
model based observer to avoid unobservability and the drifting issues (as described by
Farrelly and Wellstead) [5] during near-zero yaw rate conditions. The implemented
observer arbitrates between the kinematics model based observer and a physical
model based observer by using a yaw rate criterion. The kinematics model keeps track
of u and v, the vehicle longitudinal and lateral speeds according to their kinematics
relationship with their derivatives. The model is described in the following:
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_̂v � ÿvxr� ây v̂x :� vx

where
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Note that rc and � are design parameters and �, vx, r, ax, and ay are measured
variables. Since the sensor measurements of current generation of vehicle stability
controller usually include �, vx, r, and ay but not ax, we further adapt this method to
accommodate current sensor platform by approximating ax with vehicle speed
information, i.e. ax � du=dt. While this approximation adds sensor measurement
noise/error in the longitudinal acceleration signal, ax, used in the observer, there are
also other inevitable sensor noises in the real world which need to be considered such
as vehicle speed, longitudinal and lateral acceleration measurements due to wheel
slip, sensor drift, cross-talk induced by vehicle motions and road noise. In the
following, we analyse the estimation performance of the modified F&W approach
(henceforth referred to as the kinematics approach) under these sensor noises, i.e. vx,
ax, and ay. Equation (8) can be rewritten in the form below:

_~vx

_~v
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� ÿ2�jrj r

ÿ�r 0
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If we use a Lyapunov function V � �
2 ~v2x � ~v2

2
, it can be seen that

_V � ÿ2�3jrj ~v2x � �2 ~vx � axn � ~v � ayn � 2�3jrj ~vx � ��2 ÿ 1�r ~v
h i

� vxn:

Unlike the original analysis by F&W, dV=dt is no longer negative-definite when sensor
uncertainties exist, and the design parameter � influences the significance of sensor

measurement noise. Furthermore, from Equation (9), we have Haxn! ~v � ÿ�2r

�s� �jrj�2,
Hayn! ~v � s� 2�jrj

�s� �jrj�2 and Hvxn! ~v � ��
2 ÿ 1�rsÿ 2�rjrj
�s� �jrj�2 . Obviously, the design

parameter/observer gain � influences the error propagation speed of noise in
longitudinal acceleration, the sensitivity to lateral acceleration noise, and the
sensitivity to vehicle speed noise.

From the analysis above, it can be seen that the steady state error contributed
from our approximation of longitudinal acceleration signal is ÿv since the
approximation error we introduced is in the amount of vr and the steady state

gain is
1

r
. That is, the estimated lateral speed will eventually be washed out to zero if

the derivative of vehicle speed is used in place of longitudinal acceleration. On the
other hand, the estimation error during transient events (which are most critical for
real-world vehicle stability control) is negligible if we keep the observer gain � small.
Both can be concluded from the above analysis and will be verified in the following
simulation section.

With real-world environment noise, a tradeoff decision has to be made for the
observer gain � since increasing the observer gain increases the robustness to
measurement noise of ay and u but decreases the robustness (of estimation during
transient events) to measurement noise of ax. The tradeoff performance will be
shown in the simulation and experimental results in the following sections.
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3 Simulation results

In this section the performance of the three methods are studied using simulation
data taken from a nonlinear Jeep Cherokee model. The mathematical model is based
on the TruckSim2 software (a product of the Mechanical Simulation Corporation
[10]), and is constructed based on vehicle parameters published by the Vehicle
Research and Testing Center of the NHTSA [11]. This TruckSim2 model had been
verified against VRTC published test results [12] at two different vehicle speeds with
steering and braking inputs that generate lateral acceleration as high as 0.6 g.

3.1 Flat road surface

In the following, the TruckSim2 model described above is used to generate vehicle
response, which is treated as the `actual' vehicle response, based on which the three
algorithms mentioned in Section 2 are verified. The steering input, vehicle forward
speed and important lateral responses are shown in Figure 2, and the bird's-eye view
of the vehicle trajectory is shown in Figure 3 (lane change plus a subsequent J-turn).
It should be mentioned that the simulated results are obtained on flat high-friction
road surface.

Figure 2 Simulation input and vehicle response
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Figure 3 Bird's-eye view of the vehicle trajectory

The estimation results of the transfer function method are shown in Figure 4. It can
be seen that the transfer function method is very fast, and could reproduce the vehicle
yaw rate response very accurately almost immediately (within a few sampling steps,
i.e. 50±80msec). This high accuracy, however, was not necessarily translated into
accurate lateral vehicle speed estimation. If there is any inaccuracy in vehicle
parameters (e.g. m, Iz, a and b), then the tyre cornering stiffness calculation will be
erroneous, which then results in inaccurate lateral speed estimation. Furthermore,
since this method is model-based and does not have any adaptive capability, there is
no way to compensate for any model error, other than the variations in tyre
cornering stiffness. The results in Figure 4 show that the lateral speed is consistently
under-estimated through most of the simulation. This may be due to the small
mismatch between the vehicle parameter values used in the bicycle model and those
of the TruckSim2 model. In fact, since the TruckSim2 model contains more degrees
of freedom and is nonlinear, some mismatch is unavoidable.

Figure 4 Estimation results of the transfer function method (simulation)
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The simulation results of the state-space method are shown in Figure 5. The yaw rate
estimation results are not as good as the transfer-function method, but since the yaw
rate is measured anyway, that is not a problem. Since the state-space method was
designed to adapt to parameter variations as well as to estimate state variables
simultaneously, its estimations converge to true values slowly. In the first 1±2 seconds,
the lateral speed estimation error is large. However, after the vehicle parameters are
successfully adapted, the estimation becomes quite accurate. The fact it takes about 2
seconds (which depends on the observer gains k) to come close to the true parameters
can be seen from Figure 6. The model parameters were deliberately initialised at
values away from their converged values to investigate the transient behaviour. It is
quite obvious that the adaptive algorithm works but has a non-negligible
convergence time.

Figure 5 Estimation results of the state-space method (simulation)

Figure 6 Estimated parameters of the state-space method (simulation)
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As explained in Section 2.3, the kinematics method proposed by Farrelly and
Wellstead [5] is different from the other two methods. It is based on the kinematics
relationship between measured signals, rather than dynamics of the vehicle. The
other two methods are based on identifying input±output of vehicle handling
dynamics and thus the most critical measurements are steering angle (input), road
bank angle (disturbance input that needs to be estimated), vehicle forward speed
(important time-varying parameter) and yaw rate (output). The F&W method
requires an additional longitudinal acceleration signal that may be subject to
contamination from road gradient. We therefore adapt this method to reduce the
additional sensor requirement that may not be available in a current production
Active Yaw Control vehicle and approximate the longitudinal acceleration signal
with vehicle speed difference, i.e. ax :� du=dt.

In Figure 7, multiple simulations were performed to investigate the effect of
measurement noise and observer gain and to verify the analysis in Section 2.3. It can
be seen from Figure 7(a) that the F&W method has excellent performance if the
sensor measurement is perfect. However, as the longitudinal acceleration is replaced
by the derivative of longitudinal speed, the estimate under vehicle steady state
condition will drift away from the actual while the estimate during transient
manoeuvre is still adequate. It can be seen from Figure 7(a) that the larger the
observer gain is applied, the sooner the steady state estimation error is realized. It is
also shown that steady state estimate is indeed `washed out' to zero with the use of
longitudinal speed derivative as predicted in Section 2.3.

Figure 7 Estimation results of the kinematics method (simulation)

On the other hand, as the observer gain decreases, the estimate becomes more
sensitive towards noise/bias in lateral acceleration measurement. The scenario where
lateral acceleration contains a 0.5m/s/s measurement bias (e.g. due to road bank
angle or vehicle roll motion) is simulated and illustrated in Figure 7(b) where the
effect of various observer gains is also shown. It is obvious that a trade off decision
has to be made for the observer gain in order to obtain a balance between the
robustness of longitudinal acceleration noise and that of lateral one. We picked an
observer gain of 1 and the resulting performance will be illustrated in the
experimental section where realistic and mixed sensor measurement noise is present.
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3.2 Banked road surface

One important implementation issue for these estimation algorithms is the
robustness under real disturbances. From the algorithm formulation presented in
Section 2, it can be seen clearly that all three algorithms assume zero road bank angle
in the equations they used. It is not difficult to modify these basic equations to
accommodate road bank angle. The real challenge, however, is a fast, robust and
accurate algorithm to estimate road bank angle under a wide variety of conditions.
Fortunately, this problem has been solved in a previous paper [13]. In that
formulation, a three-pronged approach was proposed to estimate road bank angle.
Depending on the situation, the road bank angle estimation was obtained by using
vehicle input and response measurements including forward speed, steering angle,
yaw rate, and lateral acceleration, that is,

�̂ � f �u; r; ay; �� �10�
Since the proposed estimation methodology is independent of lateral speed, the road
bank estimate can be incorporated directly into all three models. For the transfer
function method and the state-space method, the road bank angle is assumed to be
an additional input to the vehicle dynamics. For the kinematics method, the road
bank angle is used to remove the gravity component in lateral acceleration
measurement. That is,

ay;corrected � ay ÿ g sin��̂�: �11�
The road-bank correction was found to be necessary for all three algorithms to
produce acceptable results on banked roads. In the experimental results to be
presented in the next section, the road bank angle will be estimated according to the
algorithm presented in [13]. Since that algorithm has been presented in detail in that
paper, we will not present the equations again here.

4 Experimental results

In this section, the performance of the three methods are verified using test data
measured from a Lincoln Mark 8 and a Mercedes S500, obtained at the Smithers
Winter Test Center (low friction) and Ford Michigan Proving Ground (high
friction). These tests were not designed to be repeatable under precisely controlled
input or executed at fixed vehicle forward speed. Rather, the steering inputs as well as
the vehicle speed were controlled by the human driver to cover a vaguely defined test
matrix. Overall, there are about 40 manoeuvres executed and we selected four
representative runs essentially in an arbitrary fashion, except under the case when the
quality of the test data is clearly questionable. The conditions for these four tests are
summarised in Table 1. It can be seen that these four runs cover nominal (flat road,
high friction) as well as important adverse conditions (low friction, banked road).
The vehicle side slip angle and longitudinal speed profiles are shown in Figures 8±11
for reference. The reason we chose to show side slip angle instead of steering angle is
because side slip angle shows the severity of the test scenarios more clearly than the
steering angle.
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Table 1 Conditions for the three tests

Speed Friction Steering Side slip angle Road

Case 1 [18,21]m/sec High Slalom [ÿ6,8] deg Flat

Case 2 [15,20]m/sec High Slalom [ÿ3.5,4] deg Banked

Case 3 [13,17]m/sec Low Fish-hook [ÿ5,18] deg Flat

Case 4 [11,18]m/sec Low Sinusoidal [ÿ7,8] deg Flat

Figure 8 Speed and side slip angle of Case 1

Figure 9 Speed and side slip angle of Case 2
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Figure 10 Speed and side slip angle of Case 3

Figure 11 Speed and side slip angle of Case 4

Estimation results of the three methods for the Case 1 (flat road, high friction) data
are shown in Figure 12. It can be seen that the transfer function method performs
worst, and the kinematics method and the state±space method are both satisfactory.
This test, being performed on high-friction flat road surface, is perhaps a very easy
test. There are no significant uncertainties such as road bank angle and low tyre
cornering stiffness. The transfer function method consistently over-estimated the
lateral speed, perhaps due to the fact that in this manoeuvre, steering input is
producing very high lateral acceleration on the high friction surface. Due to the
linear nature of the transfer function method, it perceives a higher lateral speed
generation than that which is really generated. The performance of the kinematics
method is generally good. During the second half cycle, however, it produces very
large transient error due to the erroneous phase prediction. The state±space method
has a very noticeable lag in the beginning but performs satisfactorily otherwise.
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Figure 12 Experimental results (Case 1)

The results for Case 2 (high friction, banked road) are shown in Figure 13. In this
case, the kinematics method performs worst. This is perhaps due to the fact that the
estimated bank angle is only used to remove its effect on lateral acceleration
measurement. It is possible that this treatment (sensor bias) is not as accurate as that
which was used in the other two methods (treated as extra input). This biased
estimation caused an average error of about 1m/sec, which is quite high. The second
peak in the estimated signal (at about t=20 second) is due to a corresponding peak
of the acceleration measurement. This also shows another possible issue of this
method ± vulnerable to noise in the acceleration measurement. The state±space
method works well in the beginning but has an apparent under-estimation starting
from about t=37 second. This is perhaps due to the sudden acceleration in the
longitudinal direction. Overall, the transfer function method performs the best.

Figure 13 Experimental results (Case 2)

A study on lateral speed estimation methods 141



Case 3 and Case 4 (flat, icy road) are perhaps significantly more demanding than the
first two cases. In these cases, the vehicle behaviour might deviate significantly from
the underlying bicycle model assumption. Since the peak vehicle slip angle is close to
20 degrees in Case 3, the small angle assumption breaks down and the `tyre cornering
stiffness' can change significantly due to the simultaneous lateral and longitudinal
accelerations. These deviations from underlying linear assumption not only influence
the state±space and transfer function methods which rely on linear models, but also
the kinematics method due to the neglected nonlinear dynamic terms. All three
methods are qualitatively close to the actual vehicle response (see Figure 14) but
produce large transient errors for the last four peaks (at t=5, 6.5, 8.5 and 10 sec). All
three methods could over-predict (t=5, 6.5, 10 sec) or sometimes under-predict
(t=8.5 sec). This inconsistent behaviour might be due to vehicle roll motion and
resulted measurement error. It is possible a more complicated model (yaw-roll) is
necessary to represent the vehicle dynamics more accurately. This issue is currently
under investigation. Overall, the kinematics method seems to work better, but its
transient error can still be as large as 2.5m/sec. It is fair to say that all three
algorithms fail to achieve a satisfactory score for this Case.

Figure 14 Experimental results (Case 3)

Even though the peak side slip angle of the Case 4 results is not as high as that of
Case 3, it is subjectively perceived as a more `out-of-control' scenario by the driver
due to its fast reversing steering action. The overall test lasts for less than 6 seconds,
40% shorter than the Case 3 scenario. Again, the kinematics method performs the
best, due to the fact its response is fast. The transfer function method demonstrates
very unacceptable performance, which is surprising given the fact it performs rather
reasonably in Case 3. In fact we observe several other `unexpected failures' of the
transfer function method when we examine the results from other test cases. This
inconsistent behaviour is a concern about this approach. The state±space method,
due to the nature of its slower response compared with the other two methods, fails
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to catch the first (down) peak, and the estimation for the second (up) peak is
noticeably slower than the actual signal. The slow response is definitely a major
problem of this algorithm.

Figure 15 Experimental results (Case 4)

5 Conclusions

Three methods were used to estimate vehicle lateral speed during transient
manoeuvres. We found that it is necessary to have a separate algorithm to provide
an accurate road bank angle estimation which, if not compensated for, will produce
unacceptable results for all three algorithms on banked roads. We have also tried
artificial if-then rules to tweak performance under road bank, however, performance
under other scenarios will be sacrificed and these `patches' may not be moved to
other designs easily. Therefore, we implemented the road-bank estimation algorithm
previously developed by Tseng [13]. All three methods were shown to work well on
high friction, flat road surfaces. On various non-nominal road surfaces, all three
methods are able to predict the trend of the lateral speed but there are still some
significant differences between the estimate and the actual vehicle response at times.
We suspect a further blending of three approaches might be necessary to produce
better and more robust estimation at all time. Overall, the kinematics algorithm
seems to be most robust, except on banked road surfaces. The major problem of the
state±space method is its slow response due to its simultaneous estimation of
parameters and state variables. The transfer function performs surprisingly well for
many cases, but could produce very poor estimation unexpectedly. It is fair to say
that none of these algorithms is a clear winner through this comparison study.
Enhancement to improve their respective weakness is necessary before they can be
used alone, or as an integrated system to produce reliable lateral speed estimation.
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