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ABSTRACT

We study key issues related to multilingual acoustic modeling for 
automatic speech recognition (ASR) through a series of large-scale 
ASR experiments. Our study explores shared structures embedded 
in a large collection of speech data spanning over a number of 
spoken languages in order to establish a common set of universal 
phone models that can be used for large vocabulary ASR of all the 
languages seen or unseen during training.  Language-universal and 
language-adaptive models are compared with language-specific 
models, and the comparison results show that in many cases it is 
possible to build general-purpose language-universal and lan-
guage-adaptive acoustic models that outperform language-specific 
ones if the set of shared units, the structure of shared states, and 
the shared acoustic-phonetic properties among different languages 
can be properly utilized. Specifically, our results demonstrate that 
when the context coverage is poor in language-specific training, 
we can use one tenth of the adaptation data to achieve equivalent 
performance in cross-lingual speech recognition. 

Index Terms— Multilingualism, acoustic modeling, language 
adaptation, universal phone models. 

1. INTRODUCTION

Building language-specific acoustic models for automatic speech 
recognition (ASR) of a particular language is a reasonably mature 
technology when a large amount of speech data can be collected 
and transcribed to train the acoustic models. However when multi-
lingual ASR for many languages is desired, data collection and 
labeling may become too costly that alternative solutions are often 
desired. One potential solution is to explore shared acoustic pho-
netic structures among different languages to build a large set of 
acoustic models (e.g., [1][2][3][5][7][8][9]) that characterize all the 
phone units needed in order to cover all the spoken languages be-
ing considered. This is sometimes called multilingual ASR or 
cross-lingual ASR when no language-specific data is available to 
build the acoustic models for the target language.

One central issue in multilingual speech recognition is the 
tradeoff between two opposing factors. On the one hand, use of 
multiple source languages’ acoustic data creates the opportunity of 
greater context coverage (as well as more environmental recording 
conditions). On the other hand, the differences between the source 
and target languages create potential impurity in the training data, 
giving the possibility of polluting the target language’s acoustic 
model. In addition, different languages may cause mixed acoustic 
dynamics and context mismatch, hurting the context-dependent 
models trained using diverse speech data from many language 
sources.

Thus, one key challenge in multilingual speech recognition is 
to maximize the benefit of boosting the acoustic data from multiple 

source languages while minimizing the negative effects of data 
impurity arising from language “mismatch”.  Many design issues 
arise in addressing this challenge, including the choice of lan-
guage-“universal” speech units, the total size of such units, defini-
tion of context-dependent units and their size, decision-tree build-
ing strategy, optimal weighting of the individual source languages’ 
data in training, model adaptation strategy, feature normalization 
strategy,  etc. 

Our current research explores all the above issues in a com-
prehensive manner so as to develop a most appropriate strategy in 
building multilingual ASR systems. The goal of this paper is to 
present our preliminary findings in this exploration. Specifically, 
we found that when the context coverage is weak in the language-
specific (LS) acoustic model (even with over 20 hrs of LS training 
data), using additional new languages’ training data improves the 
LS recognizer’s performance. Further, after adapting the above 
language-universal (LU) acoustic model using the limited LS 
acoustic data, further performance improvement is observed. 

2. UNIVERSAL PHONE SET 

The main goal of multilingual acoustic modeling is to share the 
acoustic data across multiple languages to cover as much as possi-
ble the contextual variation in all languages being considered. One 
way to achieve such data sharing is to define a common phonetic 
alphabet across all languages. This common phone set can be 
either derived in a data-driven way, or obtained from phonetic 
inventories such as Worldbet [4], or International Phonetic Alpha-
bet (IPA) [6].  In this study we use the universal phone set (UPS), 
which is a machine-readable phone set based on the IPA. 

In general, there is a one-to-one mapping between UPS and 
IPA symbols, while in a few other cases UPS is a superset of IPA. 
For example, UPS includes some unique phone labels for com-
monly used sounds such as diphthongs, and nasalized vowels, 
while IPA treats them as compounds. Generally, UPS covers 
sounds in various genres, including consonants, vowels, supraseg-
mentals, diacritics, and tones.  Table 1 illustrates the number of 
different types of UPS units for each of the eight languages 
(French, Portuguese, German, Italian, Dutch, Spanish, Swedish, 
and English) we used in this study.  

There are a total of 80 distinct UPS symbols, including 30 
vowels, 47 consonants, 1 suprasegmental, and 2 diacritics for the 
eight languages we used in this study.  The language sharing factor 
is 3.85, meaning that on average one symbol is shared by 3 to 4 
languages. Adding four other symbols used for silence and noise, 
we finally have 84 units for the eight languages to train language-
universal (LU) acoustic models. The UPS-based pronunciation 
dictionariy for each language is converted from its original lexicon 
using the mapping of old phone set to UPS. The mapping is de-
fined by linguistic experts, and is usually one-to-many. 
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Table 1. Number of vowel (vow), consonant(con), suprasegmentals (sup), 
and diacritics (dia) units for the 8 languages used in this study

FRA PTB DEU ITA NLD ESP SVE ENG
vow 19 13 19 11 15 6 19 18
con. 23 22 25 24 22 21 23 24
sup - - 1 1 - - 1 -
Dia 1 1 - - - - - -

Total 42 36 45 36 37 27 43 42

3. EXPLORING ISSUES IN MULTILINGUAL ASR 

The LU acoustic training data used in this study are from tele-
phone recordings in all eight languages. They are selected from 
several corpora. Most of them contain phonetic-rich sentences and 
application oriented utterances such as application words, number 
strings, dates embedded application word, spelled names/words, 
natural number, money amounts, etc. There are around 20-30 
hours’ data from each language, resulting in a total of 180 hours 
data for language-universal training.  We used these data sets to 
explore several key issues in multilingual ASR, as reported in this 
section.

Table 2. Description of training data 

Language Corpus # Speakers Hours 

FRA ELRA-S0016 1000 30.8 
PTB MOBIL4PB 922 23.4 
DEU ELRA-S0162 3474 16.7 
ITA ELRA-S0052 989 23.5 
NLD SSP35097 703 18.6 
ESP ELRA-S0065 992 33.9 
SVE PHIL196 493 23.2 
ENG ELRA-S0074 1000 17.5 

Training of both language-specific and language-universal 
models follow the same procedure described below. 13 MFCCs 
were extracted along with their first and second time derivatives, 
giving a feature vector of 39 dimensions. Cepstral mean normali-
zation was used for feature normalization. All the models men-
tioned in this paper are cross-word triphone models. Phonetic deci-
sion tree tying was utilized to cluster triphones. A set of   linguisti-
cally motivated questions were derived from the phonetic features 
defined in the UPS set. The number of tied states, namely senones,
can be specified at the decision tree building stage to control the 
size of the model. The top-down tree building procedure is re-
peated until the increase in the log-likelihood falls below a preset 
threshold. The number of mixtures per senone is increased to 4 
along with several EM iterations. This leads to an initialized cross-
word triphone model. The transcriptions are then re-labeled using 
the initialized cross-word triphone models, which were used to run 
the training procedure once again – to reduce number of mixture 
components to 1, untie states, re-cluster states and increase number 
of mixture components. The final cross-word triphone is modeled 
with 12 Gaussian components per senone. 

 As for testing, we are interested in telephony ASR under var-
ious environments, including home, office, and public places. We 
chose Italian as our target language, which is seen during the 
language-universal training. Other languages can also be used to 
conduct the same series of tests to be discussed in detail in the 
following. Several test sets were used as shown in Table 3. In all 

of our experiments, The Microsoft speech recognition engine was 
used for acoustic modeling and the grammar-based decoding. 

Table 3. Test set descriptions including number of utterances (#utt) and 
number of speakers (#sp.)

ID Corpus #utt # sp. Environments 

Test I ELRA-S0052 2140 99 Office/home 

Test II ELRA-S0116 2199 400 Office/home/street/public 
place/vehicle 

Test III PHIL18 4827 197 Quite environment 

Test IV PHIL42 3916 129 Office/home/Quite envi-
ronment

3.1. Language-Specific & Language-Universal Training 

In our language-specific (LS) exploration, we used only the Italian 
data from corpus ELRA-S0052 as the training set, which contains 
over 20 hours of speech. In contrast, our language-universal (LU) 
training made use of all training data from eight languages, includ-
ing the Italian data, for building the multilingual acoustic model.  
For the LS model, we had 3000 senones based on the amount of 
data for LS training, while for the LU model, we had 5000 senones 
since more training data were used in the training. For fair com-
parisons, we also increased the number of senones for the LS 
model, which was stopped at around 4600 when the problem of 
data insufficiency was detected.  
      As we expected, LU modeling is supposed to utilize more data 
and more context information borrowed from other languages. To 
examine this, we analyzed the context coverage defined as the 
percentage of the number of test set triphones that appear in the 
training set more than N times over the total number of triphones 
in the test set. As shown in Table 4, for N=1, LU training usually 
has larger value than the LS training has, indicating that some 
triphones seen in the LU training is unseen in the LS training.  
Also, more triphone units are seen over 100 times in LU training 
than in LS training. 

Table 4 Context coverage on four test sets from the LU and LS training, 
respectively

Test I Test II Test III Test IV 
LS LU LS LU LS LU LS LU 

N=1 99% 99% 95% 99% 96% 100% 91% 97%
N=100 70% 82% 59% 76% 85% 93% 73% 83%

However, the resource-rich advantage of LU acoustic modeling 
does not seem to directly reflect the advantage on recognition per-
formance in terms of word error rate (WER). Row two and row 
four in Table 5 show the WER of the LS and LU models over the 
four test sets.  LU model only works better than LS model on test 
set III. Note that test set III is the only test set that LU training 
covers all the triphones in the test and still have over 90% context 
coverage for N=100. Error analysis reveals that the improvement 
might come from the fact that LU training has better context cov-
erage. One example is triphone “sil-e+m”. It is covered by LU 
training but unseen in LS training. In the test, LS model made 6 
deletion errors of word “emergenza”, while there was only one 
deletion in the LU case.

On other test sets, LS model outperforms LU. The observa-
tion that LU training usually decreases the model precision for 
recognition of seen languages is consistent with other studies 
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[2][5][8][9], which we believe are caused by the same reason as 
our results above for the test sets other than set III.

Although LU modeling enjoys richer data resources, it also 
has a larger set of units to model and these units shared across 
different languages may not be “pure’’. In our experiments, LU 
training may not be considered to have contained more data be-
cause the number of cross-word triphones for the LU model is 
about 9 times larger than the LS model. Further, senones in the LU 
model are supposed to cover all languages and thus are less “dedi-
cated’’ to a specific language compared with senones in the LS 
model. This situation is similar to that of speaker-independent 
models vs. speaker-dependent models. Finally, identical UPS sym-
bols across languages may not correspond to acoustic similarity. In 
the following sections, several methods are investigated to address 
these issues in order to improve LU acoustic modeling.

3.2. Improving LU acoustic modeling 

3.2.1. UPS Unit Reduction 

The size of the UPS derived from phonetic knowledge related to 
IPA definition is usually quite large. There are over 200 units in 
order to cover all world languages. In our case, we have over 80 
monophones for the eight languages. One issue we intend to ad-
dress in this study is whether we need so many “monophone” units? 
For some units, although they might have subtle differences from 
the phonetic consideration, it is difficult to distinguish them acous-
tically. Moreover, for cross-word triphones, a compact speech unit 
representation is usually favored in acoustic modeling since the 
explosion of the number of triphone units can be avoided.

In this study, we propose an acoustic-phonetic clustering al-
gorithm to reduce the number of UPS units derived from IPA. Two 
conditions should be satisfied for merging two monophones. First, 
the two monophones should be acoustically similar. We used 
Kullback-Leibler distances to measure the acoustic similarity be-
tween two phones, which were approximated from the HMMs we 
have in the LU model. Second, two units can be merged if repre-
senting them with the same symbol does not increase confusability 
in the pronunciation dictionaries of all eight languages. The con-
fusability here is defined as the number of homo-lexicons in the 
dictionary. After unit merging, the number of units in our universal 
phone set was reduced from 84 to 62, which are then used to train 
a smaller LU model. The WER results are shown in Table 5 (rows 
with LU model and monophone number 62). Although the im-
provement is not significant here in the exploratory experiments, 
after language adaption the advantage of the new parsimonious 
representation becomes more obvious, as we will see in the next 
section.

3.2.2. Language Adaptation (LA) 

Adapting the multilingual model to a new target language was 
shown to be very useful in some earlier studies [1][3]. In this study, 
we adapt the LU model to language-adapted (LA) model by apply-
ing both maximum a posteriori (MAP) and maximum log likeli-
hood linear regression (MLLR). Language-specific data were used 
for adaptation. Although these data have already been seen during 
LU training, their functionality during adaptation is to make the 
LU model better fit the characteristics of the target language.    

The WER results are shown in Table 5 (see the rows labeled 
with LA-MLLR or LA-MAP). It can be seen that LA consistently 

improves over LU models for all 4 test sets. Note the amount of 
adaptation data is reasonably large, and MAP was shown to be 
more effective than MLLR. Note also that the performance gap 
between the LU and LS models becomes smaller after adaptation. 
Comparing WER results of LA-MAP to LS, the LS model no 
longer has significant advantage for test sets I and II. Meanwhile, 
LA-MAP outperforms LS on test sets III and IV. 

Table 5. Word Error Rate (WER) results

Models #.Mono # Senone Test I Test II Test III Test IV

LS 40 3000 3.62 5.57 6.34 17.90 

LS 40 4600 3.82 5.68 7.67 19.61 

LU 84 5000 4.93 6.75 5.84 19.66 

LU 62 5000 5.05 6.67 5.55 19.08 

LA-MLLR 84 5000 4.74 6.49 5.45 18.59 

LA-MLLR 62 5000 4.81 6.48 5.51 18.34 

LA-MAP 84 5000 4.30 6.24 5.20 17.11 

LA-MAP 62 5000 4.17 5.89 4.66 16.98 

LW-5 84 5000 4.23 5.92 5.22 17.03 

LW-10 84 5000 4.08 5.60 5.06 16.97

 
3.2.3. Language Data Weighting (LW) 

A third way to improve multilingual acoustic modeling is to ex-
plore weighting the language data in multi-lingual training accord-
ing to their similarity to the target language. In this study, we per-
formed the weighting after the LU training was finished. Specifi-
cally, four more EM iterations were performed on the LU model 
while weighting the data from different languages according to the 
following Gaussian mean update:

( )

( )

( ) ( )

( )

l im
l D l

im
l im

l D l

w

w

where  is the weight for language l, D(l) represents all the ob-

servation vectors from language l ,
lw

( )  is the -th vector and 

( )im , the probability that ( )  belongs to the m-th Gaussian 
component in the i-th senone which was computed in the initial 
LU model training. The corresponding variances and mixture 
weights were updated in a similar way.    

The WER results are shown in Table 5. Here, the target lan-
guage, Italian, was seen during LU training. LW-5 and LW-10 in 
Table 5 correspond to setting the language weight for Italian to 10 
and 5, respectively, while the weight for all other languages re-
mained to be unity. It is clear that increasing the weights for Italian 
improves the performance. On test sets I and II, no significant 
differences between the performances of LW and LS were seen. 
Indeed, when the weight for Italian is large enough, the senones in 
LU corresponding to triphones appear in LS training tend to be 
very similar to those in LS models. On the other hand, senones 
corresponding to other triphones unseen in LS training remains to 
be complementary. This is best illustrated by the results on test set 
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III (as well as IV), where LW outperforms LS significantly.  

4. EXPERIMENTS ON CROSS-LINGUAL 
MODEL ADAPTATION 

With three ways of improving the multilingual acoustic model 
after exploring several key issues as described in the preceding 
section, we report our experimental results on cross-lingual acous-
tic model adaptation. Building a system from scratch for a new 
target language can be too time consuming and expensive, since 
the process involves a huge amount of work in speech data collec-
tion (as well as lexicon building, etc.). If we can adapt the existing 
multilingual acoustic models to the target language, the time-to-
market cycle for the new language can be significantly reduced.  
     In our experiments, we examine the case when a new target 
language is unseen during LU training.  Canadian French was used 
in the experiments, with the data sets described in Table 6. The 
FRC-TRAIN data contain 10.5 hours audio, and were used as the 
training data for the LS model, and as the adaptation data for the 
LA models. Two sets of test data were used, with well matched 
and poorly matched context coverage, respectively.

Table 6. Data description

ID Corpus #utt # Sp. Environments 

FRC-Train PHIL101 44357 n/a Quite environment 
FRC-Test I PHIL101 4921 4443 Quite environment 
FRC-Test II PHIL23 1293 1293 Quite environment 

In our experiments, we exploited UPS size reduction and lan-
guage data weighting, where Continental French received higher 
weights during training since we know that the target Canadian 
French is more similar to Continental French than other languages 
in the training set. For adaptation, we used a varying size of the 
adaptation data in order to examine the relationship between the 
amount of adaptation data and the adaptation performance. The 
performance results are shown in Figures 1 and 2. 

In test set I, LS training has very good context coverage since 
the training and test conditions are closely matched. As seen in 
Figure 1, LS performs best in this case. In test II, however, LS 
training has a poorer context converge (67% for N=1) compared 
with LU training (82% for N=1). We observe from Figure 2 that 
with the use of fewer than one-hour data for adaptation, LA mod-
els already achieved a similar performance to that of LS training 
with 10-hour data. With more than two hours of data for adaptation, 
significant improvement was observed. In both test sets, language 
weighting is shown to be beneficial. Also, reducing the UPS unit 
size is shown to be successful in adaptation.

5. CONCLUSTIONS 

In this study, we explored issues of multilingual ASR and found 
that when the context coverage is weak in the LS acoustic model, 
LU model can outperform language-specific model. LA model 
further improves language-universal model, and provides a good 
alternative way to deal with resource-limited languages as shown 
in Fig. 2. We conclude in this study that it is possible to build gen-
eral-purpose LU and LA acoustic models that outperform LS ones 
when we carefully design and properly utilize the set of shared 

units, the structure of shared states, and the shared acoustic-
phonetic properties among different languages. 
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Figure 2.  WER curves on FRC-Test II
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