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Abstract: For the automated robotic picking of bunch-type fruit, the strategy is to roughly determine
the location of the bunches, plan the picking route from a remote location, and then locate the
picking point precisely at a more appropriate, closer location. The latter can reduce the amount
of information to be processed and obtain more precise and detailed features, thus improving the
accuracy of the vision system. In this study, a long-close distance coordination control strategy for a
litchi picking robot was proposed based on an Intel Realsense D435i camera combined with a point
cloud map collected by the camera. The YOLOv5 object detection network and DBSCAN point cloud
clustering method were used to determine the location of bunch fruits at a long distance to then
deduce the sequence of picking. After reaching the close-distance position, the Mask RCNN instance
segmentation method was used to segment the more distinctive bifurcate stems in the field of view.
By processing segmentation masks, a dual reference model of “Point + Line” was proposed, which
guided picking by the robotic arm. Compared with existing studies, this strategy took into account
the advantages and disadvantages of depth cameras. By experimenting with the complete process,
the density-clustering approach in long distance was able to classify different bunches at a closer
distance, while a success rate of 88.46% was achieved during fruit-bearing branch locating. This
was an exploratory work that provided a theoretical and technical reference for future research on
fruit-picking robots.

Keywords: fruit-picking robot; litchi; computer vision; deep learning; segmentation

1. Introduction

Fruit-picking robots are a class of agricultural machines that combine the advantages
of the accuracy, efficiency, and characteristics of diverse sensors. They primarily perform
automatic operations for crops in natural environments [1–6]. Among them, the deploy-
ment of machine vision systems and corresponding recognition algorithms allows them to
efficiently complete many harvesting operations. In current research, stereo vision tech-
niques especially have been used by numerous researchers, while the flourishing of artificial
intelligence and deep learning methods have provided better solutions for fruit recognition,
thus allowing robots to adapt to orchard environments with complex backgrounds, uneven
lighting, and low color contrast [7–11].

Further research on fruit picking has focused on how to build a compact, coordinated,
and practical fruit-picking robot based on existing high-performance stereo vision systems
and the algorithms suitable for that type of fruit object and its realistic environment [12].
There have been some representative cases in this regard. Wang et al. proposed a litchi-
picking robot based on a binocular stereo-vision-based system, which can separate and
locate litchi in an unstructured realistic environment. The authors used an improved
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K-means clustering method to separate and a label template algorithm to locate fruit. Be-
sides having good detection effects on nonoccluded and partially occluded litchi, their
segmentation algorithm is robust to the influences of varying illumination [13]. Cao et al.
solved the problem of obstacles, thus avoiding changing and unstructured environments
for their litchi-harvesting robots. Their improved method, rapidly exploring random tree,
was tested in both virtual and realistic environments, where two CCD cameras assisted in
capturing scene information. The target gravity method and a genetic algorithm enhanced
the speed and accuracy of the computation, thus successfully driving the manipulator
to the target location without collision [14]. Wang et al. proposed a citrus fruit picking
robot composed of a manipulator, binocular camera, personal computer, and tracked ve-
hicle. They introduced a bite-mode end-effector with an improved harvesting postures
prediction method and applied it to a fruit-picking robot. Through experimentations in
both laboratory and natural environments, the harvesting results in the optimal posture
had good performance [15]. Kalampokas et al. developed an autonomous grape harvest-
ing robot that can reduce harvesting time by detecting grape stems in images. For this
purpose, a regression convolutional neural network was deployed for finishing a stem
segmentation task, which provides higher correct identification rates in highly changing
environments [16]. Williams et al. introduced a new multi-arm kiwifruit harvesting robot
working in pergola style orchards. The fruit picking robot consists of four picking robotic
arms and corresponding end-effectors. With the assistance of deep neural networks as well
as stereo matching methods, field implementation for detection and picking in commercial
orchards was achieved [17]. In recent studies, increasing attention and effort for visual
picking robots were shifted to working performance, including better environmental adapt-
ability and stability of the harvesting process. Xiong et al. introduced a robot incorporating
a CCD industrial camera with an LED illuminating source and formed a nocturnal image
acquisition system for achieving the recognition of litchi and picking points in the nighttime
environment. The YIQ color model was used and the fruits and stems were removed by
an improved fuzzy clustering algorithm through the study of images collected in both
day and night environments, with the final picking point determined mathematically [18].
Liang et al. also proposed a method for detecting litchi fruits and stems in the nighttime
environment and achieved detection based on U-Net. In their work, after the processes
to the bounding boxes of the YOLOv3, the regions of interest (ROI) of the stems were
obtained. Through segmentation of the U-Net, the average precision in low-brightness
can reach 89.30% [19]. Ye et al. introduced robot-arranged two-step collision-free motion
planning based on the binocular stereo vision information. The spatial environment in-
formation was used to solve the robot’s inverse kinematics problem using an improved
adaptive weight particle swarm optimization algorithm to determine collision-free poses,
while the improved Bi-RRT algorithm was used to achieve more accurate and faster path
planning [20].

The above studies have successfully applied stereo vision in fruit-picking robots and
considered the impact of various aspects on harvesting. However, most of them have used
huge, cumbersome industrial cameras, which can easily damage fruit during harvesting
and are expensive to replace. In addition, these systems require a lot of computing power
and calculation time for spatial localization and stereo matching, with the algorithm for
fruit stem recognition also being complex, and migrate poorly between different types of
fruit. These problems have also led to difficulties in commercializing fruit-picking robots;
four directions, such as simplifying the tasks and enhancing robots, have been proposed to
guide researchers to make more attempts [21]. In summary, solving the above problems
requires vision hardware that is more integrated, stable, and suitable to the unstructured
environment of fruit picking. In addition, the development of more general algorithms
based on this process is required [22].

The advent of depth cameras offers an economical solution for building three-dimensional
(3D) optical coordinate measurement systems. Compact dimensions, low cost, and ease of
secondary development yield such cameras, an increasingly popular hardware option for
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fruit-picking robots [23]. Liu et al. proposed a strategy for recognizing and locating citrus
fruits in a close shot-based strategy on a Realsense F200 Camera (Intel Corp., Santa Clara,
CA, USA). Using an intersection curve cut by the depth-sphere, six different fruit varieties
were identified and the background removed, which might contribute to high real-time
harvesting robots [24]. For harvesting in an irregular environment, Li et al. developed a
reliable algorithm for detecting litchi fruit-bearing branches in large complex environments.
Therein, Deeplabv3 was employed to distinguish the content of RGB images acquired by a
Kinect V2 camera into three categories. The fruit-bearing branches belonging to the same
cluster are identified by skeleton extraction, pruning operations, and spatial clustering.
Finally, the positions of the branches are obtained using a 3D linear fitting [25]. Zhong et al.
have used a YOLACT real-time instance segmentation network to locate fruit picking
points based on the detection of litchi main fruit bearing branches (MFBB) and defined
the robot picking posture by MFBB masking using skeleton extraction and least square
fitting. The data obtained for the performance of test sets from different image sensors
show that Kinect DK depth cameras can meet the needs of network training [26]. Yu et al.
proposed a ripe litchi-recognition method using a Kinect V2 Red-Green-Blue Depth camera
to capture multiple types of data. A random-forest binary classification model employing
color and texture features was trained to recognize litchi fruit, whose dataset combined
depth data and color data [27]. Fu et al. used a low-cost Kinect V2 camera to build an
apple-picking background-separation vision system in a modern orchard to guide the robot
in precise, collision-free harvesting. Using a deep learning network based on depth features
to filter background objects, the authors demonstrated that the algorithm can improve fruit
detection accuracy and is expected to be applicable for robotic harvesting on fruiting-wall
apple orchards [28].

In fact, while consumer-grade depth cameras have made it easier to build vision
systems for fruit-picking robots, there are still many hardware and depth-measurement
technical limitations [29,30]. For example, point clouds obtained by depth cameras based
on structured-light methods frequently include hole regions caused by missing depth infor-
mation, which, along with lighting variations, have a large impact on image quality [31].
These drawbacks all lead to difficulties in acquiring high-quality, dense-point cloud data
of fruit stems, making it difficult to research fruit-picking robots targeting fruit stems.
Therefore, a fruit-picking system that takes the hardware and software conditions of the
depth camera into account is urgently needed. Compared with traditional stereo vision, the
depth camera’s advantages in terms of shape and access to information can be exploited,
while the picking point can be located within the allowed error range according to fruit
characteristics.

The coordinated control of long-close distance has been proposed in other studies
of picking strategies. Problems, such as complicated image information and insufficient
representation of detailed features, have been solved. However, some solutions regard fruit
bunches as a unit and cannot obtain information of the fruit number as well as their shape
and some have low accuracy in acquiring the close-distance recognition position. Inspired
by the work of other researchers, a litchi-picking robot was designed here based on the
Intel Realsense D435i depth camera (Intel Corp., Santa Clara, CA, USA) and a long-close
distance coordination control strategy proposed for bunches of fruit. The main contribution
of this study included:

1. An eye-in-hand vision system was built for a consumer-grade depth camera and a
long-close distance recognition strategy designed to meet actual positioning habits.

2. A density-based spatial point cloud clustering method was used to classify irregularly
shaped fruit bunches, while a YOLOv5 convolutional neural network identified
individual litchi.

3. A MaskRCNN instance segmentation network was used to segment bunches and
bifurcate stems in a scene and extract the fruit-bearing branch positions based on
mask relationships.
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4. Depth reference points and fruit stalk positioning lines were introduced to reduce
the impact of depth camera accuracy, thus enabling the position determination of the
fruiting-bearing branches at a close distance.

The remainder of this study is organized as follows: In Section 2, the hand–eye
coordination strategy and methods of recognition at different distances are briefly described.
In Section 3, the experimental materials and methods are presented, followed by the results
and corresponding subsequent analyses. Finally, the conclusions and future work are
summarized in Section 4.

2. Materials and Methods
2.1. Overall Framework

An eye-in-hand vision system based on a D435i camera and 6-degree-of-freedom
robotic arm (RUOBO Corp., Foshan, Guangdong, China) was constructed. The litchi
picking robot system was comprised of two modules, namely an eye-in-hand system and
hand–eye coordination control strategy. The strategy was divided into two processes,
including fruit-cluster location and picking-point location (Figure 1).

Figure 1. Litchi-picking robot system.
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The eye-in-hand system module was implemented based on the binocular visual stereo
calibration method. The configuration of the image sensors and ease of using the official
application programming interface (API) were taken into account, enabling determination
of the correlation between the camera and robotic arm.

The hand–eye coordination control strategy module was divided into two steps. The
first was to perform long-distance fruit cluster recognition, thus separating the clusters and
obtaining close-distance recognition points. Second, taking into account the accuracy of
the Realsense camera (Intel Corp., Santa Clara, CA, USA), the robot arm, being close to the
bunch, obtained a close shot. The algorithm was then called to segment the litchi string
and stem bifurcations, then predict the final picking point.

The position information obtained by locating the fruit bunch twice in the long- and
close-distance enabled coordinated hand-eye control, and the method could be adapted to
other types of bunch-fruit picking.

2.2. Eye-in-Hand System

Before sampling with the D435i depth camera, camera and hand–eye calibrations
were required. Considering the sensor configuration of the depth camera (Figure 2),
infrared radiation (IR) stereo cameras (Intel Corp., Santa Clara, CA, USA) were chosen for
binocular calibration, implemented through the classic Zhang’s method [32]. The hand–eye
calibration was based on Chen’s method, which obtained the coordinate transformation
relationship of the left IR camera to the base of the robotic arm [12]. Due to the lack of color
features in IR camera images and the API, the depth stream needed to be aligned to the
color stream. From this, the coordinate transformation relationship was obtained between
the two cameras to obtain a better-quality image for the construction of the deep-learning
network dataset. Therefore, it was necessary to consider the coordinate transformation
relationship between the RGB camera coordinate system and the left IR camera coordinate
system during hand–eye calibration.

Figure 2. Sensor configuration of the Intel Realsense D435i depth camera.

A checkerboard was placed in front of the robotic arm as a reference for the calibration
process. The relationship of each coordinate system is shown in Figure 3, with the two
coordinate systems arranged on the depth camera. The coordinate system for each marker,
described in turn, was {R} is the robotic arm coordinate system, {F} the flange coordinate
system, {C} the left IR camera coordinate system, {RGB} the RGB camera coordinate sys-
tem, {B} the checkerboard coordinate system, and {G} the end-effector coordinate system.
The hand–eye calibration required constant adjustment of the arm’s posture to allow the
camera to sample from different positions, and it was seen that two of the coordinate
system relationships were fixed for each movement. These were the relationships of {R} to
{B} and {C} to {F}.
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Figure 3. Coordinate transformation chain in the eye-in-hand system.

According to the basic principles of the coordinate transformation, the coordinate
transformation chain was described as

R
T T (i)F

CTC
B T (i)B

RT = E (1)

where E is the unit matrix. To obtain the coordinate transformation relationship between
the tool (hand) and camera (eye), some transformations yielded

F
CT =

(
C
B T (i)B

RT R
F T (i)

)−1
(2)

where C
B T (i) is the transformation matrix of {B} relative to {C}. As mentioned above, the

robotic arm was adjusted to different ith postures from which a matrix was obtained by
the least square method [33]. Then, B

RT is the transformation matrix of {R} relative to {B},
which was calibrated by the origin of {G} to approach the origin, and the x and y-axes of
{B}. Finally, the R

F T (i) was recorded to obtain the transformation matrix of {F} relative to {R},
in every ith posture that could be calculated by forward kinematics.

Using the following calculations, the F
CT coordinate transformation relationship was

obtained, expressed as

F̂
CT =

1
Np

Np

∑
i=1

(
C
B T (i)B

RT R
F T (i)

)−1
(3)

where Np is the number of different poses. In the present method, Np was 15.
After calculating the hand–eye relationship, the coordinates of the target point in the

left IR camera coordinate system ({C}) were obtained, and the position relative to the base
coordinate system of the robotic arm ({R}) was calculated. The camera API provided a
convenient function that allowed the selection of a point in the aligned image and the
corresponding depth information obtained using the structured-light method, which meant
that the aligned image was selected as the input for object detection.

However, the images acquired by the left IR camera were missing color information,
and if the color stream was aligned to the depth stream, there would be many holes in
the image. This would thus affect the training effect of the subsequent training of the
convolutional neural network (CNN). Therefore, a transformation matrix from the color
camera coordinate system ({RGB}) to the left IR camera coordinate system was introduced,
expressed as C

RGBT . By checking the sensor configuration of the depth camera, the origin
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of the left IR camera coordinate system was found to be on the y-axis of the color camera
coordinate system. The distance between these two origins of coordinates was 15 mm, such
that it was possible to define C

RGBT as

C
RGBT =


1 0
0 1

0 0
0 −15

0 0
0 0

1 0
0 1

 (4)

Thus, the final hand–eye transformation relationship was

TF
RGB = F̂

CT C
RGBT (5)

2.3. Hand-Eye Coordination Control Strategy

The D435i camera has a wider field of view than do D415 and D455 cameras and has a
global shutter format that is more suitable for variable environments. This allows the D435i
camera to capture more information at once about the environment and resist depth image
blur. Comparing the parameters of these three cameras, the D435i camera has a smaller
”min z” (distance from the depth camera to the captured object), which meant that the
D435i camera could be used at a closer distance to the stems and thus had better detection
performance. Thus, the D435i camera was chosen for building a robotic arm vision system
based on the above comparison.

Servi et al. proposed a method for testing the effects of sampling distance to the
imaging accuracy using different Realsense cameras, with results that illustrated that the
farther the working distance is, the worse the results in image sampling. The structured-
light measurement method also predetermines the working distance and condition of the
target surface, which are two important influencing factors [34].

A two-stage hand–eye coordination control strategy was proposed based on such a
situation (Figure 4).

Figure 4. Two-stage hand–eye coordination control strategy.
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Referring to the appropriate working-distance range of the D435i camera, the robotic
arm first drove the camera at a long distance where it captured (identified) fruit bunches in
a partial area of a tree in order to segment different fruit bunches and plan the picking route.
After determining the close-distance recognition point, the robot arm was driven closer to
the target bunch to identify the bifurcate stems and the whole litchi bunch. Compared with
detecting a stem, bifurcate stems have more distinct features and thus are easier for study
by neural networks.

Such a hand–eye coordination control strategy could be adapted to other bunch-fruit-
picking operations, making full use to the high efficiency feature of the depth camera
for achieving long-distance coarse positioning. The effects of the target scale can also be
minimized, with the selection of segmentation bifurcate stems also improving the success
rate, thus completing the operation within the error range of fruit picking.

2.4. Fruit Clusters Location

The first part of the hand–eye coordination control strategy was to perform long-
distance location, in which the robotic arm was controlled far away from the bunches. The
purpose at this stage was to locate and separate bunches in the field of view to determine
the picking sequence as well as to guide the close-distance location.

The specific operation was to use the YOLOv5 convolutional neural network to detect
individual litchi and obtain its bounding box. Then, we used the Realsense camera to
obtain the depth information of the center of bounding box and simulate each litchi in 3D
space. Next, density-based spatial clustering of applications with noise (DBSCAN) was
used to separate the clusters, and a 3D minimum enclosing box was finally created for each
cluster to determine its approximate location in space. The overall schematic is shown
in Figure 5.

Figure 5. Long-distance location: (a) object detection; (b) calculated 3D points; (c) 3D point cloud clustering.

YOLO is a regression method based on deep learning, which has been developed
through four versions from YOLOv1 to YOLOv4 [35,36]. Through continuous innovation
and improvement, it has attained top performance. Here, the recent YOLOv5 network was
chosen for the detection of litchi individuals by considering the aspects discussed below;
the network architecture is shown in Figure 6.
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Figure 6. Structure of the YOLOv5 network.

Four features of YOLOv5 led to its selection as the target detection network. First, the
input of YOLOv5 chose the same mosaic data enhancement method as YOLOv4. In long-
distance location, the environment exists with different depth positions and different
litchi sizes, which is quite advantageous for detecting litchi fruits with smaller scales
using this method. Second, YOLOv5 introduces two cross-state partial network structures,
which allows the model to efficiently identify a large number of litchi individuals in the
field of view. Immediately afterward, YOLOv5 introduces the structure of the feature
pyramid network (FPN) and path aggregation as its neck, which enhances the flow of
feature information in the network and is a significant improvement, especially for the
learning of low-level features. Finally, the head of the YOLOv5 network outputs multi-scale
feature maps, which, combined with the data enhancement method at the input, allows the
network to handle litchis of different volumes.

After completing object detection, the camera was used to obtain the depth value of
the center of each bounding box and the coordinates of each litchi at the camera coordinate
system calculated based on the calibration parameters. For the subsequent spatial-point
cloud clustering operation, the obtained coordinate information was input to the point
cloud library (PCL) in the form of point cloud objects, and the attributes were set according
to the average size of the real litchi fruit.

DBSCAN is a density-based spatial clustering algorithm that divides regions into
clusters that reach the set parameters and finds clusters of arbitrary shapes in a spatial
database with noise [37]. The algorithm has good results for dividing bunches of fruits
with irregular shapes, as with litchi.

After determining the dataset to be clustered, two parameters were first initialized,
namely eps and MinPts. Specifically, eps referred to the domain radius of the search,
and MinPts the minimum number of points to determine a core point. It was also specified
that all points of the dataset were classified into three types of points: core points, points
that contain more than the number of MinPts within the range of eps; boundary points,
points that have less than MinPts in the radius eps but fall in the neighborhood of the core
points; and noise points, points that are neither core points nor boundary points.

First, any point in the dataset or the point with the largest neighborhood density was
selected as the starting point, and if the point was not classified as a certain cluster or not a
boundary point, it was determined whether it was a core point.

If the point was not a core point, it was classified as a boundary point or a noise
point, and the starting point was reselected. If the point was a core point, it was classified
into a new cluster, and all non-noise points in the neighborhood were grouped into this



Agronomy 2022, 12, 1520 10 of 22

new cluster. After that, the points within this cluster that had not yet been classified were
checked and classified in the same way until all points in the dataset were labeled.

In the reality of the harvesting process, different litchi bunches usually have touching,
shading, and other spatial location relationships, which are not conducive to segmentation.
At the same time, the shape of the bunches is random, such that the traditional clustering
method based on Euclidean distance is prone to mis-segmentation. The DBSCAN method
can adapt to various shapes of bunches and take into account the growth characteristics;
also, the clustering results in a single direction reflect the complete fruit distribution
characteristics. Moreover, this method is not affected by the shape of individual fruit and
has good performance with other kinds of bunches of fruits.

After clustering, the 3D minimum enclosing boxes of different clusters was obtained,
and the corresponding close-distance recognition points were calculated.

2.5. Picking Point Location

After the robotic arm drove the camera close to the close-distance recognition point,
the next step was to identify the fruiting-bearing branches of that litchi bunch. Due
to the small scale and lack of features, it was difficult to make a direct identification.
Meanwhile, the Realsense camera was prone to returning wrong results when acquiring
depth information of fine objects due to the method of structured light. All these reasons
indicated that it was not feasible to directly acquire the spatial information of fruiting-
bearing branches.

From the characteristics of the camera and the shape of litchi bunches, the instance
segmentation network MaskRCNN was first used to segment the litchi bunches with
picking stems in the field of view. Additionally, the bifurcate stems with obvious features
and large scales were detected. After that, the bifurcate stems were filtered to determine
the main bifurcate stems of the center cluster and to locate the fruit-bearing branch’s mask.
Then, the mask was extracted using Zhang’s thinning algorithm and the points on the
skeleton line obtained using the Realsense camera. Finally, a “Point + Line” spatial point
cloud was formed with the center point of the main bifurcate stem and a spatial straight line
was fitted to obtain the spatial position of the fruit-bearing branch. A schematic diagram of
the above process is shown in Figure 7 [38].

Figure 7. Picking point location.

MaskRCNN is an instance segmentation network, which adds a branch of prediction
segmentation mask to FasterRCNN, replacing the ROI pooling layer with an ROI align
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layer and adding a parallel FCN layer (mask layer). The structure of the network is shown
in Figure 8 [39,40].

Figure 8. Structure of the MaskRCNN network.

MaskRCNN introduced the ROI align layer to obtain image values on the pixel points
with floating point coordinates, thus improving the detection accuracy and facilitating
segmentation of fine bifurcate stems. The backbone used a FPN network, which improved
detection accuracy by inputting a single-scale image and finally obtaining a correspond-
ing feature pyramid. These features make the MaskRCNN network work stably in the
segmentation of litchi strings and bifurcate stems.

As long-distance location brought the camera close to a certain bunch of litchi, after
segmenting the different litchi bunches and bifurcate stems in the scene, the bunch was
selected whose center of mask was closest to the center of the image. All bifurcate stems
whose center points were not within the bunch mask were then deleted, yielding the
bifurcate stems belonging to that bunch. Then, the uppermost bifurcate stem was selected
as the main bifurcate stem, and the part of the bunch mask above it was extracted as the
fruit-bearing branch area.

After obtaining the fruit-bearing branch mask, the skeleton of the mask was extracted
using Zhang’s thinning algorithm, which was used to refine the fruit-bearing stem’s mask
and obtain a reference line. As the main bifurcate stem had a large scale, the depth
value obtained using Realsense was more reliable such that the center point of the main
bifurcation branch was used as a depth reference point. The resulting positioning line
finally obtained the poses of the fruit-bearing branches to guide the final picking work. This
method reduced the impact of outliers on the results, which was very helpful for reducing
the impact caused by camera error sampling. The schematic is show as Figure 9.

Figure 9. “Point + Line” location mode.
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This method took into account the importance of the bifurcate stem of the fruit pedicel
for position location of the fruit pedicel and the accuracy of the depth camera for obtaining
depth. This used more reliable “points” to help fit more accurate spatial straight lines.
Overall, such a method was feasible for most bunches of fruit.

3. Experiment

This section is divided into two parts: hand–eye coordinated control system evaluation
experiments, and long-close distance localization and picking experiments. In the hand–eye
coordinated control-system evaluation experiments, the hand–eye system using the D435i
camera was mainly used for positioning accuracy and operating time experiments so as to
verify the feasibility of the depth camera in litchi fruit picking and the performance of API.
Experiments of long-close distance localization and picking were conducted to obtain the
close-distance recognition point, along with the depth reference point and stalk positioning
line of the fruit-bearing stem.

3.1. Hand–Eye Coordinated Control System Evaluation Experiments

Hand–eye calibration enables the camera to detect the target position in the image
and then convert the pixel coordinates of the camera to the spatial coordinate system of the
robotic arm. Then, through the calibrated coordinate conversion matrix, the robotic arm
is controlled to reach the specified position. However, the performance of the hand-eye
system is affected by the repeated positioning errors of the robotic arm, camera recognition
error, hand–eye calibration error, and tool calibration error such that these errors are
complex and coupled [10].

In this experiment, two aspects of the hand–eye coordinated control system were
evaluated. The positioning accuracy of the eye-in-hand system was determined by col-
lecting the positioning errors of the corner points of a high-precision checkerboard. The
performance of the depth camera was evaluated by recording the time consumption for
obtaining the depth of the corners in the camera coordinate system. The experimental
checkerboard had 88 corners, and the checkerboard placed horizontally in front of the robot
arm at ~500 mm such that the z-axis of the robot arm coordinate system and checkerboard
coordinate system were parallel to each other.

For each corner, the following coordinate transformation relations were used, ex-
pressed as

RP ij =
R
F T i

F
CT C

RGBT RGBP ij (6)

where RGBP ij and RP ij are the coordinates of the jth corner point at the ith shooting position
relative to the depth camera color sensor coordinate system ({RGB}) and the robotic arm
base coordinate system ({R}). Due to the use of the structured-light method for obtaining
depth information, the depth camera had a faster corresponding speed in calculating RGBP,
compared with the conventional binocular vision system, using stereo matching. The C

RGBT
is the conversion matrix obtained from the depth camera sensor distribution; F

CT the output
of hand–eye calibration; R

F T i is the conversion matrix of {F} relative to {R} at the ith pose of
the robotic arm. For the jth corner on the checkerboard, the average of the 3D coordinates
sampled for different robotic arm poses at the same sampling distance was considered
the best estimate. The average Euclidean distance between each sample and the optimal
estimate was considered the error at that distance, which was calculated as

d̂j =
1

NR
∑NR

i=1 ‖
RP ij −

1
NR

∑NR
i=1

RP ij‖2 (7)

where NR corresponds to the number of sampled poses of the robotic arm at the same
sampling distance.

Referring to the official parameters of the D435i camera and considering the actual
picking situation, experiments were grouped according to sampling distance and divided
into x groups. For each group, the distance sampled was z = 400, 500, 600, 700, 800, 900,
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and 1000 mm. For each group, the “world coordinates” control mode of the robot arm
was used and the z-axis values were limited while the x,y coordinates and Euler angles
uvw continuously changed such that the camera took pictures of the checkerboard from
15 different poses. For each successfully acquired corner, the error of each corner was
calculated and the time spent each time was recorded. Taking the data at z = 400 mm
as an example, its positioning error is visualized in Figure 10. The vertical and abscissa
coordinates in the diagram indicate the number of corner points in the checkerboard rows
and columns. Respectively, the z-axis value was the error of this corner point.

Figure 10. Visualization of positioning errors at z = 400 mm.

The results for each capturing distance are shown in Table 1.

Table 1. Error indicators corresponding to our method.

Capturing Distance (mm) 400 500 600 700 800 900 1000

Maximum error (mm) 2.44 2.78 3.92 3.82 4.48 5.07 5.95

Standard Deviation (mm) 0.13 0.16 0.27 0.32 0.36 0.42 0.55

Mean error (mm) 2.15 2.43 2.86 2.98 3.50 4.26 4.48

Average time per point (ms) 33 32 33 33 34 33 34

A gradual increase in error for the hand–eye system occurred as the sampling distance
increased, which was in line with the trend in error for structured-light ranging as the
distance changes (Table 1). The error of the whole hand–eye system was seen to be within
6 mm in the range of z < 1 m. There was an end-effector tolerance in the actual situation
of fruit picking, while the subsequent long-close distance localization also facilitated the
impact of less error. In the meantime, the average time for acquiring a single depth point
was 33 ms, which allowed the task to be completed in a short time, even when there was a
large number of target objects in the scene. Therefore, the error and time consumption of
the entire hand–eye system were within acceptable limits and met the requirements of the
picking task.

3.2. Long-Distance Localization and Picking Experiments
3.2.1. Experiment for Evaluating the Performance of the Long-Distance Object
Detection Network

The uncertainty of fruit size and detection distance during actual vision recognition
was simulated by considering the workspace of the robotic arm with sampling distances of
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0.8, 1, 1.2, and 1.4 m considered. Multi-angle sampling was carried out to consider possible
scenarios, such as lighting and low color contrast. A total of 800 samples were collected
and 1500 samples were obtained by data augmentation, which were divided into a training
set, a validation set and a test set in the ratio of 8:1:1.

After training, the network model was implemented in Open Source Computer Vision
Library (OpenCV) and called under the Windows platform. The predicted bounding box
was obtained by forward propagation, and the spatial coordinates of the centroids were
calculated and input to the PCL point cloud space as a separate point cloud. Thereafter, the
precision–recall (P-R) curve corresponding to the single class was drawn (Figure 11).

Figure 11. P-R curve of the model.

To validate the performance of the model, the average precision (AP) was calculated,
expressed as

AP =
∫ 1

0
p(r)dr (8)

where p stands for the precision, r for recall, and p(r) a function of r, that is equal to
taking the area under the curve (Table 2). The AP of the network was 0.924, indicating that
the trained YOLOv5 network had the capability of adapting to multi-angle and complex
lighting conditions for litchi recognition.

Table 2. Indicators corresponding to our network.

Method AP Recall Precision

YOLOv5 0.924 0.9345 0.9159

3.2.2. Spatial Point Cloud Density Clustering Performance Experiments

There are various methods for spatial point cloud clustering: division-based clustering,
and hierarchical clustering in dividing class clusters based on distance in the clustering
process such that they can only be used for spherical clusters. However, realistic litchi
bunches do not have a fixed shape. The DBSCAN density clustering algorithm was used
here to divide the high-density regions in samples into clusters while filtering out the effects
of noisy samples to achieve better results.

The performance of clustering for delineating fruit bunches and the adaptability for
proximity scenes were verified through experiments conducted on litchi bunches using
Euclidean and DBSCAN density clustering, while finding the optimal setting parameters.
Euclidean clustering operates based on Euclidean distance, which is equivalent to the
distance between two points in Euclidean space, by arbitrarily choosing a point p in the
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space, finding the k nearest points to point p through the KD-Tree nearest neighbor search
algorithm, and clustering the points whose distance is less than a set threshold into the set
Q. If the number of elements in Q is no longer increasing, the whole clustering process
is finished. Otherwise, points other than point p are selected in the set Q and the above
process is repeated until the number of elements in Q is not increasing.

The experimental objects included 10 bunches of litchi bunches with different shapes
and different numbers of litchis. They were marked from 1 to 10 and combined in pairs
(Figure 12). The distance between litchi bunches was continuously adjusted and clustered
in real time during the experiment and the minimum distance between different clusters at
each moment was output. A trained YOLOv5 network was used to detect each litchi indi-
vidual and calculate the spatial location. The results of the neural network and clustering
algorithm were simultaneously output on the screen in real time and visualized (Figure 13).

Figure 12. Experimental preparation.

Figure 13. DBSCAN experiment: (a) two clusters; (b) three clusters.
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Euclidean and DBSCAN density clustering were then used for clustering. The ex-
periments were approached horizontally and diagonally at 45 degrees, with each pair of
bunches approximated five times, and the closest distance between the enclosed boxes
for the correct clustering recorded. Experimental results for these two scenarios were
visualized (Figure 14).

Figure 14. Experimental results: (a) horizontal; (b) diagonal at 45 degrees.

Graphs of the data showed that the minimum intercluster distances were successfully
delineated for each fruit combination when using the different clustering methods, while
using different colors to indicate the distance relationship between the different methods.
In most cases, DBSCAN density clustering was easily seen to be able to successfully divide
the different litchi bunches at closer distances, with an average distance of ~7.2 mm and
sometimes in contact positions. By looking at a few groups with larger distances, most
of them were found to include litchi whose number was 4 or 5. Due to these smaller
numbers of litchi fruits and relatively sparse density, the actual results were more easily
affected by the denser bunches when using density clustering methods for delineation.
Overall, both clustering methods could be used to delineate litchi bunches, while density
clustering better reduced interference and was more suitable for delineating litchi bunches
with random shapes.

For the vertical distribution, there was a high probability that two bunches of litchis
obscured the fruit-bearing branch in a realistic scenario where they were vertical and very
close together. Both cluster methods worked well when they were distant from each other
such that these conditions were not considered here.

After the clusters were divided, each bunch of litchi was numbered to plan the picking
route. The best spatial point for close-distance recognition was found based on the following
three conditions. (1) The image contained the fruit-bearing branch. (2) The image contained
some individual litchis. (3) The depth distance between the camera and cluster center was
within the appropriate operating range of the Realsense D435i.

3.3. Close-Distance Fruit-Bearing Stem Location Algorithm Experiments

A robotic arm picking system was set up outdoors, integrating long-close distance
full process identification, positioning, and control codes. The robotic arm movements
were guided by the close-distance identification point obtained from the long-distance
fruit bunch segmentation experiment to complete the fruit-bearing stem segmentation and
positioning operation. The experiment involved all the methods described here and was a
comprehensive evaluation of the complete harvesting strategy.
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3.3.1. MaskRCNN Instance Segmentation Network Training and Evaluation

The robotic arm was controlled to reach the close-distance recognition point of fruit
bunches by long-distance positioning. A total of 1200 samples were collected, and the
Labelme program was used for labeling.

Among these, the labeling method was as follows: for litchi bunches, the requirement
was to label the complete fruit-bearing branch as well as the inclusion of litchi fruit,
and the area had to be without holes. For bifurcated stems, the requirement was to use
quadrilaterals for labeling and the area ratio of the bifurcated part to the unbifurcated part
at ~1/2. When the individual in the image was too small, labeling was avoided to prevent
more errors in depth acquisition.

After samples were randomly shuffled, they were divided into training, test, and
validation sets in the ratio of 8/1/1. After 400,000 iterations of training, the network’s loss
curve smoothed out and achieved good segmentation performance. The mean average
precision (mAP) was calculated using

mAP =
∑Nk

j=1

∫ 1
0 pj(r)dr

Nk
(9)

where Nk = 2 is the number of class and pj(r) the P-R curve corresponding to the jth class,
with the mAP value reaching 0.8 at the condition of 0.5 Intersection over Union.

Real and model litchi strings were trained separately using different datasets. The
final loss curves and segmentation results are shown in Figure 15.

Figure 15. Results of MaskRCNN: (a) loss curve; (b) real scenarios; (c) model tree.

3.3.2. Equipment and Initialization

A robot platform, equipped with an eye-in-hand structured-light measurement vision
system, was built. The platform included an industrial 6-DOF robotic arm, D435i depth
camera, end-effector for fruit stem clamping and cutting, and a laptop (Intel Core i7-10750H
CPU (Intel Corp., Santa Clara, CA, USA), NVIDIA GeForce RTX 3060 Laptop GPU (NVIDIA
Corp., Santa Clara, CA, USA), 16 GB ddr4 RAM (Corsair Corp., California, CA, USA), and
Microsoft Windows 10). In addition, a high-precision calibration board and calibration
block were used for offline calibration of the robotic arm’s hand–eye system.

The robotic arm and control cabinet were fixed to the platform, an end-effector was
mounted on the robotic arm flange, and the depth camera was fixed to the end-effector
in an upward position to avoid screen occlusion during image acquisition (Figure 16).
A laptop computer was used to process the vision data and exchange information with
the robotic arm in real time via the transmission control protocol (TCP) port. Prior to an
experiment, the end-effector was adjusted to a position horizontal to the ground and the
code set to stop and return to the initial position if the system did not detect a fruit bunch
or fruit-bearing stem. The camera had a resolution of 1280 × 720 and a sampling rate of
30 fps, set automatically.
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Figure 16. Photograph of the platform.

In an experiment, the number of individual litchi contained in each string was output
through long-distance localization, and then they were picked in order from most to least.
The experiment was judged to be successful when the fruiting branch was finally reached
correctly, and the corresponding data were recorded.

3.3.3. Experiments and Results

When conducting experiments on locating and identifying fruit-bearing stems, the
steps following steps were followed:

1. Single sampling at the close-distance identification point and passing it into the trained
MaskRCNN model for fruit string and bifurcate stem segmentation;

2. Extracting the litchi string mask whose center was closest to the center line of
the screen;

3. Traversing all bifurcate stems and if the mask center point was contained within
the litchi string mask, then categorizing the bifurcation branches belonging to the
litchi string;

4. Keeping the uppermost bifurcation branch and extracting the part of the litchi string
mask above the bifurcation branch for binarization;

5. Extracting the bifurcation branch mask center point and refining the fruit-bearing
stem mask to obtain the positioning line;

6. Calculating the fruit-bearing stem’s pose and reference depth.

The key steps of the process are shown in Figure 17.

Figure 17. Key steps of the process: (a) original image; (b) centermost string; (c) bifurcation branch
and fruit-bearing branch mask; (d) final result.

A total of 52 rounds of close-distance identification was performed, with the location
of the close-distance picking point set to be the most suitable when the depth camera was
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100 mm from the smallest enclosing box of the fruit bunches. Additionally, the height
was at the same level as the top surface of the box. At this point, in the field of view, the
fruit-bearing stem was located in the upper part of the frame, while ensuring that there
were some individual litchis in the frame to better segment the bunches.

Segmentation results in experiments were classified into the following four basic
categories: correct positioning, incorrect positioning (offset or not found), intermittent,
and positioning line too long or too short; corresponding cases are schematically shown
in Figure 18. By examining the processing images of each category, the segmentation
results of MaskRCNN were seen to be the main influencing factor, with the quality of the
mask of the fruit-bearing stem region directly affecting the effect of refinement. For the
two cases of too short and too long, the impact on picking was actually small due to the
depth reference point being the main bifurcated stem and the end-effector still reached the
picking point within the error range. In the case of intermittence, the overall orientation
of the fruit-bearing stem could still be judged, and the longest section was selected as the
reference line such that it had less influence on positioning. To avoid collisions between
the end-effector and bifurcated stem due to a short positioning line, the top point of the
positioning line was chosen as the actual picking point.

Figure 18. Four categories: (a) correct; (b) incorrect; (c) intermittent; (d) too long or too short.

The picking results and records of the average time taken to locate the stems showed
that all reached the near-field recognition point and the fruit bunches were well segmented
(Table 3). The close-distance identification accuracy was found to be in the range of 88.46%,
and the average processing time using the CPU was 1.52 s.

Table 3. Results of close-distance fruit-bearing stem location algorithm experiments.

Number of Experiments Number of Successes Success Rate Average Time (Using CPU)

52 46 0.8846 1.52 s

After analyzing the failure scenarios, it was found that the recognition effect of bifur-
cated branches and depth acquisition were the most important factors leading to failure,
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especially with the uppermost bifurcated branches. Even if the bifurcation branch in the
background was identified, the inclusion relationship between litchi mask and bifurcation
mask ensured the stability of the algorithm to a certain extent. The structured-light ranging
method was prone to mislocalization when facing small targets, and the depth reference
point method was better for guiding the robot arm. The experimental results also showed
that the method and time consumption could meet the actual picking requirements in terms
of bunch recognition.

3.4. Discussions

The methods mentioned above can be useful for other picking robots targeting bunches
of fruits. The use of consumer-grade depth camera not only increases the efficiency of
detection, but also reduces the economic costs. Clustering method can convert individual
fruits into spatial points. This method reduces computational effort and can be applied in
other situations, while the depth of picking points is difficult to obtain. All these factors
provide theoretical support for the study of other fruit and vegetable picking robots with
good economic applications.

Future work will involve algorithm optimization and the production of high-quality
datasets. More data sets will be collected, and more segmentation networks will be
tested. Or the network structure might be changed to address the problem of poor
learning for small bifurcate stems, such that it has a stronger learning capability for fruit
features [41–44]. Deep learning with traditional vision algorithms will also be addressed
for extracting targets from complex agricultural backgrounds and reducing location error
in deep learning [45]. In addition, robotic arms will be installed on mobile devices suitable
for the litchi growing environment and corresponding picking experiments conducted in
real orchard environments.

4. Conclusions

Fruit- and vegetable-picking robots adapted to bunches of fruit objects have been a
key research area for researchers in terms of irregular shape interference in bunches of fruit
and the localization of fine fruit stalks, as opposed to the type of robot whose target is a
single fruit. To improve adaptation to the environment and access to information on fruit
diversity, a practical application of appropriate picking strategy and consumer-grade depth
cameras in smart agriculture was believed here to be key to the future development of fruit-
and vegetable-picking robots.

A robotic arm equipped with an Intel Realsense series depth camera was built, and a
long-close distance coordinated control strategy was adopted to take full advantage of the
depth camera as well as to avoid the impact of its disadvantages. The advantage was that,
by using spatial clustering algorithms, the impact of the difficulty of locating the irregular
shape of the bunches was reduced. Even if other types of bunches were replaced, it was still
effective and provided positional reference information for the identification of fruit stems.
The use of depth reference points and stem positioning lines reduced the positioning errors,
and the combined end-effector design tolerances allowed for a better picking operation.
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