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Abstract: The quantum leap in mobile data traffic and high density of wireless electronic devices,
coupled with the advancements in industrial radio monitoring and autonomous systems, have
created great challenges for smooth wireless network operations. The fifth-generation and beyond
(B5G) (also being referred to as sixth-generation (6G)) wireless communication technologies, due
to their compatibility with the previous generations, are expected to overcome these unparalleled
challenges. Accompanied by traditional and new techniques, the massive multiple input multiple
output (mMIMO) approach is one of the evolving technologies for B5G/6G systems used to control
the ever-increasing user stipulations and the emergence of new cases efficiently. However, the major
challenges in deploying mMIMO systems are their high computational intricacy and high computing
time latencies, as well as difficulties in fully exploiting the multi-antenna multi-frequency channels.
Therefore, to optimize the current and B5G/6G wireless network elements proficiently, the use of the
mMIMO approach in a HetNet structure with artificial intelligence (AI) techniques, e.g., machine
learning (ML), distributed learning, federated learning, deep learning, and neural networks, has
been considered as the prospective efficient solution. This work analyzes the observed problems and
their AI/ML-enabled mitigation techniques in different mMIMO deployment scenarios for 5G/B5G
networks. To provide a complete insight into the mMIMO systems with emerging antenna and propa-
gation precoding techniques, we address and identify various relevant topics in each section that may
help to make the future wireless systems robust. Overall, this work is designed to guide all B5G/6G
stakeholders, including researchers and operators, aiming to understand the functional behavior and
associated techniques to make such systems more agile for future communication purposes.

Keywords: 5G and beyond (B5G); artificial intelligence (AI); 6G; massive MIMO (mMIMO); wireless
networks; machine learning (ML)

1. Introduction

The modern digital era has involved the proliferation of intelligent appliances and
smart special-purpose computers by technological information organizations, industrial
corporations, and individuals [1]. Wireless smart products generate enormous amounts of
data through sensors and metal detector nodes in the process of mobilizing users’ everyday
routines [2]. The global amount of mobile data was calculated at 7.462 EB/month in 2010,
and the estimators hypothetically believe it could reach 5016 EB/month by 2030 [3]. The
current 5G mobile networks are densely heterogeneous in nature, with multiple modes and
variously sized wireless devices linked via one unified air interface tailored for user-centric
services [4]. The unprecedented and radical changes in the requests for wireless user data
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services and the involvement of low-to-high-scale intelligent devices have tremendously
increased the current network load and management challenges. Modern wireless networks
require new technologies that can handle the current network load, interact with the
environment proficiently, deliver instantaneous responses within very short intervals, and
avoid frequent network failures.

Before the emergence of the 5G era, the research was mainly focused on the successful
transmission of packets with satisfactory data rates under negligible interference scenar-
ios [5]. While mobility management congestion and power dissipation issues were never the
non-trial features of mobile services [6], in B5G cellular systems, digital smart technologies,
software-defined networking (SDN), and automated real-time activities have gained im-
mense attention in wireless networks due to their interactions with the environment. These
emerging joint networking and communication technologies have generated several chal-
lenges related to the bandwidth, latency, jitters, and security requirements [7]. The use of
dynamic new features, e.g., network virtualization, mobile ad hoc networks (MANETs) [8],
network routing [9], software-based systems, air interfaces [10], and the Internet of things
(IoT) [11,12], inserts more complications into the network design [13], mobility protocols,
and network operations [14]. Thus, the control, monitoring, and maintenance of different
sizes of multi-tier HetNet cellular networks become more complicated with the escalating
desire for wireless user facilities [15]. Although technological services such as augmented
reality [16], 3D video [17], virtual reality [18], self-driving cars, drones [19], robotics, factory
automation, wireless fronthaul–backhaul communication, and smart transportation would
enrich the ultimate user experience and generate tremendous traffic on a daily basis, it
is very hard to efficiently manage the continuously growing data requirements of such
diversified services with the available technologies in the current networks [20].

Lately, 5G/B5G technologies with AI protocols have captured the attention of aca-
demic researchers and radio communication standardization groups [21]. Studies have
firmly shown that AI-learning-based approaches are indispensable in managing the daily
consumption of multiple gigabytes (GBs) of data by users, devices, and machines. The
driving factors behind this AI drive are the challenges related to the administration, man-
agement, and security of the emerging massive bandwidths in mobile communication
systems and the generation of unprecedented ‘big data’ [22]. It is expected that to resolve
these uncoordinated, unstructured, and ungovernable challenges involved in the forthcom-
ing cellular networks, where M-MIMO has the potential to embed the ML/DL technologies
in not only the physical layer but also to augment the massive bandwidth in the higher
layers [23], the emerging AI-based M-MIMO generic architecture will include a chain of
processing layers starting from the users to the channel estimation layer. It will involves
complex RF processing challenges as well as baseband processing-level challenges. This
scenario will be unmanageable using conventional statistical and probabilistic approaches.
It will require automation and massive data handling in real time using AI/ML-based
approaches, as shown in Figure 1.
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AI-learning-based approaches have been developed within a universal computing
framework for diversified services, and have made significant progress in becoming state-
of-the-art in various technological fields. AI technologies are considered to be sufficient
to bear the costs of higher throughput, radio resource management, network adaptability,
and ultra-enhanced coverage extension rates [24]. Telecommunication authorities, research
communities, network specialists, material engineers, wireless accessory designers, and
government institutions are continuously involved in the design process and have been
delivering robust solutions for issues in the current 5G networks and those expected in
the upcoming B5G radio communication networks [25]. The objective is to define a new
paradigm for the rapid increase in wireless data traffic and the Internet of Everything
(IoE), and to seek out more advanced ultra-reliable approaches for operational network
setups [13]. This radical change in network traffic has driven these explorers to identify and
offer new alternatives for network robustness and to diminish the traditional cellular archi-
tectural bottleneck to cope with the increasing challenges, administer network resources
for advanced technology deployments, and controlling costs. This can be achieved through
manipulating the channel bandwidth (BW) distribution and reductions in human efforts,
complex networking activities, and serviceable errors [26]. The focus is now on transform-
ing future wireless communication completely into functional distribution, autonomous
design, relaxed computation, and edge-intelligence-driven networks.

Furthermore, multi-antenna technology (i.e., MIMO) is another promising mecha-
nism for B5G communication. Such systems involve many closely packed small-aperture
active antennae and can achieve significant spatial diversity and multiplexing gain perfor-
mance. This technology has attracted global attention in wireless communication services
because it greatly enhances the user experience and system capacity without adding extra
power [27,28]. Due to the constant increase in the number of disparate wireless gadgets and
industrial appliances, the next-generation cellular communication networks will require
improvements to the existing MIMO systems [29]. Concerning this, a more sophisticated
antenna technology with linear signal processing has been proposed and is referred to as
massive MIMO (mMIMO). The theoretical analysis validated that the BS can adjust hun-
dreds of antennae and can simultaneously serve each user with multiple streams. However,
most of the use cases for B5G and 6G communication will gradually develop from the 5G
network-based applications based on QoE and functional behaviors [30]. Then, soon after
the 6G enablers become an active part of commercial cellular services, the applications will
follow through with new use cases and contribute to further performance enhancements.
In this regard, more agile approaches for antenna precoding and estimation with intelli-
gence and learning-based processes must be critically explored. Table 1 below presents a
comparative view to delineate the 6G network characteristics beyond the capabilities of 5G
networks in several emerging domains, including their concepts and requirements [31].

Table 1. A comparative analysis of the critical features of 5G and 6G networks.

Key Elements 5G 6G

Hardware Complications Moderate Very Low
Operational Error Margin Low Very low

Centre of gravity User-centric Service-centric
Reliability High Extremely high

Mission-critical real-time response Fast Very Fast
AI/ML Partially Completely

Functional Complexity Moderate Low
Computation Time Low Very Low

Satellite support No Yes
VR/AR Partially Comprehensively

Energy Efficiency 100× of 4G 100× of 5G
Spectrum Resources Sub-6 GHz to 300 GHz Sub-mmWave to 3 THz
Autonomous system Partially Completely

Latency <1 ms Up to 0.1 ms
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1.1. Motivation

The prominent cellular protocol design institutions such as the International Telecom-
munication Union (ITU), European Telecommunications Standards Institute (ETSI), and
Federal Communication Commission (FCC) are largely concentrating on virtual plus dy-
namic cellular communication systems [32]. The regulatory authorities are imposing new
laws and standards and a multi-tier technology division for modern wireless network
infrastructures. Large-scale multi-antenna systems have become a widely recognized hot
research area in academia and technological society. Likewise, AI and ML approaches are
widely recognized as enablers for 5G and future wireless networks [33]. In this context,
since the advent of mMIMO technology, substantial survey articles [34,35] have been pub-
lished in the literature focusing on the variety of optimization parameters, even under the
supervision of AI/ML techniques. However, the challenges and limitations in the adaption
of intelligent mMIMO systems for B5G/6G require a detailed survey and critical analysis
to identify definite future research directions.

1.2. Contribution

We provide a deep insight into mMIMO systems with emerging antenna and propaga-
tion precoding techniques. We critically analyze and highlight various relevant topics in
each section that may help to make future wireless systems robust. The main contributions
of this survey are as follows:

• This survey article is designed to highlight the latest trends in the research on intelligent-
learning-based mechanisms for multi-antenna signal processing;

• Similarly, the article discusses the current solutions, limitations, and challenges in the
AI/ML designs and the requirements for more agile approaches;

• We critically analyze the current issues and highlight future research directions for
emerging intelligent mMIMO-based B5G/6G mobile communication systems, includ-
ing conventional AI/ML, distributed learning and FL, antenna selection, reconfig-
urable intelligent surfaces (RIS), energy-harvesting approaches, and intelligent fuzzy
logic approaches;

• In addition, we briefly discuss the overall impact and potential of the joint use of
both AI/ML and mMIMO along with a discussion on a few of the research challenges
involved in the full exploitation of intelligent mMIMO characteristics.

1.3. Organization

This paper is organized as follows. Section 2 comprehensively discusses the evo-
lution of mMIMO technology with different modes of operation, i.e., single-user and
multi-user, favorable duplexing technique, and beamforming with high-frequency com-
munication. Subsequently, Section 3 describes the new antenna deployment strategy, i.e.,
a cell-free mMIMO system for B5G/6G networks. Section 4 presents recent studies in-
volving conventional AI/ML techniques on the performance enhancement of different
mMIMO parameters for 5G/B5G mobile networks. Lastly, the limitations of the conven-
tional learning-based schemes, the significance of edge node learning techniques, and
the importance of intelligent reflective surfaces in the context of a multi-antenna system
are discussed. Additionally, guidance is provided for the future research directions for
ultra-mMIMO enhancements with fully enabled learning-based mechanisms for 6G cellular
carriers in Section 5. This study is then concluded in Section 6. Figure 2 depicts the paper’s
overall structure and organization.
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1.4. Why AI/ML Approaches for Massive MIMO?

The intelligent AI/ML methods use advanced learning tools and are proficient in
developing universal and easily assignable classifiers and general functions [36]. These
notions have been widely investigated in diversified arenas such as device and network
security, network operations, and mobility support.

In modern wireless communication, multi-antenna arrays require very complicated
signal processing and conventional algorithms, such as game theory-based and stochastic
geometry techniques, which can perform extremely sophisticated signal manipulation
tasks [37]. The heuristic algorithms that can sufficiently handle the pilot assignment, signal
detection, precoding, and antenna selection processes in conventional MIMO systems
are not capable of tackling the large-scale mMIMO antenna selection and assessment
processes robustly [38]. Additionally, the antenna’s algorithmic complexities, process-
ing time, and computation power are also significant challenges in optimizing B5G/6G
mobile communications.

In light of this, the learning-based solutions are instrumental for these types of intricate
analyses and have the potential to overcome high algorithmic and computing power is-
sues. The online learning approaches are also useful in delivering instantaneous responses
during mMIMO beamforming (BF), channel estimation, and load balancing tasks and in
the efficient utilization of available space [39]. A prominent aspect of ML classification
is the ability to learn from the real environment, analyze the received data, and deliver
rewards based on the attained value functions. Therefore, after a certain number of iter-
ations, the learning algorithm identifies the optimal value and performs further actions
autonomously based on the achieved knowledge. This new paradigm has the potential to
manage the mobile broadband and low-symbol URLLC cases in different 5G/B5G wireless
communication systems [40].
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2. Massive MIMO

Large-scale smart antenna arrays equipped with many Tx and Rx wireless sensing
nodes are known as M-MIMO arrays. Since the traditional MIMO technology commonly
consists of 2 × 2 or 4 × 4 antennae, M-MIMO wireless nodes are capable of accommodating
hundreds or even thousand (theoretically) of antennae at the BS. This concept provides
precise beamforming and tracking capabilities in 3D scenarios, including for the Internet of
Flying Things (IoFTs), drones, mobile services, vehicular networks, and critical Internet
of Medical Things (IoMT)-based availability applications, as shown in Figure 3 [41]. The
distinctive feature of M-MIMO from the previous MIMO technology is the quantity of RF
nodes at the BS. This idea leads to the basic assumption in M-MIMO operability, i.e., each
piece of user equipment (UE) is equipped with a single antenna and the total number of
wireless nodes is larger than the number of UE pieces served in a cell area. This is the
multiuser transmission solution used to simultaneously serve a large number of users with
flexible time–frequency resources [42]. Therefore, the classical M-MIMO technology has
been adopted for 5G cellular communication networks due to its physical advantages,
such as its increased multiplexing gain level, high SINR level, better coverage, and better
capacity, as well as its reduction in latency. Nonetheless, it encounters many practical
challenges, such as for high-dimensional CSI, the resource scheduling of substantial access
nodes, sophisticated channel modeling, and lower numbers of RF chains, when trying to
work at full capacity [43]. Focusing on all channel-demeaning issues, channel estimation
and acquisition are the prime concerns when embracing the practical gains promised by
M-MIMO in B5G networks. Hence, to cultivate the maximum potential gain in large-scale
antenna elements, it is crucial to understand the number of inherent challenges during the
CSI estimation, as is discussed below [44].
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2.1. Existing mMIMO Challenges

The active M-MIMO antenna nodes provide excellent performance in real practical
environments for different scenarios. A few persistent challenges still demand a sharp and
vigorous approach to reduce the related issues.



Electronics 2023, 12, 189 7 of 28

2.1.1. Pilot Contamination

The radio spectrum efficiency is a non-trivial feature and a hot research topic in
wireless communication. It demands suitable time–frequency or pilot training reuse factors
to achieve maximum system throughput [45]. In the context of the conventional orthogonal
pilot training process for CSI, the length and required number of orthogonal training
sequences should be equal to or greater than the quantity of transmitting antennae [46]. If
the network observes an unexpected rise in the number of UEs, there may not be adequate
orthogonal training sequences available to separate the UL CSI from the different UEs.
Consequently, the same training or non-orthogonal training sets are adopted during the
CSI stage and give rise to inter-cell interference, which is coined as pilot contamination.

2.1.2. Overhead DL Training and Feedback

Similar to UL scenarios, the number of training sequences for DL must be equal to or
larger than the number of antennae at the BS, whereas the BS may not have an appropriate
quantity of training sequences to isolate the DL channels [47]. However, if the number of
pilot sequences justifies the argument, still the traditional DL training technique could be
vulnerable to interference problems due to the very limited coherence time. Meanwhile, to
control the quantization error, the number of antennae must be scaled with the amount of
CSI feedback from the users to the BS, as it is a non-trivial feature in practice [48].

2.1.3. Bulky Computational Complications

In channel estimation, a channel matrix operation involves inversion, multiplication,
eigenvalue decomposition, and singular value decomposition [49]. In practical circum-
stances, as soon the magnitude of channel matrices increases, it proliferates the computa-
tional complexities that need to be minimized at ground level.

2.1.4. CSI in FDD and TDD Modes

The fundamental criteria in M-MIMO operation are the channel estimation information
and data that must be acquired correctly for uninterrupted and ultra-reliable channel
transmission. To estimate the CSI, the pilot data are exchanged between the BS and the
smart node for proper radio link connectivity [50]. The process is further divided into
two categories according to the time and frequency division of resources. FDD is a time-
continuous phenomenon, while TDD involves discontinuous slots of transmissions, as
shown in Figure 4.
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2.2. New Paradigm: Cell-Free mMIMO

In cell-free (CF) mMIMO networks, a substantial number of individually controllable
Txs and Rxs antennae are distributed over a wide terrestrial area for parallel transmission
to all UEs. The new physically dispersed autonomous antenna system delivers the same
quality of experience (QoE) to all users and much better network services with low com-
plexity during signal processing [51]. Particularly, it contributes to the channel propagation
characteristics and channel hardening more vibrantly. In contrast to the mMIMO cell-based
concept, cell boundary limitations disappear and smart devices are linked simultaneously
with multiple antenna lobes. In comparison to cellular-connected mMIMO systems, it
shows much better propagation attributes and various other benefits [52], as follows: (i)
due to its distributive in nature, it reduces the distance between users and APs; (ii) it
spatially covers the maximum coverage area and can provide ubiquitous connectivity, espe-
cially in the non-line of sight (NLOS) space; (iii) it enhances the user’s capacity and reduces
costs, as well as providing flexibility in AP deployments; (iv) it also capitalizes on the EE
and SE. These significant traits of CF mMIMO systems make them viable and prudent
options for cellular and IoT services in the NR 5G and future 6G mobile communication
era [53].

A large array of distributed multi-antenna access points (Aps) simultaneously serves
all mobile devices via the accurate characterization of the local CSI. The CF mMIMO
infrastructure is comprehensively delineated in [54] and is a highly desirable candidate
for cellular user data facilities for forthcoming wireless mMIMO networks. Many multi-
antenna elements are geographically distributed and jointly deliver the data requisite to
a small group of smart devices via TDD operation. They serve each terminal with the
aid of computational measures and fronthaul access network operations with the same
time–frequency resources. The TDD protocol is highly recommended for CF mMIMO
architectures because it exploits the channel reciprocity. Precisely, in TDD mode, each
UE sends a UL pilot to assist each AP to estimate the UL channel, and if the channel
reciprocity holds true, then the UL estimation is valid for the DL channels. Therefore, no
UL feedback information is required and the pilot resources are independent of the AP
antenna elements [55]. Nonetheless, two possible TDD frame structures, i.e., with and
without DL pilot signals, are shown below.

Figure 5 depicts the two TDD transmission cases in which the TDD frame without
the pilot DL signals is used in the network-based mMIMO system. When no pilot is
used for the DL path, the UEs either depend on channel hardening or blindly predict
the DL channel from the data. However, both options are available for the CF mMIMO
deployment scenario.
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Furthermore, the novel CF mMIMO schemes provide better multi-user interference
suppression and higher macro-diversity coverage expansion as compared to the state-of-the-
art models. Since the distributed architecture enables each UE to connect simultaneously
with multiple APs, the multi-point connection contributes to achieving strong link reliabil-
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ity [56]. All UEs in a physical location would be able to receive a higher symbol rate at all
times with negligible interference. The potential applications of CF mMIMO systems that
are eminently appropriate for current and next-generation networks are hot-spot and in-
door coverage spaces [57]; for example, train stations, shopping malls, stadiums, subways,
public arenas, smart factories, and community centers.

In the context of a higher frequency spectrum, the CF mMIMO system facilitates more
timely data delivery, mitigates path loss issues, and supports a better SINR level. It also
provides macro-diversity gains by reducing the detrimental shadowing, scattering, and
low-to-high fading effects. Another important feature of using large distributed APs is that
short-dimension antenna array can exploit the mmWave with minimum hardware and
algorithmic complexities [58]. Table 2 below delineates the differences between centralized
and CF-mMIMO systems.

Table 2. A comparison of centralized mMIMO and CF-mMIMO networks.

Configuration Centralized CF

Number of Antennae Large Large
Channel Estimation Global Local

Energy Efficiency High Very High
Coverage Uniformity Bad Excellent

Macro Diversity Small Large
Deployment Cost High Low

Fronthaul Resource Less Moderate

The geographically distributed large-scale antennae jointly serve a small group of
randomly dispersed UEs without cell boundaries. All of the APs are directly linked to
the processing unit and connect each user via low-power transmission to the CF mMIMO
network, with centralized connectivity for all of the APs, as shown in Figure 6.
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3. AI/ML-Based Challenges and Solutions for mMIMO Systems

In the current cellular networks, centralized AI/ML processes are partially involved in
the different domains of the 5G services and perform several operations satisfactorily. For
the optimization of B5G and upcoming 6G wireless networks, learning-based mechanisms
are pivotal to governing various networking processes [59]. The use of mMIMO systems
requires very complex mathematical formulations, while the conventional frameworks,
such as stochastic geometry and game theory frameworks, are very sophisticated and
consume enormous amounts of computational power. The dynamic and active behavior
of ML algorithms could be instrumental for these complicated empirical analyses and
could be helpful in saving excessive computing power. In this regard, for current 5G
networks, centralized AI/ML-based strategies are considered reliable for different mMIMO
operations and avoid several limiting factors, including computing latencies [60]. Some of
the studies that have been performed on different constraints in mMIMO operations are
discussed below.

3.1. mMIMO Systems

Previously, many studies have been developed using heuristic algorithms and com-
plicated mathematical models for the optimization of MU-mMIMO networks. Those
algorithms and designs have achieved satisfactory results in real-world scenarios with
high computing times and latencies. Algorithmic intricacies and delay sensitivity represent
serious challenges, especially for time-sensitive services and immersive media applications
in B5G cellular networks. To overcome these obstacles, recent studies exploiting learning-
based algorithms on the cooperative work of distributed MU-mMIMO systems for different
wireless applications have received enormous attention. In these research studies, the
authors have attempted to decrease the mean square error (MSE) of the channel estimation
and interference issues while improving the precoding designs and resource allocation
schemes [61].

The modern CF mMIMO systems involve a deployment strategy that transforms the
cell-centric architecture into a user-centric one. Remarkably, CF mMIMO schemes are 95%
more likely to use SE than conventional cellular designs under different circumstances [62].
The FD-TDD mode is considered a more reliable and efficient approach due to the lower
feedback overhead in CF mMIMO networks. The use of downlink pilot sequences will
result in additional signal overheads that may rely on the number of distributed units. An-
other impactful feature in achieving overall greater network performance for CF mMIMO
networks is optimizing the resource allocation strategies [63]. The distribution of resources
following the user-centric scheme is a major challenge in the current 5G HetNet architecture.

3.1.1. Design Constraints

A multi-layer deep neural network (DNN) was devised to efficiently distribute the
power allocation to each pilot sequence and to reduce the sum of the MSEs [64]. The authors
stated that the proposed solution helped them to attain reliable sum MSE performance
as well as less computing complications in comparison to the baseline schemes. In [65],
dual ML-based detectors, i.e., semi-supervised learning and online learning algorithms,
were proposed for the UL MU-MIMO system. In this context, the authors advised that
semi-supervised learning would help to address the drawbacks of the current SL detector,
while the online learning (OL) detector can been used to provide robustness to the imple-
mented SSL algorithm. Consequently, the simulation tests proved that the SSL algorithm
outperformed the traditional SL detector and the OL detector achieved HQ performance
for time-varying channels.

To reduce the hardware control complexities and systematically utilize the power
resources of mMIMO systems, hybrid precoding has attracted a lot of attention and allows
many valuable solutions for future tangible communication. Most of the preceding work
for hybrid precoding was based on exhaustive search mechanisms, resulting in high
mathematical calculation intricacies. A hybrid precoding network (HPNet) based on a



Electronics 2023, 12, 189 11 of 28

deep learning approach has been proposed for mmWave MU-MIMO networks [66]. The
suggested algorithm validity proved by the experimental test and the outcome of the
practical examination showed that the HPNet outperforms the latest schemes with fewer
operational difficulties.

3.1.2. Interference and SNR Level

In [67], an extreme learning machine (ELM)-based receiver for MU-mMIMO networks
was considered. The authors showed that the ELM attains a greater SE and a low bit
error rate (BER) with a minimum MSE (MMSE) level via the efficient setting of several
hidden neurons. Since 5G cellular services are already functional and performing sat-
isfactorily in different parts of the world, researchers are focusing on the optimization
of 6G cellular communication networks, which will be denser than the NR 5G services.
Thus, observing the future requirements, more advanced and active approaches that can
respond instantaneously to different cases are much needed. As such, a convolutional
neural-network-based likelihood ascent search (CNNLAS) detection scheme was designed
for the UL high-order QAM MU-mMIMO model to exploit the interference issues [68]. The
algorithm showed strong resistance against the high BER and channel estimation errors
and required low average received signal-to-noise (SNR) ratios to achieve the theoretical SE.
In [69], the authors discussed the interference issue in MU-MIMO IoT-enabled 5G/B5G sys-
tems and devised a learning detection scheme, namely a deep convolutional neural network
(DCNN). The proposed design significantly overcomes the influence of interference and
computational adversities.

3.1.3. Beam and Resource Allocation

A new beam allocation issue was exploited by using a DNN in the mMIMO system [70].
The brute force and suboptimal search algorithms were used and achieved beam accuracy
rates of 91.6% to 97.7%, respectively, at the Rx. Lately, beam allocation and training
experience approaches have been exploited to reduce the training time [71]. A QoS-
constrained (QC) beam allocation technique was presented and it significantly improved
the SE. Likewise, a location-aided and ML-based beam allocation algorithm (LMLBAA) was
designed for 3D mMIMO networks [72]. The simulation test demonstrated that the increase
in the SNR level also increases the average available sum rate. In another study [73], the
authors developed a joint ML-based radio resource management (RRM) and hybrid BF
design for the mmWave DL MU-mMIMO system. The simulation test showed that for
K = 4, the proposed algorithm is trained after 228 iterations with 28.72 less execution delays.

3.1.4. Power Allocation

Power allocation to individual antennae is one critical challenge in CF mMIMO
networks when trying to achieve the maximization (max) of the minimum (min) capacity of
each smart node. An algorithm based on deep learning for the upstream power distribution
of a CF mMIMO network was presented in [74]. The task was conducted to increase
the sum-rate value and max–min power adjustment by avoiding pilot contamination.
The numerical assessment showed the existence of the pilot interferences but it did not
deteriorate the performance metrics. Additionally, a DNN technique was tested for a
max–min power policy for better QoS for all users [75]. Compared to other heuristic
approaches, the proposed algorithm provided acceptable results and low time complexity
for non-deterministic polynomial hard problems.

In [76], the EE was discussed in the context of substantial IoT terminals. Previously,
a wireless power transmission (WPT) technique was utilized to rectify the sensor node’s
energy dissipation issues. The authors in [77] suggested a restart artificial bee colony
(RABC) method to asymptotically converge to the optimal solution for energy-efficient
data transfer in the wireless charging of a sensor network. Numerical simulations showed
that the energy consumption in the studied network scenario can be minimized using the
proposed method with good, robust properties. Unfortunately, the current WPT solutions
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are no longer supportive of long-range and multi-target transmission. An mMIMO cellular
system has been implemented for IoT applications [78], however the presence of thousands
of smart devices wirelessly connected via the Internet and communicating within a close
proximity will cause inter-cell interference (ICI), which may cause severe degradation of
the network quality, which will severely effect the modern requirements for high-definition
(HD) video and data services, VR systems, and augmented reality applications [79]. There-
fore, the power allocation solution for CF mMIMO IoT scenarios was fine-tuned and a
memetic AdaBoost neighborhood field optimization (ABNFO) scheme was designed to
tackle the obstacle [80]. Simulation tests were performed to analyze the total EE of the
system based on the transmission power, circuit power, noise power effects, and system
density to guarantee the sustainability of the CF IoT system. The results validated the
high consistency of the CF mMIMO systems. In a recent paper [81], the authors tried to
solve the max–min user fairness issue by considering the DNN learning algorithm. A
simulation analysis confirmed that fewer computational issues occurred than when using
GP-based optimization methods. Another system throughput maximization approach
involving controlling the power levels in four possible modes using the DCNN technique
was studied in [82]. By implementing the scheme, the simulation results proved the validity
by raising the throughput exponentially.

3.1.5. Channel Estimation

Although the FDD mode delivers better system efficiency, the CSI feedback is al-
ways a problem. A denoise network based on deep learning was formulated to enhance
the channel feedback performance [83]. Thus, the proposed method still delivers greater
performance than existing algorithms at a low SNR level. Moreover, the use of narrow
beams is considered a promising approach to attain higher throughput and dedicated
paths for each user (especially for the distant terminal). A deep deterministic policy gra-
dient (DDPG) algorithm has been presented with the combination of deep distributed
deterministic policy gradients (D4PG). Both presented techniques were based on the deep
reinforcement learning (DRL) algorithm [84]. Consequently, (i) the D4PG accomplished HQ
performance, irrespective of the network size, (ii) while distributed BF model performed
better than the DDPG and (iii) all DRL models showed shorter processing times than the
conventional gradients. In another paper [85], a federated learning (FL) environment for
CF mMIMO systems was used to enhance the FL framework performance. The numerical
results showed that the proposed joint optimization design successfully decreased the
training time of the FL algorithm over the baseline techniques. The CF mMIMO network
also showed a low training time as compared to the CF-TDMA-mMIMO and collocated
mMIMO networks. A next-generation paradigm for CF-mMIMO communication and
operation with a more enhanced view was presented in [86]. The authors explored the
potential solutions to the issues that persist with FDD CSI acquisition and feedback over-
heads in the network. A low-complexity multipath component estimation model with
linear angle-of-arrival (AoA)-based BF schemes has been developed. The simulation test
showed that in terms of the SE and EE, the FDD-based CF mMIMO system outperformed
the cell-based wireless networks with an adequate count of antenna APs. An enhanced
K-means clustering (E-KMC) algorithm for semi-blind channel estimation was investigated
by the authors in [87]. The proposed E-KMC method performed much better than other
semi-blind channel estimation schemes. Table 3 summarizes the current literature on
AI/ML-based MU-mMIMO systems.
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Table 3. A summary of the literature on AI/ML MU-mMIMO networks.

mMIMO System Approach/Issue Methodology Advantages Limitations Ref.

D
es

ig
n

C
on

st
ra

in
ts Sum MSE of channel estimation Multi-layer (DNN) Better sum MSE and low

computational complexity
Pilot transmit power was considered as a
predefined constant [64]

Designed a low-complexity detector (i) SSL detector and (ii) OL
detector algorithms

SSL reduced the pilot overhead and OL is
robust to variations in the channel

Design is limited to a single antenna
transmitting the binary signal to one
BS only

[65]

Reduced hardware complications,
memory usage, and
energy consumption

HPNet based on DL Significantly decreased the complexities and
enhances the EE/Extra operational work

The RF chains and streams antenna users
are considered the same values [66]

In
te

rf
er

en
ce

an
d

SN
R

Le
ve

l

Effects of adjusting the number of
neurons of the ELM scheme based on
the BER and SE

ELM-based receiver
For BER 10−4 a difference of 2 dBs between
MMSE and ELM; ELM required less training
than the MMSE receiver

Perfect synchronization is needed
between BS and UE [67]

Interference exploitation in the
coming 6G networks and beyond CNNLAS detection scheme Supported theoretical SE/robust against

channel estimation errors

A complex mathematical algorithm is
required for higher
interference mitigation

[68]

Interference problem in
5G/B5G-enabled IoT system

Symbol-by-symbol detection and DCNN
to suppress interference

Obtained ultra-reliable detection performance
& reduced computation work Limited to flat fading channel only [69]

Be
am

an
d

R
es

ou
rc

e
A

llo
ca

ti
on

Evaluated the beam allocation
in mMIMO

DNN with the assistance of the
butler method

91.6 to 97.7% accuracy to predict and allot
beams/multi-cell 3D BF and switching

It is required that the polar plots not
exceed their respective radii [70]

Investigated the beam
training & allocation

OP for beam training and QC-based
beam allocation

QC beam allocation improved the SE/explore
further critical metrics for beam allocation
and training

The user suffers from channel power
leakage due to beam conflict [71]

Beam allocation for 3D
mMIMO systems

LMLBAA to optimize beam allotment in
a short time Tx SNR directly related to average sum rate It can be replaced with other classification

algorithms for further improvement [72]

Explored rank constraints in the
mMIMO network ML-based RRM algorithm

Supported a similar sum-rate given by
CVX-based scheme but took 28.72 less
seconds for execution time

Practical implementations require
changes in analog and digital
beamforming

[73]
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Table 3. Cont.

mMIMO System Approach/Issue Methodology Advantages Limitations Ref.

Po
w

er
A

llo
ca

ti
on

Power allocation in UL CF
mMIMO networks

DNN to learn the mapping between a set
of input data and power allocation form Achieved near-optimal performance The presence of shadowing means the

performance degraded [74]

Power allocation for QoS for all users DNN algorithm
Achieved approximately similar results to
other heuristic approaches with
low complexity

This work is limited to sub-6 GHz
applications and can expand to the
mmWave model

[75]

Power allocation in CF mMIMO
IoT systems A novel heuristic ABNFO scheme

Although the algorithm showed good
convergence performance, a more robust
algorithm still needed to reduce stagnation

Instructive comparison with various
other ML processes [80]

Solved the user fairness problem in
CF mMIMO

A DNN unsupervised
learning-based approach

Constructed approach achieved a
performance–complexity trade-off around
400 times faster than the
optimization-based method

The design is only limited to the
unsupervised learning approach [81]

Sum-rate maximization with
ML-based power control

DCNN algorithm to determine
mapping terms

UL sum-rate of the system increased by
3 times more than existing methods with
less than 0.02% loss

The complexity increases with the
larger network [82]

C
ha

nn
el

Es
ti

m
at

io
n

Evaluated the CSI feedback in an
FDD CF mMIMO network

Deep-learning-based denoise
network (DDNet)

The algorithm showed better results than
existing models (performance comparison
conducted at SNR −5 dB to 40 dB)

A more advanced learning mechanism is
used to achieve better denoise quality [83]

Distributed UL BF in CF
mMIMO systems

DRL-based DDPG, D4PG,
fully-distributed BF algorithms

All DRL schemes performed better than other
methods (learning rate of gradient α = 0.1,
K = M/3, M = [15–150], K= user count)

The presented framework can be
generalized to comply with different
wireless network parameters

[84]

Optimized the performance of any
FL design

Designed FL algorithm with an
optimization problem

Joint design minimized the training time by
up to 55% over baseline models Complex computational algorithm [85]

Analyzed the CSI acquisition and
feedback overhead problem

Low-complexity estimation process with
small overhead

SE and EE of the suggested power design
outperformed cell-based networks

Cost increases with higher number of
cellular users [86]

Investigated the semi-blind channel
estimation at the CPU of a UL
CF mMIMO

A low-complexity E-KMC algorithm

High BER performance, which was close to
perfect CSI case/E-KMC, significantly
reduced complexity, i.e., approximately
106-fold in a 6 × 64 QPSK system

Accurate CSI is required to achieve
higher performance [87]
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3.2. mMIMO Technology

The current mmWave and untouched sub-mmWave bands are the key enabling tech-
nologies for 5G cellular broadcasting and have been regarded as commendatory technolo-
gies for the forthcoming cellular carriers [88]. Since hybrid BF is an essential part of the
existing wireless systems in the guidance of the best and fastest transmission route by
generating continuous multiple ultra-high frequency lobes for short-distance measure-
ments, the high-spectrum access with beam management is expected to deliver enhanced
user and system data rates. This would raise the bar by almost 100 times more than the
previous mobile generations with the help of mMIMO intelligent arrays [89]. However,
the elemental limiting factor for the conventional hybrid precoding frameworks used in
multi-antenna networks is the heavy computing complications, which severely affect the
ability to optimize the spatial information gain.

Concerning the learning-based methods, the assistance of BF-mmWave and multi-
antenna streams is considered an optimum remedy to maintain the current 5G wireless
transmission activities. Some of the recently concluded studies presented in the litera-
ture focused on the optimization of different antenna challenges while exploiting AI/ML
techniques are demonstrated below.

3.2.1. Hybrid Precoding Designs

A deep learning hybrid precoding method was designed to reduce the complexities
and increase the system performance [90]. The analytical results validated the facilitation
of hybrid precoding by reducing the BER level and increasing the SE. The super-fast data
transferability rate of the mmWave spectrum makes it difficult to estimate channels based
on the BS, especially pilot signals. The situation becomes worse for mobile users and
smart moving platforms, which creates several challenging situations. The authors in [91]
presented a deep learning compressed sensing (DLCS) channel estimation process and
deep learning quantized phase (DLQP) hybrid precoder for low-resolution phase shifters.
The results proved the high performance of both schemes in terms of the channel prediction
and SE. Likewise, hybrid precoding was deemed a promising aspect to help provide high
data rates for future IoT infrastructure. Nonetheless, the current literature does not contain
discussions on the many soft solutions for high power consumption rates. To address this
issue, CEO-based hybrid precoding with one-bit PSs for frequency-selective wideband
mmWave mMIMO systems was investigated by the authors in [92]. The results validated
the high EE and acceptable sum-rate performance of the previously developed schemes.
Although various studies have been performed for hybrid precoding designs using OMP
and AM techniques, in contrast few researchers have opted for different algorithms or
constructed hybrid precoding solutions with low computational hardship. So far, all of
these remedies are limited to narrowband mmWave channels, and wideband mmWave
scenarios still need to be further explored. Therefore, a joint hybrid combiner and precoder
technique for wideband mmWave mMIMO systems to acquire an achievable sum-rate
was presented [93]. The empirical assessment highlighted the system’s good performance
in terms of computation time as compared to the existing solutions. The joint work of
the Tx BF matrix at the BS and the phase shift matrix at the reconfigurable intelligent
surface (RIS) using deep reinforcement learning (DRL) was considered for reliable system
performance [94]. It was observed that the neural network parameter’s appropriate settings
significantly enhance the algorithm’s convergence rate and overall performance. Table 4
summarizes the work conducted by the researchers recently using AI/ML algorithms for
hybrid precoding designs.
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Table 4. Summary of hybrid precoding designs in BF-mmWave-mMIMO systems with AI/ML.

Approach/Issue Methodology Advantages Limitations Ref.

High computational issues
in hybrid precoding to
reduce hardware
complexities and energy
consumption

Deep-learning-based
hybrid precoding

DNN scheme facilitated the hybrid
precoding because of mapping and
recognition abilities; the
simulation showed a reduction in
BER and enhanced SE

Must apply a deep learning
framework in the channel
feedback problem to remove
the codebook size and
feedback overhead

[90]

Channel estimation with
new precoding design

DLCS channel estimation and
DLQP hybrid precoder

DLCS proved to be best channel
estimation apporach rather than
OMP and DGMP; the simulation
results showed a fixed SNR = 15
dB for J = 6 DLCS provided 56.1%
and 85.2% improvements; at J = 7,
DLCS gave 56.0% and 84.3%

Ther is a need to develop
channel estimation and hybrid
precoding design for a
wideband MU-mmWave
mMIMO system with DL

[91]

Analyzed energy
consumption, array gain
loss, and sum-rate
maximization problems

CEO-based hybrid precoding
with one-bit PSs

The proposed CEO-based method
at N = 128, NRF = 8, and M = 256
achieved 80% of the sum rate and
a higher EE, being comparatively
better than other
benchmark schemes

A higher antenna array is
required for accurate results [92]

Evaluated antenna gain and
complexity costs

TS-based joint hybrid
precoding and
combination scheme

A higher sum rate achieved along
with a low computing latency

Restricted to a limited number
of use cases. There is a need to
extend the strategy to multiple
user cases

[93]

A large-dimension
optimization problem

Joint design obtained via
trial–error interactions
using DRL

The proposed method gradually
improved its behavior. The SNR
affects the convergence rate
and performance

The DRL is sensitive to
low SNRs [94]

3.2.2. Beam Management Techniques

The current 5G BSs have simultaneously served many users with multiple beams in
MU-mmWave mMIMO networks. A hierarchical codebook-based beam training scheme
is usually utilized in the beam selection and alignment process for different users. In [95],
a new alignment method with partial beams using ML (AMPBML) was evaluated. The
bench test verified the superiority of the algorithm in terms of the SE and total training time
slots over conventional methods. Similarly, a combination of ML tools and a situational
awareness model was demonstrated in a congested mobile vehicular environment [96].
The numerical analysis showed an improvement in prediction accuracy that contributed to
the throughput with approximately zero overhead. In [97], the researchers fully capitalized
on the AoA information to conduct beam selection in the UL direction. A mixture of analog
BF with an adjustable beamwidth and zero-forcing (ZF) baseband processing block with
two supervised ML approaches was established. As a result, the received accuracy and
sum-rate values were close to the exhaustive search results. Moreover, the use of hybrid BF
is a promising low-cost solution for wide-scale transceiver streams; however, the selection
of codewords for analog BF is critical to efficiently maximize the UL sum rate [98]. A
data-driven process based on ML is used to obtain the near-optimal proposition, and the
analytical results proved the lower computational delay with a high-order magnitude. Two
deep learning schemes, namely original DNN-based beam training (ODBT) and enhanced
DNN-based beam training (EDBT), have been formulated. The analytical results proved
the dominance of the process in reducing the beam training overheads as well as the RF
signal coverage area. However, satisfactory behavior is yet to be shown in terms of the
achievable success rate [99]. The 3D control of spectrum provisions involves combined
implementations of various techniques. For example, the authors in [100] suggested the
joint implementation of vertical space–time bell labs and spatial multiplexing to attain high
transmission rates while maintaining the lowest number of RF chains at the transmitter.
Similarly, hybrid beamforming is emerging as a vital concept in 6G physical layer intricacies
for handling multi-GHz bandwidths [101]. The authors in [102] proposed a 3D hybrid
beamforming approach for THz massive MIMO broadband communication. This is a
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low-cost scheme based on a two-tier true time delay for counting the beam squint effect
in both the vertical and horizontal directions. Moreover, the authors in [103] suggested
a deep-learning-based wideband hybrid precoding network for a THz-enabled massive
MIMO system. The scheme preprocesses the CSI through the mean channel covariance
matrix. The proposed scheme can handle the imperfect CSI due to having a higher sum
rate than the full digital precoder. Table 5 summarize the work conducted recently using
AI/ML algorithms for beam management techniques.

Table 5. A summary of the beam management techniques in BF-mmWave-mMIMO systems
with AI/ML.

Approach/Issue Methodology Advantages Limitations Ref.

Analyzed beam alignment
for MU-mmWave mMIMO

Alignment method with
partial beams using ML
(AMPBML) algorithm

The output was achieved when
SNR = 0 dB, NPS I, at U = 3 59.0%,
68.7%, and 257.0%, respectively,
whereas at U = 7, AMPBML received
17.3%, 131.4%, and 376.5%
improvements over the ACS, MDR,
and HS schemes, respectively

NPS II still shows slightly
better performance
than NPS I

[95]

Capitalized on mmWave RF
energy in a highly mobile
vehicular scenario

Combinatorial of ML and
situational awareness to
learn beam characteristics

It helped to identify useable beams
from the bad beams; the dataset’s
highest beam power was Pmax = 44.23
dBm and the lowest
Pmin = −15.15 dBm

The given stats for the
dataset’s upper- and
lower-bound
power evaluation

[96]

Examined AoA information
for beam selection

ML approaches: k-nearest
neighbors, support vector
classifiers, multi-layer
perception

ML algorithms held about 90% of the
sum rate with optimal beam prediction

Requires generalization in
the context with
multipath propagation

[97]

Investigated the selection of
codewords for hybrid BF

Data-driven scheme based
on ML with analog beam
selection in the training of
data constraints

Produced near-optimal sum-rate
percentage and complexity was
significantly reduced

The complexity of the BF
algorithms is increased [98]

Investigated beam training
in an mmWave
mMIMO system

Two DNN-based beam
training schemes, i.e., ODBT
and EDBT

Successfully reduced the beam training
overhead and enlarged the signal
coverage zone

Needs improvements to the
DNN design and
preprocessing format

[99]

3D control of the spectrum
Joint implementation of
vertical space–time bell labs
and spatial multiplexing

High transmission while maintaining
the lowest number of RF chains at
the transmitter

A complex mathematical
algorithm is required for
large-scale SMx-SM systems

[100]

3D hybrid beamforming Two-tier true time delay Counters the beam squint effect in both
the vertical and horizontal directions

An additional phase shifter
array is needed with the
same number of antennae

[102]

Deep-learning-based
precoding

Preprocesses CSI through
mean channel
covariance matrix

Handles the imperfect CSI due to
having a higher sum rate than the full
digital precoder

A uniform planar array
(UPA) is utilized rather than
a conventional uniform
linear array (ULA)

[103]

4. Open Issues and Future Research Directions
4.1. Limitations of Conventional AI/ML Approaches

Regarding the current multi-tier 5G HetNet systems, researchers have developed
several intelligent and learning-based methods for managing the real-time user’s activ-
ities, the link budgeting, the data traffic load capacity, the network resources, and the
scalability. In this context, centralized AI and ML algorithms are promising methods
that can extract a substantial amount of data from electronic appliances and instruments
without being extensively programmed [104–106]. The AI and ML techniques are par-
tially involved in different domains of 5G mobile operations, allowing smooth network
functionality, agility, and robust instantaneous performance for diversified broadband and
delay-sensitive applications.

However, the continuous growth in data traffic from diversified mobile multimedia
activities and the many upcoming high-BW plus delay-tolerant use cases, such as digital
replica, extended immersive reality, and brain–computer wireless interaction applications,
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will require extreme reliability (up to 10−9 percentile), ultra-low latencies (up to 0.5 ms), and
superior throughput rates (multiple Tbps) using B5G/6G networks [107]. The centralized
learning approaches are not able to smoothly govern the challenges related to daily data
consumption and the network load due to their cloud-centric architecture, whereby a large
volume of data is centrally collected, processed, and stored. The unprecedented throughput
and reliability–latency requirements have shifted the focus to intelligent federated and
distributed learning approaches, where data can be processed and computing resources
can be located at the edge nodes instead of routing across the network [108,109].

4.2. Distributed and Federated Learning Techniques
4.2.1. Distributed Learning

In the contemporary wireless communication ecosystem, the majority of the AI/ML
approaches are based on a centralized architecture, wherein the collected data set has to
be route through a central server location (or cloud). Subsequently, the cloud server is
used for the analysis and processing of the data, which are then sent back to the sensors
and actuators [110]. However, due to the paradigm shift regarding big data and the
limited radio resources, not all smart devices should transmit all of their accumulated
data to a cloud server that can further utilize a centralized learning approach for the
analysis of data. Moreover, many emerging wireless services, e.g., D2D communication,
aerial vehicles, and industrial robotics networks, are inherently distributed, and in view
of the future applications, centralized learning techniques may not be appropriate for
delay-sensitive and stringent data success probability services [111]. To overcome this
unprecedented scalability challenge, as well as latency, privacy, BW efficiency, and ultra-
reliability challenges, distributed learning frameworks (e.g., MapReduce) and autonomy
of edge intelligence devices are much needed to compute, analyze, and process data in
real-time at the edge of the cellular network for the swift training of ML models [112].

To attain very high accuracy levels and unmatchable QoS performance in assorted
future extreme broadband and URLLC cases, the upcoming 6G networks will be adjoined in
an integrated system of sensing, computing, communication, and control functions, while
the new distributed learning-based algorithms will be precisely exploited to accelerate the
training of ML models [113]. In regard to this, new refined frameworks and algorithms for
integrated communication, sensing, and learning are indispensable.

A few of the widely discussed approaches for distributed learning design in wireless
network environments are the (i) compression and sparsification, (ii) spatial resource
management, and (iii) AirComp methods. Regarding the compression and sparsification
methods, the compression methods utilize fewer bits to train the ML model parameters,
while sparsification methods update the high-dimensional ML frameworks to their sparse
symbols by trimming some of the relatively trivial elements [114]. Thus, both methods
assist in reducing the magnitude of ML model parameters and ultimately achieve lower
communication overhead costs.

In the context of spatial resource management, for the efficient utilization of limited
resources, the time–frequency slots, transmit power, training sequences, computing times,
and computational complications are being optimized with the support of distributed
learning techniques. This is being done to escalate the process and enhance the functionali-
ties of future wireless networks. AirComp provides scalability solutions for multi-access
in the presence of substantial edge devices in a dense geographical area, and is critical
for achieving good minimal learning performance [115]. Moving forward, an approach
that must be considered is to construct a distributed training model that simultaneously
considers the cellular network dynamics (e.g., channel characteristics), distributed learning
parameters, and topologies of the wireless ecosystem (e.g., mobility patterns of smart nodes,
locations) [116].
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4.2.2. Federated Learning

The use of federated learning (FL) has also become popular in wireless communication
activities due to its benefits over centralized systems. In the FL process, raw data are
reserved at end-user nodes, which contribute to training the joint model [117]. At the
central server end, locally computed updates are acknowledged and accumulated for an
improved global model assisted by distributed learning. Thus, in this way, future wireless
systems could not only maximize the rate–reliability–latency aspects but also escalate the
training of the AI/ML models [118,119]. The current applications of FL frameworks are in
Google prediction keyboards and many other diverse areas, including healthcare, smart
transportation system, and industrial automation [119].

Lately, many studies have been conducted on different training aspects to allow person-
alization (i.e., multi-task learning), to train sets over dynamic topologies, and to guarantee
agility in comparison with traditional centralized ML and data analysis approaches [120].
Nonetheless, a concern that limits the potential results of the FL model is its overhead com-
munication cost, which is proportional to the number of model parameters, meaning the
FL model has a deficiency in supporting deep NNs over capacity-limited cellular systems.

4.3. Antenna Selection Techniques

The use of a multi-antenna system is a beneficial approach to accommodating a mas-
sive number of intelligent electronic devices with uninterrupted data rates and reliability,
whereby each antenna element requires a dedicated RF chain, which results in higher
energy dissipation rates and hardware costs. The antenna selection method can allevi-
ate the practical limiting aspects of mMIMO systems, whereby a group of antennae are
connected to a small number of RF electronic chains by an RF switching network, which
eventually achieves EE and lowers the hardware cost. Consequently, the authors in [121]
proposed a matching pursuit approach with a generalized bit plane technique based on
a greedy algorithm for antenna selection, while optimizing the MSE of the signal recep-
tion, minimizing the Tx power, and achieving reliable reception with low algorithmic
complexity. Likewise, the concepts of submodularity and monotonicity are based on the
greedy algorithm, maximizing the sum-rate capacity in the DL stream under the antenna
selection trouble scenario proposed by the authors in [122]. The results showed that the
suggested algorithm performed extremely well under restrictive switching feasibility and
multi-subcarrier transmission conditions.

The antenna selection strategies were beneficial in terms of improving the performance
of the wireless network and the SE while reducing power consumption issues. Nonetheless,
the antenna selection process inherently leads to performance loss owing to the activity
of a special group of antenna elements [123]. It is necessary to construct a new system
architecture that alleviates the overall performance loss issues while benefitting from low
power dissipation and hardware overheads.

4.4. Reconfigurable Intelligent Surfaces

The concept of reconfigurable intelligent surfaces (RIS) is closely related to the M-
MIMO technology, and it has been validated that it will play a pivotal role in achieving
the objectives of B5G/6G M-MIMO networks [124]. Principally, the RIS system involves a
planar meta surface array comprised of several low-cost and passive electronic elements,
whereby each unit can be independently regulated to a certain degree of the phase shift via
a central RIS controller, ultimately causing changes to the incident signal [125,126]. The
modification can be observed either in the form of the phase, amplitude, polarization, or
frequency. Therefore, by approximately modifying the phase shift of each passive element,
the incident signal reflected by the smart meta surface can be constructively converged at
the position of interest [127]. The newly introduced RIS technology is a robust mechanism
that can assist in maintaining the transmission rate under a poor channel state [128,129].

However, the analysis and design frameworks used in the RIS technology are still in
their initial stages, while researchers and mobile communication authorities have firmly
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stated that it has the potential to meet future communication needs [130]. Thus, in the
forthcoming years, substantial analytical, empirical, deployment, and elemental research
studies on RIS will pave the way for enhanced QoS performance and user experiences in
different B5G/6G wireless ecosystems [131,132].

4.5. Energy-Harvesting-Based Approaches
4.5.1. Energy Harvesting via Conventional Approaches

The upcoming 6G networks are expected to be hyper ultra-dense networks that will
enable data connectivity for a massive number of smart devices for a variety of services.
The immediate concern is the energy usage, because the majority of the Internet-connected
peripherals will be either powered by a battery charger or batteryless tools [133]. In
practice, the use of battery pack backups with limited charging capabilities minimize
the overall network’s lifetime, eventually degrading the QoS. In this regard, frequent
battery replacements are still advisable to offer flexibility, yet excessive labor, hardware,
and material costs are a major stumbling block to the performance and optimization
of a colossal smart device’s wireless data connectivity [134]. Thus, different advanced
AI/ML-based energy restoration solutions are urgently required to ameliorate the energy
distribution challenges in future mobile networks. Therefore, 6G deployments have been
trialed with several novel approaches, such as green and sustainable communication,
energy harvesting, intelligent reflecting surface, and deep enforcement learning-based
resource allocation approaches [135].

Wireless energy harvesting solutions have been studied to address various real-world
scenarios where electric grid systems are not applicable; for example, aerial platforms
and wireless sensor networks have been studied [136] with sensing elements in challeng-
ing environmental structures [137,138]. In theory, the RF energy radiated by the Tx can
be cultivated at the Rx side, which can be modified into electrical energy for future use.
Nonetheless, wireless energy transfer (WET) technologies encounter many technical hard-
ships related to resource allocation, energy beam alignment, and frequent signal path loss
attenuation. Thus, to completely unlatch the full potential of the WET technology, it needs
to be collocated with other contemporary technologies and architectures to achieve the
practical demonstration of IoE networks [139].

4.5.2. Energy Harvesting Using RIS-AIDED CF mMIMO Systems

CF mMIMO APs are inherently distributed and can conspicuously assist each user
via multiple RF streams across a massive access network. In such a massive network
architecture, a large amount of energy would be dissipated while significantly elevating the
interference trouble imposed by the hyper ultra-dense APs. Hence, it is imperative to inves-
tigate innovative and robust SE and EE solutions for low-cost 6G wireless networks [140].

Recently, the RIS metasurface approach, which requires very low power consumption
to process the RF incident signal, has shown good performed when deployed in com-
munication networks and is able to support cellular services in dead zones; thus, it is
considered an efficient solution to minimize the energy effects in wireless propagation
environments [141]. Despite the commendable attributes of RIS-aided CF mMIMO systems,
a few researchers have focused on optimizing the energy consumption performance. For
instance, these authors have investigated the combined performance of BF and phase
shifts and the energy credibility at the IRS for a fast-fading channel model as a non-convex
optimization issue [142]. The proposed computationally efficient iterative scheme shows
superior performance as compared to traditional MISO antenna systems without IRS ar-
rays. The authors of [143] studied the overall network performance and sustainability of a
single RIS-aided CF mMIMO system; however, the study was conducted under idealistic
scenarios, investigating the Rayleigh fading channels and adequate energy storage capac-
ity. Another study was performed on the precoding design for RIS-assisted CF mMIMO
systems [144]. However, a comprehensive research analysis on the exposure of RIS with CF
mMIMO antenna systems and WET technology is an open research area.



Electronics 2023, 12, 189 21 of 28

4.6. Fuzzy Neural Network (FNN) for MIMO

MIMO systems display high oscillations in time and signal amplitudes, making
AI/ML-based learning a challenging task for conventional techniques. Therefore, the
neuro-fuzzy approach is considered suitable for the collection of the timed automata-based
dynamic behavior of the MIMO system [145]. Due to the non-linear analysis abilities
of the ANN and fuzzy interference methods, fuzzy neural networks (FNNs) have been
extensively researched for MIMO network designs. MIMO systems involve non-linear and
uncertain functions with increased complexity, which can be approached effectively using
fuzzy adaptive control methods [146].

Likewise, fuzzy rules can improve the detection and correlation criteria via iterative
extension in clustering algorithms [147]. The handling of fault estimation and matching
conditions in mode-dependent interval type-2 fuzzy systems can be sufficiently improved
through the use of quantized signal output [148]. The authors of [149] suggested trajectory
tracking for a class of Takagi–Sugeno fuzzy Markovian jump time-varying delay systems
with unknown uncertainties and disturbances.

Adaptive interval type-2 (IT2) fuzzy slicing can be used to provide improved esti-
mation performance for unknown dynamic behaviors in distributed MIMO systems. The
authors of [150] suggested the Lyapunov stability approach for the driving adaptation law
based on adaptive IT2 fuzzy slicing for the MIMO system. Similarly, the use of approaches
such as fractional-order interval type-2 fuzzy systems can be researched for effective beam
tracking in mMIMO systems [151].

5. Discussion

The complex heterogeneous network (HetNet) cellular architecture, the progression
of information and communication technologies, and the extensive mobile Internet usage
raise several unprecedented challenges in the successful utilization of network resources.
In addition, HetNet systems will support the massive connectivity of mobile and portable
appliances and allow relaxation in the functionality of networks, with rapidly increasing
higher bandwidth applications for users over the next decade. The potential benefits of
mMIMO systems are the underlying the timely acquisition of CSI, either in the form of
long-term statistical or instantaneous data (for each antenna node) [152,153]. Since the
overall latency is formed via the transmission, processing, signaling, and retransmission
of data packets, the initial channel request, training signals, scheduling, and queuing la-
tencies add enormous weight when establishing a link between the BS and smart node
functions [154,155]. Herein, any sort of latency is susceptible to link-connectivity failure,
and single-packet corruption in extreme, broadband, and scalable URLLC cases would be
catastrophic. Robust techniques are needed for open loop or grant-free access communica-
tion with mMIMO systems for URLLC cases in 6G networks.

Although large-scale multi-antenna technologies offer multiple spatial degrees-of-
freedom, such as greater SINR linking due to better array gain rates and channel hardening
in quasi-immune to fast-fading links [156], the modern multi-antenna system sets new
model and performance expectations regarding the physical layer aspect, which can com-
plement the upper-layer mechanisms to meet the stringent requirements of B5G/6G use
cases, especially for unprecedented time-sensitive applications [157].

• Similarly, various approaches have evolved for the optimized implementation of
AI/ML approaches, in M-MIMO systems, such as fuzzy logic approaches. AI/ML al-
gorithms can naturally handle the issues of large-scale complicated design formations
and can be gradually increases for the applications and service requisites of 5G/B5G
cellular networks [158]. The mMIMO systems with the partial assistance of AI/ML
strategies have the potential to support current 5G mobile user services, and could be
used to construct wireless systems that are more concrete and sharper. Contrarily, the
complete involvement of AI/ML frameworks and higher-spectrum access upgrades
in mMIMO systems is certainly desirable for 6G mobile communication networks and
requires tremendous research work. Thus, a few of the research challenges on the
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full exploitation of mMIMO characteristics with fully enabled AI/ML techniques are
discussed below.

• ML approaches face trouble regarding their successful implementation in mMIMO
systems due to the use of large antenna elements, leading to complex dimensional
search issues.

• In real-world mMIMO scenarios, convergence is a serious threat when training
AI/ML models.

• It is crucial to construct a channel model that can allow the real-time adaption of the
time-varying system.

• A robust distributed learning-based solution is needed for mmWave mMIMO systems
to learn the beam combinations of transmitting and receiving signals in real time.

• The precoding technique in mMIMO systems enhances the throughput and reduces
the interference; however, it increases the computational complexity. It is of the utmost
importance to use low-complexity and efficient precoders in mMIMO networks.

• The future 6G networks will introduce more diverse use cases and allow the full
connectivity of satellite and aerial vehicles. Comprehensive research on learning-based
precoding and channel estimation schemes for ultra-mMIMO networks is critical.

• AI and ML algorithms can be used in THz ultra-mMIMO architectures to analyze statistical
channel characteristics, user scheduling, signal detection, and pilot contamination issues.

• Although fuzzy approaches are considered empowering elements in AI/ML-based
solutions for MIMO systems, the growing size of the fuzzy logic rule base can become
a challenge in edge computing and low-resource scenarios such as IoT applications.

• Currently, smartphones are not fully capable of implementing mMIMO structures
(more than or equal to 8 × 8 antennae) and face difficulties in UL acquisition. It is
an essential and excellent area of study to design a smartphone equipped with an
mMIMO system with an intelligent mechanism and low manufacturing costs. In
addition, it should be compatible with all previous mobile technologies and services.

• Wireless fronthaul–backhaul communication with the assistance of higher spectrum
access and the mMIMO system is a promising topic of study. Substantial research
work is required to explore this theme; thus, a flexible and stringent transmission
scheme with a learning-based active interference cancellation mechanism is needed.

6. Conclusions

The tremendous growth of mobile data traffic and the continuous increase in the
number of smart wireless connected devices are inescapable challenges. The use of massive
MIMO intelligent antenna sensing equipment is the answer to handle these global chal-
lenges. However, the escalation and complex architectures of the different technologies
increase the computational time, latency, and algorithmic complexity when managing
network operations. The use of AI and ML approaches and analytical measurements has
resulted in sharp reductions in computing time and prominent increases in the robust
operation performance of diversified technologies, including mMIMO antennae. This work
has presented a critical and comprehensive overview of mMIMO networks with the key
enabling techniques. Since the AI and mMIMO methods form a fundamental path to
enable future cellular systems, they have also been fully discussed in relation to B5G and
next-decade wireless networks. We believe that this work will help researchers to make the
expected AI–mMIMO transition possible.
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