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This paper presents several new results on the inversion of full normal rank nonsquare polynomial matrices. New analytical
right/left inverses of polynomial matrices are introduced, including the so-called τ -inverses, σ-inverses and, in particular,
S-inverses, the latter providing the most general tool for the design of various polynomial matrix inverses. The application-
oriented problem of selecting stable inverses is also solved. Applications in inverse-model control, in particular robust
minimum variance control, are exploited, and possible applications in signal transmission/recovery in various types of
MIMO channels are indicated.
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1. Introduction

Whilst the task of the Moore–Penrose inversion of polyno-
mial matrices (or rational matrices) has attracted conside-
rable research interest (Ben-Israel and Greville, 2003; Ka-
rampetakis and Tzekis, 2001; Kon’kova and Kublano-
vskaya, 1996; Stanimirović, 2003; Stanimirović and Pet-
ković, 2006; Varga, 2001; Vologiannidis and Karampe-
takis, 2004; Zhang, 1989), the problem of right/left in-
verting nonsquare (full normal rank) polynomial matrices
has not been given proper attention by the academia. The
suggested control applications (Bańka and Dworak, 2006;
2007; Chen and Hara, 2001; Ferreira, 1988; Hautus and
Heymann, 1983; Quadrat, 2004; Trentelman et al., 2001;
Williams and Antsaklis, 1996) have not ended up with al-
gorithms for obtaining right/left polynomial matrix inver-
ses and their quantification. One possible reason could be
an infinite number of solutions to the problem, the ambi-
guity impeding the general analytical outcome on the one
hand and raising confusion with the selection of a ‘proper’
inverse on the other.

A common way out, not to say getting around
the problem, has been the employment of the familiar
minimum-norm right or least-squares left inverses. Tho-
se unique inverses are in fact ‘optimal’ in some sense,
so under the lack of any ‘competitive’ inverses they co-
uld be thought of as the best ones. Such a minimum-

norm/least-squares solution has been encountered in ap-
plications of right/left inverses of nonsquare polynomial
matrices or nonsquare rational matrices, to mention con-
trol analysis and design problems (Kaczorek, 2005; Ka-
czorek et al., 2009; Latawiec, 1998; Williams and Ant-
saklis, 1996) as well as error-control coding (Fornasini
and Pinto, 2004; Forney, 1991; Gluesing-Luerssen et al.,
2006; Johannesson and Zigangirov, 1999; Lin and Co-
stello, 2004; Moon, 2005) and perfect reconstruction fil-
ter banks (Bernardini and Rinaldo, 2006; Gan and Ling,
2008; Quevedo et al., 2009).

The employment of the minimum-norm right or
least-squares left inverses has also been the authors’ first
choice when solving the problem of the generation of the
so-called ‘control zeros’ for a nonsquare LTI MIMO sys-
tem, the zeros defined as poles of an inverse system or po-
les of a closed-loop Minimum Variance Control (MVC)
system (Latawiec, 1998; Latawiec et al., 2000). The li-
mited usefulness of minimum-norm right or least-squares
left inverses, to be in the sequel called T -inverses, has so-
on brought us to the point where we have introduced the
so-called τ -inverses and σ-inverses of nonsquare polyno-
mial matrices (Hunek, 2008; Latawiec, 2004; Latawiec et
al., 2004; 2005).

Since in some applications it is welcome for an inver-
se polynomial matrix not to have any pole at all, we have
offered pole-free right/left inverses of nonsquare polyno-

{w.hunek, k.latawiec}@po.opole.pl


332 W.P. Hunek and K.J. Latawiec

mial matrices (Hunek, 2008; 2009a; 2009b; Hunek et al.,
2007; 2010). At last, we have presented a specific Smith
factorization solution to the inverse problem for nonsqu-
are polynomial matrices (Hunek, 2008; 2009a; Hunek et
al., 2007).

In this paper, the Smith factorization approach is
extended to finally obtain a new general class of inverses,
valid for any nonsquare polynomial matrices and provi-
ding an arbitrary number of degrees of freedom in terms
of a preselected number (and value) of the inverse’s ze-
ros and poles, if any. For completeness, this paper recalls
all the above mentioned (and presented mainly at confe-
rences) new results in the inversion of nonsquare polyno-
mial matrices. Applications of the results in process con-
trol technology have been reported (Hunek, 2008; 2009a;
Hunek and Latawiec, 2009; Hunek et al., 2007; Latawiec,
2004; 2005; Latawiec et al., 2004; 2005) and are now be-
ing expanded (Hunek et al., 2010), whilst possible appli-
cations in, e.g., error coding control and perfect recon-
struction filter banks seem forthcoming.

This paper is structured as follows. Having introdu-
ced the inversion problem for full normal rank polyno-
mial matrices, system representations including the po-
lynomial matrices to be inverted are reviewed in Sec-
tion 2. Since our new concepts of polynomial matrix in-
version have originated from closed-loop discrete-time
MVC, this control strategy is recalled in Section 3. A fun-
damental idea behind the forthcoming introduction of
new, MVC-related inverses of nonsquare polynomial ma-
trices is illustrated in the instructive motivating example
of Section 4. Analytical expressions for new polynomial
matrix inverses, including the so-called τ -inverses and
σ-inverses, in addition to the well-known but renamed
T -inverse, are offered in Section 5. Control-related ap-
plications call for the selection of stable polynomial ma-
trix inverses, which is covered in Sections 6 and 7. The
Smith factorization approach of the latter is extended in
Section 8 to culminate in the introduction of a new, ge-
neral S-inverse of a nonsquare polynomial matrix. Actual
and potential applications are indicated in Section 9. The
discussion in Section 10 provides yet another justification
for setting the inversion problem in the time-domain fra-
mework. Also, a series of open research problems are spe-
cified in that section. New results of the paper are summa-
rized in the conclusions of Section 11.

2. System representations

We start from general system representations related to
control applications of inverse polynomial matrices, inc-
luding process control, error-control coding and perfect
reconstruction filter banks.

Consider an nu-input ny-output Linear Time-
Invariant (LTI) discrete-time system with the input u(t)
and the output y(t), described by possibly rectangular

transfer-function matrix G ∈ R
ny×nu(z) in the com-

plex operator z. The transfer function matrix can be re-
presented in the Matrix Fraction Description (MFD) form
G(z) = A−1(z)B(z), where the left coprime polyno-
mial matrices A ∈ R

ny×ny [z] and B ∈ R
ny×nu [z] can

be given in the form A(z) = znIny + · · · + an and
B(z) = zmb0 + · · ·+bm, respectively, where n andm are
the orders of the respective matrix polynomials and Iny is
the identity ny-matrix. An alternative MFD form G(z) =
B̃(z)Ã−1(z), involving right coprime Ã ∈ R

nu×nu [z]
and B̃ ∈ R

ny×nu [z], can also be tractable here but in a
less convenient way (Latawiec, 1998).

Algorithms for the calculation of MFDs are known
and software packages in Matlab’s Polynomial Toolbox�

are available. Unless necessary, we will not discrimina-
te between A(z−1) = Iny + · · · + anz

−n and A(z) =
znA(z−1), nor between B(z−1) = b0 + · · · + bmz

−m

and B(z) = zmB(z−1) with G(z) = A−1(z)B(z) =
z−dA−1(z−1)B(z−1), where d = n −m is the time de-
lay of the system. In the sequel, we will assume for clarity
that B(z) is of full normal rank; a more general case of
B(z) being of non-full normal rank can also be tractable
(Latawiec, 1998).

Let us finally concentrate on the case when the nor-
mal rank of B(z) is ny (‘symmetrical’ considerations can
be made for the normal rank nu). The first MFD form
can be directly obtained from the AR(I)X/AR(I)MAX
model of a system A(q−1)y(t) = q−dB(q−1)u(t) +
[C(q−1)/D(q−1)]v(t), where q−1 is the backward shift
operator and v(t) ∈ R

ny is the uncorrelated zero-mean
disturbance at (discrete) time t. The pairsA andB as well
as A and C ∈ R

ny×ny [z] are relatively prime polynomial
matrices, with (stable) C(z−1) = c0 + · · · + ckz

−k and
k ≤ n, and the D polynomial in the z−1-domain is often
equal to 1 − z−1 (or to unity in the discrete-time MVC
considerations). In the sequel, we will also use the ope-
rator w = z−1 (or w = q−1, depending on the context),
whose correspondence to the s operator for continuous-
time systems has been pioneeringly explored by Hunek
and Latawiec (2009).

The familiar Smith–McMillan form SM (w) of
G(w) = wdA−1(w)B(w) (as a special case of the MFD
factorization (Desoer and Schulman, 1974)) is given by
G(w) = U(w)SM (w)V (w), where U ∈ R

ny×ny [w] and
V ∈ R

nu×nu [w] are unimodular and the pencil SM ∈
R

ny×nu(w) is of the form

SM (w) =
[

Mr×r 0r×(nu−r)

0(ny−r)×r 0(ny−r)×(nu−r)

]
, (1)

with M(w) = diag(ε1/ψ1, ε2/ψ2, . . . , εr/ψr), where
εi(w) and ψi(w), i = 1, . . . , r (with r being the normal
rank of G(w)), are monic coprime polynomials such that
εi(w) divides εi+1(w), i = 1, . . . , r − 1, and ψi(w) divi-
des ψi−1(w), i = 2, . . . , r. In particular, the Smith form
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is given by the appropriate pencil S(w), with M(w) =
diag(ε1, ε2, . . . , εr) often associated with Smith zeros
or transmission zeros (Kaczorek et al., 2009; Tokarzew-
ski, 2002; 2004). The polynomials εi(w) are often called
the invariant factors of G(w) and their product ε(w) =
Πr

1εi(w) is sometimes referred to as the zero polynomial
of G(w).

3. Closed-loop discrete-time minimum
variance control

Our interest in minimum variance control results from the
fact that it is a sort of inverse-model control, directly in-
volving an inverse numerator matrix of the MFD system
representation.

In the MVC framework, we consider the ARMAX
system description

A(q−1)y(t) = q−dB(q−1)u(t) + C(q−1)v(t). (2)

For general purposes and duality with the
continuous-time case, we use here the ARMAX mo-
del, even though it is well known that the C(q−1)
polynomial matrix of disturbance parameters is usually
in control engineering practice unlikely to be effectively
estimated (and is often used as a control design, observer
polynomial matrix instead).

All the results to follow can be dualized for
continuous-time systems described by a Laplace operator
model analogous to Eqn. (2). This can be enabled owing
to the unified, discrete-time/continuous-time MVC frame-
work introduced by Hunek and Latawiec (2009).

Consider a right-invertible system (ny < nu) de-
scribed by Eqn. (2) and assume that the observer (or
disturbance-related) polynomialC(q−1) = c0 + c1q

−1 +
· · · + ckq

−k has all its roots inside the unit disk.
Then the general MVC law, minimizing the perfor-

mance index

min
u(t)

E {[y(t+ d) − yref(t+ d)]T

[y(t+ d) − yref(t+ d)]} ,
(3)

where yref(t + d) and y(t + d) = C̃
−1

(q−1)[F̃ (q−1) ·
B(q−1)u(t) + H̃(q−1)y(t)] + F (q−1)v(t) are the output
reference/setpoint and the stochastic output predictor, re-
spectively, is of the form (Hunek, 2008; Latawiec, 2004)

u(t) = BR(q−1)y(t), (4)

where

y(t) = F̃
−1

(q−1)
[
C̃(q−1)yref(t+ d) − H̃(q−1)y(t)

]
.

The appropriate polynomial (ny × ny)-matrices
F̃ (q−1) = Iny +f̃

1
q−1+· · ·+f̃

d−1
q−d+1 and H̃(q−1) =

h̃0 + h̃1q
−1 + · · · + h̃n−1q

−n+1 are computed from the
polynomial matrix identity (called the Diophantine equ-
ation)

C̃(q−1) = F̃ (q−1)A(q−1) + q−dH̃(q−1), (5)

with
C̃(q−1)F (q−1) = F̃ (q−1)C(q−1), (6)

where F (q−1) = Iny + f
1
q−1 + · · · + f

d−1
q−d+1,

C̃(q−1) = c̃0 + c̃1q
−1 + · · ·+ c̃kq

−k. For right-invertible
systems, the symbolBR(q−1) denotes, in general, an infi-
nite number of right inverses of the numerator polynomial
matrix B(q−1).

Remark 1. The MVC problem reduces to the perfect con-
trol one when v(t) = 0 (with both control laws being iden-
tical) and specializes to the perfect regulation problem or
to the output (predictor) zeroing one when yref = 0 and
v(t) = 0.

Remark 2. Clearly, the interest in MVC is due to the fact
that an inverse polynomial matrix BR(q−1) is involved
here, with poles of the inverse constituting the so-called
control zeros. Transmission zeros, if any, make a subset of
the set of control zeros (Latawiec, 1998; Latawiec et al.,
2000).

Remark 3. The above MVC result and all the results to
follow can be dualized for left-invertible systems (ny >
nu), with a left inverse of the appropriate matrix involved.

4. Motivating example

Consider a multivariable second-order system governed
by the ARX model y(t) + a1y(t − 1) + a2y(t − 2) =
b0u(t− 1) + b1u(t− 2) + b2u(t− 3)+ v(t), with the no-
tation as in Section 2. Assume once again that the appro-
priate polynomial matrixB(q−1) is of full normal rank ny

and its (nonunique) right inverse is denoted by BR(q−1).
Equating, in the standard perfect control manner, the (de-
terministic part of the) one-step output predictor to the re-
ference/setpoint, we obtain

b0u(t)+ b1u(t−1)+ b2u(t−2)−a1y(t)−a2y(t−1)
= yref(t+ 1). (7)

On the one hand, Eqn. (7) immediately leads to the
MV/perfect control law

u(t) = (b0 + b1q
−1 + b2q

−2)Ry(t), (8)

with y(t) = yref(t+1)+a1y(t)+a2y(t−1). Equation 8
represents one set of solvers (4) of Eqn. (7) for u(t).

But on the other hand, assuming that b0 is of full
normal rank, Eqn. (7) can be given the form u(t) =
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(b0)
R[y(t)− b1u(t− 1)− b2u(t− 2)], which can be rew-

ritten as

u(t) = [Inu + (b0)
R(b1q

−1 + b2q
−2)]−1(b0)

Ry(t), (9)

representing another set of solvers (4) of Eqn. (7).
Although both MVC laws (8) and (9) are derived

from the same output predictor as in Eqn. (7), it is ra-
ther surprising that these laws are generally different and
this is because BR1(q−1) = (b0 + b1q

−1 + b2q
−2)R �=

[Inu + (b0)
R(b1q

−1 + b2q
−2)]−1(b0)

R = BR2(q−1), in
general. The difference results from specific properties of
right inverses for polynomial matrices. Of course, both
B(q−1)BR1(q−1) = Iny and B(q−1)BR2(q−1) = Iny .

Observe that a solver to Eqn. (7) can be given yet
another form, e.g., u(t) = (b1q−1)R[y(t) − b0u(t) −
b2u(t − 2)], which can be rewritten as u(t) = [Inu +
(b1q

−1)R(b0 + b2q
−2)]−1(b1q

−1)Ry(t) representing ano-
ther set of solvers (4) of Eqn. (7) for u(t) and gi-
ving rise to the introduction of yet another inverse
of B(q−1), say BR3(q−1) = [Inu + (b1q

−1)R(b0 +
b2q

−2)]−1(b1q
−1)R. A similar result can be obtained

with the inverse BR4(q−1) = [Inu + (b2q
−2)R(b0 +

b1q
−1)]−1(b2q−2)R. But this is not the end. Another form

of Eqn. (7) could be u(t) = (b0 + b1q
−1)R[y(t) −

b2q
−2u(t)], resulting in one more set of solvers u(t) =

[Inu + (b0 + b1q
−1)Rb2q

−2]−1(b0 + b1q
−1)Ry(t), with

another inverse of B(q−1), say BR5(q−1) = [Inu +(b0 +
b1q

−1)Rb2q
−2]−1(b0 + b1q

−1)R. But, by the same to-
ken, we could still introduce another set of solvers rela-
ted to another inverse, say BR6(q−1) = [Inu + (b0 +
b2q

−2)Rb1q
−1]−1(b0+b2q

−2)R and, at last,BR7(q−1) =
[Inu + (b1q−1 + b2q

−2)Rb0]−1(b1q−1 + b2q
−2)R. Well,

at last? Not quite because the last three inverses inclu-
de subinverses of (matrix) binomials, each of which can
be presented in terms of two ‘elementary’ inverses invo-
lving monomials. The resulting inverses BR8(q−1) thro-
ugh BR13(q−1) are relegated to Appendix A. Thus, for
the above example, as many as 13 different types of ri-
ght inverses can be involved in 13 various sets of solvers
(4) of Eqn. (7) for u(t). And yet, each of those inverses
BR1(q−1) through BR13(q−1) is nonunique due to the
nonuniqueness of a right inverse.

In order to arrive at feasible analytical solutions,
all the right inverses occurring in BR1(q−1) through
BR13(q−1) are now specialized to what will be called the
minimum-norm T -inverses and denoted as [·]R0 . Since the
MV/perfect control law is clearly a time-domain equation,
we shall use regular, rather than conjugate, transposes in
the minimum norm T -inverse (Latawiec, 2004; Latawiec
et al., 2005).

It is interesting to observe that all those inverses
are associated with two classes of solvers for u(t) in
the MVC problem, resulting from two different equ-
ations to be solved: B(q−1)u(t) = y(t) and {Inu +

[β
s
(q−1)]R0 [B(q−1) − β(q−1)]}u(t) = [β

s
(q−1)]R0 y(t),

where β(q−1) and β
s
(q−1) can be easily identified from

the specific inverses BR1(q−1) to BR13(q−1). It is worth
mentioning that β

s
(q−1) can generally be very complica-

ted (see, e.g., Appendix A), so its general analytical defini-
tion would be hardly achievable. Notwithstanding, we will
provide means for the computation of the resulting general
right inverses BR(q−1) = {Inu + [β

s
(q−1)]R0 [B(q−1) −

β(q−1)]}−1[β
s
(q−1)]R0 .

5. MVC-related polynomial matrix inverses

Let us switch now to more general problems of either
right- or left-invertible systems, as well as to a quite gene-
ral case of non-full normal rank systems with anyB(q−1).
In general, we will refer to Class 1 and Class 2 solvers for
u(t) in the MVC problem, related respectively to the equ-
ations

B(q−1)u(t) = y(t) (10)

or

{
Inu +

[
β

s
(q−1)

]inv [
B(q−1) − β(q−1)

]}
u(t)

=
[
β

s
(q−1)

]inv

y(t), (11)

where the inverse
[
β

s
(q−1)

]inv
is an appropriate ge-

neralized inverse of a specific β
s
(q−1), depending on

specific, rank-related properties of β
s
(q−1) (with, e.g.,[

β
s
(q−1)

]inv =
[
β

s
(q−1)

]R
holding for a right-invertible

β
s
(q−1)). Note that for β

s
(q−1) = β(q−1) = B(q−1)

Eqns. (10) and (11) are equivalent.

5.1. T -inverses. Based on the above considerations,
the two general definitions below introduce various opti-
mal inverses of the m-th order nonsquare polynomial
matrix B(q−1), which are associated with Class 1 opti-
mal time-domain solvers for u(t) in the MVC pro-
blem (related to Eqn. (10)). The optimal, so-called
T -inverses include regular (rather than conjugate) trans-
poses of B(q−1). Observe that these inverses are di-
mension preserving, i.e., not squaring the system down
(Davison, 1983; Latawiec, 1998), the prerequisite aiming
at protection from the reduction of the problem to the clas-
sical square MIMO one (with the standard transmission
zeros).

Definition 1. Let the polynomial matrix B(q−1) =
b0 + b1q

−1 + · · · + bmq
−m be of full normal rank

ny (or nu). The (unique) minimum-norm right (or
the least-squares left) T -inverse of B(q−1) is defi-
ned as BR

0 (q−1) = BT(q−1)[B(q−1)BT(q−1)]−1 (or
BL

0 (q−1) = [BT(q−1)B(q−1)]−1BT(q−1)).
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Definition 2. Let the polynomial matrix B(q−1) =
b0 + b1q

−1 + · · · + bmq
−m of non-full nor-

mal rank r be skeleton factorized as B(q−1) =
C(q−1)D(q−1), where dim[B(q−1)] = ny × nu,
dim[C(q−1)] = ny × r, dim[D(q−1)] = r × nu.
The (unique) Moore–Penrose T -inverse of B(q−1)
is defined as B#

0 (q−1) = DR
0 (q−1)CL

0 (q−1), whe-
re DR

0 (q−1) = DT(q−1)[D(q−1)DT(q−1)]−1 and
CL

0 (q−1) = [CT(q−1)C(q−1)]−1CT(q−1).

Remark 4. Of course, the above definitions could as
well be formulated in the complex z-domain, with regu-
lar, rather than conjugate, transposes retained and, e.g.,
B(z) = zmB(z−1). This will also hold for all other poly-
nomial matrix inverses to follow. We still retain the q−1 ar-
gument to emphasize the time-domain origin of the MVC-
related inverses.

Remark 5. Observe that T -inverses have been ori-
ginally used in the introduction of control zeros, be-
ing an extension of transmission zeros (Latawiec, 1998;
Latawiec et al., 2000). For example, control zeros
for right-invertible systems can be generated by the
inverse BR

0 (q−1) and calculated from the equation
det [B(q−1)BT(q−1)] = 0. In the sequel, these control
zeros will be called control zeros type 1.

Remark 6. It should be emphasized that the essence of
the introduction of such definitions of T -inverses is that
regular (rather than conjugate) transposes are involved due
to the time-domain, MVC-related origin of the inverse
problem. When employing conjugate transposes, we end
up with transmission zeros only (Latawiec, 2004).

5.2. τ -inverses. Again, we consider a problem of
B(q−1) and β

s
(q−1) being either right- or left-invertible,

in addition to the general case of B(q−1) having non-full
normal rank. Hereinafter, we present detailed results for
the right-invertibility case. The right polynomial matrix
inverses

BR(q−1)

= {Inu + [β
s
(q−1)]R0 B(q−1) − β(q−1)]}−1[β

s
(q−1)]R0 ,

(12)

associated with Class 2 time-domain solvers u(t) to Eqn.
(11), are now called τ -inverses.

Remark 7. Note that for β(q−1) = β
s
(q−1) = B(q−1)

the τ -inverse specializes to the T -inverse. Still, we
distinguish the T -inverse from the τ -inverse, at least for
‘traditional’ reasons.

As mentioned above, we refrain from trying to for-
mally define τ -inverses in terms of the matrices β(q−1)
and β

s
(q−1) due to very complicated forms of the latter,

in general. Nevertheless, based on the motivating exam-
ple of Section 4, we can offer new general tools for the
computation of all the τ -inverses.

5.2.1. Algorithm and program for calculating
τ -inverses. Below is a new algorithm for calculating
all the τ -inverses. The combinatorics-based algorithm is
very complicated but, surprisingly, it will self-verifyingly
lead to a simple result of the forthcoming Theorem 1.

Algorithm 1. tau_inverses algorithm.

ii STEP k = 0 � one T -inverse

BR
0 (q−1) = {Inu + [β

l0
]R0 [B(q−1) − β

l0
]}−1[β

l0
]R0 ,

(A.0)

with l0 = m + 1, that is, β
l0

(q−1) = B(q−1). The
index l0 = m + 1 means that matrix parameters of
the m-th order matrix polynomial β

m+1
(q−1) constitute

(m+1)-combinations without repetition from an (m+1)-
parameter set of the matrix polynomial B(q−1), which
makes the number of the combinations and thus the num-
ber of T -inverses equal to just one.

iiSTEP k = 1

[B(q−1)]Ri = {Inu + [βi

l1
]R0 [βi

l0
− βi

l1
]}−1[βi

l1
]R0 ,

i = k, . . . ,m,
∀ l0, l1 with l0 = 1, . . . ,m+ 1,

l1 = 1, . . . ,m− k + 1 = m ∧ l0 ≥ l1,

(A.1)

where matrix parameters of the polynomial matrix
βi

l1
(q−1) are l1-combinations without repetition from an

l0- parameter set of the matrix polynomial βi

l0
(q−1), and

the superscript i = k, . . . ,m stands for the i-th set of in-
verses calculated at Step k. The role of the index i will be
better understood from the proof of Theorem 1.

ii STEP k = 2

[B(q−1)]Ri as in (A.1) with

[βi−1

l1
]R0 = {Inu + [βi

l2
]R0 [βi

l1
− βi

l2
]}−1[βi

l2
]R0 ,

i = k, . . . ,m,
∀ l1, l2 with l1, l2 = 1, . . . ,m− k + 1 = m− 1 ∧

l1 ≥ l2,

(A.2)

with the notation quite similar to that for Step k = 1.

iiiiii
...

ii STEP k

[B(q−1)]Ri as in (A.k − 1) with

[βi−1

lk−1
]R0 = {Inu + [βi

lk
]R0 [βi

lk−1
− βi

lk
]}−1[βi

lk
]R0 ,



336 W.P. Hunek and K.J. Latawiec

i = k, . . . ,m,
∀ lk−1, lk with lk−1, lk = 1, . . . ,m− k + 1 ∧

lk−1 ≥ lk.

(A.k)

iiSTEP k = m− 1

[B(q−1)]Ri as in (A.m− 2) with

[βi−1

lm−2
]R0

= {Inu + [βi

lm−1
]R0 [βi

lm−2
− βi

lm−1
]}−1[βi

lm−1
]R0 ,

i = m− 1,m,
∀ lm−2, lm−1 with lm−2, lm−1 = 1, 2

∧ lm−2 ≥ lm−1.

(A.m− 1)

ii STEP k = m

[B(q−1)]Ri as in (A.m− 1) with

[βi−1

lm−1
]R0 = {Inu + [βi

lm
]R0 [βi

lm−1
− βi

lm
]}−1[βi

lm
]R0 ,

i = m,
∀ lm−1, lm with lm−1 = lm = 1.

(A.m)

The algorithm is coded using the Symbolic
Toolbox�, Polynomial Toolbox� and Statistics Toolbox�

in the Matlab� environment. The program returns all the
τ -inverses and the associated sets of control zeros. The
codes for this program as well as for all other programs
exploited in the paper can be made available upon requ-
est.

Theorem 1. (Latawiec, 2004) Consider a nonsquare full
normal rank polynomial matrix B(q−1) = b0 + b1q

−1 +
. . . + bmq

−m. The total number Nm of the τ -inverses of
B(q−1) can be calculated iteratively from the equation

Ni = 1 + (i+ 1)!
i∑

j=1

1
j!(i− j + 1)!

Nj−1,

i = 1, . . . ,m, N0 = 1.

(13)

Proof. See Appendix B. �

Remark 8. Although Theorem 1 has been presented by
Latawiec (2004), it is not until this paper that an original,
complete, formal proof has been provided.

Remark 9. The above total number of τ -inverses shall
be treated as the maximum number of τ -inverses for a
specific m. In fact, in some cases β(q−1) and/or β

s
(q−1)

may appear nonfull normal rank (even though B(q−1) is

of full normal rank) so that the corresponding τ -inverses
do not exist. Exemplary maximum numbers of τ -inverses
are Nm = 13 for m = 2, Nm = 75 for m = 3 and
Nm = 541 for m = 4.

Remark 10. It has been found in simulations (a rigoro-
us mathematical confirmation seems unlikely) that for so-
me, even ‘typical’, plants the properties of τ -inverses of
B(q−1), including the T -inverse, may be unfavorable, in
particular in terms of all unstable poles of BR(q−1) obta-
ined. This may limit the applications of τ -inverses.

5.3. σ-inverses. Let us proceed now to the most in-
triguing issue related to the family of inverses as in
Eqn. (12). It is surprising that B(q−1)BR(q−1) = Iny ,
with BR as in Eqn. (12) and β

s
(q−1) = β(q−1), even for

arbitrary β(q−1), that is, not related to B(q−1) at all (but,
of course, with adequate matrix dimensions). This way
we arrive at the so-called σ-inverses, a number of which
is infinite (in spite of the unique minimum-norm right
T -inverse involved).

Definition 3. Let the polynomial matrix B(q−1) = b0 +
b1q

−1+· · ·+bmq−m. Then, a generalσ-inverse ofB(q−1)
can be defined as

BR(q−1)

= {Inu + [β(q−1)]R0 [B(q−1) − β(q−1)]}−1[β(q−1)]R0 ,
(14)

where zsβ(z−1) = β(z) ∈ R
ny×nu [z] is arbitrary, inclu-

ding an arbitrary order s, and [·]R0 stands for the T -inverse.

Unfortunately, rigorous formal proving that
B(q−1)BR(q−1) = Iny , with BR(q−1) as in Eqn. (14),
is still an open problem. A missing part of the proof can
be formulated as follows.

Conjecture 1. Let β(q−1) be an arbitrary s-order matrix
polynomial in q−1, with zsβ(z−1) = β(z) ∈ R

ny×nu [z],
and let Φ(q−1) = Inu + [β(q−1)]R0 [B(q−1)− β(q−1)] be
of full normal rank nu. Then

[β(q−1)Φ(q−1)]R0 = Φ−1(q−1)[β(q−1)]R0 . (15)

Assuming that the above conjecture is true, the proof
ofB(q−1)BR(q−1) = Iny , withBR(q−1) as in Eqn. (14),
is immediate. In fact, β(q−1)Φ(q−1) = B(q−1) whereas
the right-hand side of Eqn. (15) is just the right-hand side
of Eqn. (14). Now, omitting the subindex on the left-hand
side of Eqn. (15) (in order to distinguish the σ-inverse
from the T -inverse) would complete the proof.

Remark 11. We have verified Conjecture 1 and the identi-
tyB(q−1)BR(q−1) = Iny , withBR(q−1) as in Eqn. (14),
in a number of simulations, including MVC ones.
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Remark 12. It is interesting to note here that,
for arbitrary right-invertible β(q−1) and arbitrary in-
vertible Φ(q−1) of appropriate dimensions, we ha-
ve that [Φ(q−1)β(q−1)]R0 = [β(q−1)]R0 Φ−1(q−1), but
[β(q−1)Φ(q−1)]R0 �= Φ−1(q−1)[β(q−1)]R0 , in gene-
ral. It is just for our specific Φ(q−1) = Inu +
[β(q−1)]R0 [B(q−1) − β(q−1)] that Eqn. (15) holds true,
the intriguing property confirmed so far only in numerous
simulations.

Even though the most general σ-inverses contain τ -
inverses, which in turn include the T -inverse, we discrimi-
nate between the three types of inverses of nonsquare po-
lynomial matrices. Here τ -inverses and σ-inverses genera-
te what we call control zeros type 2 (Latawiec, 2004; La-
tawiec et al., 2004).

It is worth emphasizing that the formula (14) is a new,
general, algorithmically very simple analytical expression
for the calculation of right inverses for nonsquare polyno-
mial matrices. Quite a similar formula can be given for left
inverses. It is interesting to note how stimulating the MVC
framework in the derivation of τ - and σ-inverses has been
(Latawiec, 2004; Latawiec et al., 2004; 2005).

Remark 13. Of course, the inverse as in Eqn. (14) can
be rewritten in terms of B(z) = zmB(z−1). We still pre-
fer the form (14) associated with the time-domain MVC
solution and the regular, rather than conjugate, transpo-
ses included in [β(q−1)]R0 . Notwithstanding, the z-domain
formulation is now used instructively below.

Example 1. Consider a specific matrix B(q−1) corre-
sponding to the matrix B ∈ R

2×3[z] with b11(z) =
z2 + 0.9z − 0.1, b12(z) = z + 0.4, b13(z) = z2 +
0.1z − 0.02 and b21(z) = z2 + 0.4z − 0.05, b22(z) = 1,
b23(z) = 2z2 + 0.8z − 0.1. All the thirteen τ -inverses
(including the T -inverse) have unstable poles, that is,
unstable control zeros, in addition to a stable transmis-
sion zero at z = 0.1. Selecting βs = β ∈ R

2×3[z]
with β11(z) = −0.0793, β12(z) = 1.5352z − 0.6065,
β13(z) = −1.3474 and β21(z) = 0.4694z − 0.9036,
β22(z) = 0.0359, β23(z) = −0.6275z + 0.5354 yields
the unstable σ-inverse BR(z), whereas for β11(z) =
−0.0781, β12(z) = 1.8148z−0.6140,β13(z) = −1.3928
and β21(z) = 0.3931z − 0.6786, β22(z) = 0.0332,
β23(z) = −0.8042z + 0.6203 we obtain the stable σ-
inverse BR(z). However, there are no formal tools for ri-
gorous generalization of the latter, heuristic selection.

For a specific B(q−1), we have computed an ade-
quate β(q−1) to obtain a stable (or pole-free) BR(q−1)
by means of a standard, Matlab-based optimization pro-
cedure. (Note that, for space limitation reasons, we refra-
in from specifying the two σ-inversesBR(z) in the above
example as their six entries are up to the 5-th order, so
that high-precision presentation would be necessary for
accuracy reasons. Still, in Appendix C we specify control
zeros, that is, poles of BR(z), for the two cases.) �

6. New approaches to stable design
of inverse polynomial matrices

It is crucial in inverse-model control applications to be
able to design stable inverses of the numerator matrix in
the rational matrix description of an LTI MIMO system.
Particular interest concerns the case of pole-free inverses,
for which the control system is guaranteed to be asympto-
tically stable. Here we present two new approaches to the
design of pole-free right inverses of a polynomial matrix
B(q−1).

6.1. Extreme Points and Extreme Directions (EPED)
method. The method is recalled here for solving the
linear matrix polynomial equation (Callier and Kraffer,
2005; Henrion, 1998; Kaczorek and Łopatka, 2000)

K(w)X(w) = P (w), (16)

whereK(w) = K0+K1w+ · · ·+KnKw
nK and P (w) =

P0 + P1w + · · · + PnPw
nP are given m × n and m× p

polynomial matrices in complex operator w, respectively,
and X(w) = X0 + X1w + · · · + XnXw

nX is an n × p
polynomial matrix to be found. By equating the powers
of w in the formula (16), we obtain an equivalent linear
system of equations

K X = P , (17)

where the real matrix

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K0 0
K1 K0

... K1
. . .

KnK

... K0

KnK K1

. . .
...

0 KnK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

is referred to as the Sylvester matrix ofK(w) of order nK ,
with m̃ = (nK + nX + 1)m rows and ñ = (nX + 1)n
columns and

X =

⎡
⎢⎢⎢⎣

X0

X1

...
XnX

⎤
⎥⎥⎥⎦ ∈ R

ñ×p, P =

⎡
⎢⎢⎢⎣

P0

P1

...
PnP

⎤
⎥⎥⎥⎦ ∈ R

m̃×p.

(19)
The problem of finding the matrix polynomial solu-

tion X(w) to Eqn. (16) has been reduced to finding the
real matrix X of Eqn. (17) for given real matrices K and
P as in (18) and (19). The matrix polynomial equation 16
has the solution for X(w) iff rank

[
K̄ P̄

]
= rank K̄ .

Using the Kronecker product, Eqn. (17) can be rewritten
in the form

Ax = b, (20)
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where

A = K ⊗ Ip ∈ R
m×n,

x =
[
x1, x2, . . . , xñ]T ∈ R

n,

b =
[
p1, p2, . . . , pm̃

]T ∈ R
m,

with m = m̃p, n = ñp, and xi and pj denote the i-th and
j-th rows of X and P , respectively.

Now, the problem of calculating the set of solutions
to Eqn. (16) can be reduced to finding the set x satisfying
Eqn. (20). Note that, if ñ ≥ m̃ and rankK = m̃, the
matrix A also has full row rank.

Let S = {x : Ax = b} be a non-empty set. A po-
int x is an extreme point of S iff A can be decomposed
into [ B N ] such that detB �= 0 and x =

[
B−1b

0

]
.

If rankA = m, then S has at least one extreme point.
The number of extreme points is less than or equal to
n!/[m!(n−m)!].

A vector d is an extreme direction of S iff A can be
decomposed into [ B N ] such that detB �= 0 and d =[
−B−1aj

ej

]
, where aj is the i-th column of N and ej is an

n −m vector of zeros except for unity in position i. The
set S has at least one extreme direction iff it is unbounded.
The maximum number of extreme directions is bounded
by n!/[m!(n−m− 1)!].

Let x1, x2, . . ., xk be the extreme points of S and
d1, and d2, . . ., dl the extreme directions of S. Then every
x ∈ S can be written as

x =
k∑

j=1

λjxj+
l∑

i=1

μidi,

k∑
j=1

λj = 1.

Let us now embed the EPED method in the frame-
work of an inverse polynomial matrix BR(z−1).

Theorem 2. Let BR(w) = X(w), with w = z−1,
be a solution of the linear matrix polynomial equation
B(w)X(w) = Iny . Then the necessary and sufficient con-
dition for the existence of a solution X(w) by the EPED
method is that the polynomial matrix B(w) has no trans-
mission zeros.

Proof. It is well known that the necessary and suffi-
cient condition for the existence of a solution of Eqn.
(16) is that nrank

[
K(w) P (w)

]
= nrankK(w),

where nrank stands for normal rank. When transla-
ted to our polynomial matrix framework, the condition
nrank

[
B(w) Iny

]
= nrankB(w) implies that the

matrix B(w) has no transmission zeros. �
a
The above essential constraint of the EPED method

is revealed here for the first time.
The mathematically elegant EPED method provides

a pole-free solution to the inverse polynomial matrix pro-
blem, but it is computationally involving while its use is

limited to systems with no transmission zeros. Therefore,
in the next section we offer a much simpler method, which
is valid for systems with transmission zeros as well. Even
if the method is more effective, it is the EPED method
which has turned our attention to pole-free design of in-
verse polynomial matrices.

6.2. Smith factorization approach. In an attempt to
essentially reduce the computational burden of the EPED
method, we introduce yet another effective (and much
simpler) approach to stable design of inverse polyno-
mial matrices. The applied approach is closely related to
the Smith–McMillan theory (Bose and Mitra, 1978; Ka-
ilath, 1980; Sontag, 1980; Vardulakis, 1991).

Consider a right-invertible polynomial matrix
B(z−1) of dimension ny ×nu. Set w = z−1 and factorize
B(w) to the Smith form B(w) = U(w)S(w)V (w),
where U(w) and V (w) are (nonunique) unimodular
matrices. Now, BR(w) = V −1(w)SR(w)U−1(w), with
determinants of U(w) and V (w) being independent of w,
that is, with possible instability of an inverse polynomial
matrix BR(w) being related to SR(w) only.

Theorem 3. Consider a right-invertible polynomial
ny × nu matrix B(z−1). Use the Smith factorization
and obtain the inverse polynomial matrix BR(w) =
V −1(w)SR(w)U−1(w), with w = z−1 and U(w) and
V (w) being unimodular. Then, applying the minimum-

norm right T -inverse SR
0 (w) = ST(w)

[
S(w)ST(w)

]−1

guarantees stable pole-free design ofBR(w) forB(w) wi-
thout transmission zeros and stable design of BR(w) for
B(w) with stable transmission zeros.

Proof. Observe that performing the Smith factorization
for B(w) one obtains B(w) = U(w)S(w)V (w), whe-
re U(w) and V (w) are unimodular. Now, BR(w) =
V −1(w)SR(w)U−1(w), with determinants of U(w) and
V (w) being independent of w, that is with possible in-
stability of an inverse polynomial matrix BR(w) be-
ing related to SR(w) only. Since, in general, S(w) =[

diag(ε1, . . . , εny) 0ny×(nu−ny)

]
= Stz(w)S, whe-

re Stz(w) = diag(ε1, . . . , εny) includes transmis-
sion zeros and S =

[
Iny 0ny×(nu−ny)

]
, we ha-

ve BR(w) = V −1(w)SRS−1
tz (w)U−1(w). Now SR

0 =
ST

[
S ST

]−1
=

[
Iny 0ny×(nu−ny)

]T
and the result

follows immediately. �

Remark 14. Obviously, the stability of an inverse poly-
nomial matrix with respect to w is translated to the requ-
irement for all its poles to lie outside the unit disk.

Remark 15. MVC applications of the above Theorems 2
and 3 are immediate.
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7. Stable Smith factorization design of
inverse polynomial matrices with
arbitrary degrees of freedom

In the previous section, stable inverse polynomial matrix
designs were obtained without any reference to a possible
infinite number of degrees of freedom, which can be of
interest in, e.g., control robustness considerations (Hunek,
2008; 2009a; 2009b; Hunek et al., 2007; Latawiec, 2004;
2005; Latawiec et al., 2004; 2005). Even though the uni-
modular matrices involved are nonunique, possible use of
the resulting degrees of freedom is rather difficult due to
the constraints imposed on matrix determinants. Here we
present a simple Smith factorization approach to pole-free
design of inverse polynomial matrices (or pole-free MVC
design) with arbitrary degrees of freedom and controlled
locations of (stable) zeros of BR(w). Recall that

BR(w) = V −1(w)SRS−1
tz (w)U−1(w). (21)

With a specific form of S =
[
Iny 0ny×(nu−ny)

]
,

we can immediately offer its arbitrary right inverse,

SR = SR(w) =
[

Iny

L(w)

]
, (22)

where L(w) is any polynomial matrix of the appropria-
te dimensions. A general form of that matrix can be
L(w) = {lij(w)}, i = 1, . . . , nu − ny , j = 1, . . . , ny,

with lij(w) = l
(0)
ij + l

(1)
ij w + · · · + l

(mij)
ij wmij , and mij

can be an arbitrary natural number selected by the desi-
gner.

A general selection of a ‘proper’ L(w) to provide ar-
bitrary zeros ofBR(w) is a difficult, still open problem. In
fact, the zeros of BR(w) result both from those of L(w)
and those of inverses of the two unimodular polynomial
matrices involved. Specifically, the ‘zero matrix polyno-
mial’ for BR(w) is Z(w) = adjV (w)SR(w)adjU(w),

with SR(w) =
[

Iny

L(w)

]
, and L(w) is a polynomial ma-

trix as in Eqn. (22). (Note that Z ∈ R
nu×ny [w].) The ze-

ros of Z(w) are the poles of a left inverse ZL(w), with
the myriads of possible polynomial matrix inverses invo-
lved again. The role of L(w) in controlling the stability of
zeros of BR(w) can be appreciated from what follows.

Example 2. Consider a specific matrix B ∈ R
2×3(w)

with

b0 =
[

2 3 1
0 0 −1

]
, b1 =

[ −2 −1 −2
1 1 0.1

]

and

b2 =
[

1 2 3
−0.5 −1.9 −3

]
.

Pursuing the inverse BR(w) according to Eqns. (21) and
(22), we compare two cases: (i) L(w) =

[
0 0

]
and

(ii) L(w) =
[ −1.5189 0.6388

]
. The matrices Z(w)

for the two cases are respectively Z1(w) and Z2(w), both
relegated to Appendix D. We can employ various propo-
sed left inverses to obtain ZL(w). However, we choose
the simple T -inverse ZL

0 (w) = [ZT(w)Z(w)]−1ZT(w)
as it will generate poles of ZL(w), that is, zeros ofBR(w)
to be controlled by means of L(w). Now, in the first ca-
se, we can see that two out of eight zeros of Z1(w) are
unstable, whereas for Z2(w) all the ten zeros are stric-
tly stable (with all their modules with respect to z =
w−1 being lower than unity). It is worth mentioning that
the parameters of L(w) in the second case result from
a numerical optimization procedure in which the sum
of modules of all the zeros (in terms of z) is minimi-
zed with respect to the parameters a and b contained in
L(w) =

[
a b

]
.aaaaaaaaaaaaaaaaaaaaa �

Remark 16. Note that the solution

SR = SR(w) =
[

Iny

L(w)

]

can as well be obtained by the EPED method, with
K(w) = S, X(w) = SR and P (w) = Iny , although
under a higher computational burden.

Remark 17. It is worth mentioning once more that all
the above designs guarantee the stability of BR(z) =
z−mBR(z−1) both in case of the lack of transmission ze-
ros and under stable transmission zeros, with control zeros
(other than transmission zeros) totally eliminated.

Remark 18. It is the right T -inverse applied to the ma-
trix S that allows eliminating control zeros according to
Theorem 3. Applying some other inverses, that is, τ - and
σ-inverses, usually ends up with control zeros. However,
our simulating experience shows that it is sometimes po-
ssible to choose a matrix polynomial β(z−1) in Eqn. (14)
such that pole-free or stable-pole σ-inverse(s) of B(z−1)
can be obtained. A general selection of such σ-inverses is
a very difficult and still open problem. Therefore, it seems
that an inverse of the B(z−1) matrix, based on the Smith
factorization as in Eqn. (21), can be more useful in stable
design of inverse polynomial matrices.

Remark 19. The question arises whether in some control
applications the pole-free, that is, control zero-free inver-
se polynomial matrix designs could be inferior to the syn-
thesis allowing for (stable) poles of the control system,
that is, (stable) control zeros selected to provide, e.g., a
sort of robustness to MVC. Such a solution is presented in
Section 8.

Remark 20. It is in general possible in the above stable
Smith factorization design to select L(w) as a (stable) ra-
tional matrix or, in a technically simpler way, as a matrix
with all its elements being (stable) rational transfer func-
tions, with an infinite number of degrees of freedom possi-
ble to be obtained from degree(s) of the transfer functions.
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Then the poles of those transfer functions are the poles
of an inverse polynomial matrix BR(w) or the poles of a
closed-loop MVC system, that is, the control zeros. Alter-
natively, the control zeros (together with transmission ze-
ros) can be generated as poles of BR(w) using Eqn. (14),
with an infinite number of degrees of freedom obtained
from parameter matrices and degree(s) of β(w).

Remark 21. For high-orderB(w) and L(w), the compu-
tation burden of the optimization procedure may become
prohibitively high.

8. New inverse of a nonsquare polynomial
matrix

Concluding the Smith factorization approach to the design
of (stable) inverse polynomial matrices, we can offer yet
another, general right inverse of a nonsquare polynomial
matrix B(z−1), which can be competitive to that of Eqn.
(14) and which we call an S-inverse. The new result, follo-
wing immediately from Theorem 3 and Section 7, is given
in the form below.

Corollary 1. Consider a polynomial ny × nu matrix
B(w) of full normal rank ny , with w = z−1, un-
der the Smith factorization B(w) = U(w)S(w)V (w),
where U(w) and V (w) are unimodular and S(w) =[

diag(ε1, . . . , εny) 0ny×(nu−ny)

]
. Then a general ri-

ght inverse of B(w) can be given as

BR(w) = V −1(w)SR(w)S−1
tz (w)U−1(w), (23)

where Stz(w) = diag(ε1, . . . , εny), with εi being the in-
variant factors, and

SR(w) =
[

Iny

L(w)

]
,

where L ∈ R
(nu−ny)×ny(w) is an arbitrary rational ma-

trix.

The above Corollary 1 is in fact a definition of new,
generalS-inverses of nonsquare polynomial matrices. The
problem arises with the selection of L(w) to provide ar-
bitrary locations of poles and zeros of BR(w), which
can be useful in inverse-model control designs (Hunek,
2009a; 2009b) and, possibly, in error-control coding whe-
re up-to-date applications include the case L(w) = 0 only
(Fornasini and Pinto, 2004).

Quite simple is a selection providing arbitrary (possi-
bly stable) poles of BR(w). In fact, selecting the MFD

L(w) = M−1(w)N(w), (24)

with M ∈ R
(nu−ny)×(nu−ny) and N ∈ R

(nu−ny)×ny ,
reduces the problem to choosing such an M(w) for which

the roots of detM(w) are preselected. Even simpler is
here the selection

M(w) = m(w)Inu−ny , (25)

where a scalar polynomialm(w) can be arbitrary, both in
terms of its order and parameter values.

A general solution for N(w) providing arbitrary ze-
ros of BR(w) is an open problem. Still, we can use the
same arguments as for the selection of L(w) in Section 7
and state that zeros of BR(w) can be assigned to some
controlled, possibly stable locations by means of N(w).

9. Actual and potential applications

Actually, our interest in right/left inverses of polynomial
matrices has evolved from MV/perfect control applica-
tions (Hunek and Latawiec, 2009; Latawiec, 1998; Lata-
wiec et al., 2000) which are now being expanded towards
robust MV/perfect control (Hunek, 2008; 2009a; Hunek
et al., 2010; 2007; Latawiec, 2004; 2005; Latawiec et al.,
2004; 2005). Quite similar families of applications inclu-
de distortionless (or perfect) reception in error-control co-
ding (Fornasini and Pinto, 2004; Forney, 1991; Gluesing-
Luerssen et al., 2006; Johannesson and Zigangirov, 1999;
Johannesson et al., 1998; Lin and Costello, 2004; Lu
et al., 2005; Moon, 2005), perfect precoding and equali-
zation (Boche and Pohl, 2006; Guo and Levy, 2004; Kim
and Park, 2004; Tidestav et al., 1999; Wahls and Bo-
che, 2007; Wahls et al., 2009; Xia et al., 2001), per-
fect signal reconstruction, including perfect reconstruc-
tion filter banks (Bernardini and Rinaldo, 2006; Gan and
Ling, 2008; Law et al., 2009; Quevedo et al., 2009; Va-
idyanathan and Chen, 1995; Zhang and Makur, 2009) and
perfect deconvolution (Inouye and Tanebe, 2000; Tun-
cer, 2004), also in the problem of image recovery (Ca-
stella and Pesquet, 2004; Harikumar and Bresler, 1999a;
1999b). On the other hand, the problem of perfect input
reconstruction that has been solved employing the state-
space approach (Edelmayer et al., 2004) could as well be
tackled and resolved on the basis of the rational matrix
system description.

It is striking how right/left inverses of polynomial
matrices can contribute to the ‘perfectualization’ of signal
transmission/reconstruction in various types of (generali-
zed) MIMO channels. Although the perfect ‘behavior’ of
MIMO channels is rather a theoretical, limiting property
hardly attainable in the real, disturbance-corrupted world,
inverse polynomial matrices can still be the foundation
for application-oriented solutions. One example is robust
MVC taking advantage of the ability of selecting inverse
polynomial matrices with arbitrary poles and controlled
zeros (Hunek, 2008; 2009b; Hunek et al., 2010).
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10. Discussion and open problems

One may argue that we should not use the term ‘minimum-
norm’ T -inverse since, when solving the MVC equ-
ation (10) (or (11)) presented in the z-domain form

B(z)U(z) = zdY (z), (26)

with U(z) and Y (z) corresponding to u(t) and y(t), re-
spectively, the actual minimum-norm solution would in-
volve BR∗ (z) = B∗(z)[B(z)B∗(z)]−1, with ‖U∗(z)‖2 =
U∗(z)U(z), where the asterisk denotes the conjugate
transpose. In fact, ‖U∗(z)‖ ≤ ‖U0(z)‖, where ‖U0(z)‖
is the norm involving the T -inverse, that is, the regular ra-
ther than conjugate transpose. Now, the term ‘minimum-
norm’ solution/inverse should be reserved for the con-
jugate transpose-based norm. Similar should hold for
the least-squares solution/inverse, involving BL

∗ (z) =
[B∗(z)B(z)]−1B∗(z). We will show that such an argu-
ment is not true and the z-domain approach is not proper
for the solution of the inverse-model control problem con-
sidered.

Firstly, the MVC Equation (10) (or (11)) is the
time-domain one. That means that a norm of a time-
domain solver to this equation must use real-valued
features, that is, regular rather than conjugate trans-
poses. Thus, the minimum-norm or least-squares solu-
tions/inverses must end up with the T -inverses, invo-
lving BR

0 (q−1) = BT(q−1)[B(q−1)BT(q−1)]−1 (or
BL

0 (q−1) = [BT(q−1)B(q−1)]−1BT(q−1)), with the mi-
nimal norm (or minimal energy)

‖u(t)‖ =

√√√√ ∞∑
t=0

uT(t)u(t)

provided. (Note that the finite-time norm is practically em-
ployed, marking the steady-state conditions.) Therefore,
we use the term ‘minimum-norm/least-squaresT -inverse’
to additionally stress that the regular transpose is involved
for the time-domain signals considered.

Secondly, the z-domain solution to Eqn. (26) wo-
uld not take us any further, in terms of the inabili-
ty to transform it to the time-domain solution. The re-
ason is obvious: the z-domain solution would involve
z = Re z − i Im z, in general.

To additionally exemplify the idea of the minimum-
norm T -inverse/solution, consider the nonsquare full nor-
mal rank MFD system specified in Appendix E. Choosing
β(z) =

[
Iny 0ny×(nu−ny)

]
, we end up with the (di-

mension reducing or squaring down) σ-inverse

BR(z) =
[

Ψny×ny

0(nu−ny)×ny

]
,

with Ψ = Ψ(z) being a rational matrix, which im-
plies that the associated system under MVC would be a

squared-down (ny × ny) control one. It might seem that
in such a case the time-domain norm of the MV/pefect
control signal could be lower than that for the minimum-
norm T -solution. This cannot be true: the minimum-
norm T -solution is really the minimum norm one, that
is, ‖u0(t)‖ < ‖uσ(t)‖, where u0(t) and uσ(t) are the
MV/perfect control signals involving the T -inverse and
the specific σ-inverse of B(q−1), respectively. The same
can be verified in yet another interesting example with the
10 × 1 MISO system specified in Appendix F and

β(z) =
[

0 . . . 0 1
i

0 . . . 0
]

producing the σ-inverse

BR(z) =
[

0 . . . 0 Ψ
i

0 . . . 0
]T

,

that is, with the only nonzero entries at the i-th position,
i = 1, . . . , 10, and Ψ = Ψ(z) being a rational matrix. In
fact, in all the squared-down SISO control systems obta-
ined we have ‖u0(t)‖ <

∥∥ui
σ(t)

∥∥ for each i = 1, . . . , 10.
One may also argue that the notions ‘minimum-norm

right inverse’ and ‘least-squares left inverse’ are justified
for real-valued parameter matrices BR = BT(BBT)−1

andBL = (BTB)−1BT, respectively, so that transferring
them to polynomial matrices (and rational matrices) intro-
duces doubts and reservations. Although the transferring
problem itself is indeed an open issue, we wish to stress
once more that our solution is the time-domain one and
there is no such transferring needed in our case at all. An
attempt to find the minimum-norm solution in the Frobe-
nius norm-involved polynomial matrix case has been pre-
sented by Kwan and Kok (2006), but it can by no means be
applied to our time-domain formulated inverse problem.

It is worth emphasizing once more that, although
our solution to the inverse-model control problem is time-
domain, all the introduced polynomial matrix inverses can
be used both in the time domain-valued BR(q−1) form
and the complex operator-associated version BR(z). In
other words, in our control synthesis problem we can ope-
rate either withBR(q−1) orBR(z−1) orBR(z), although
with the associated time-domain norms involving regu-
lar transposes. Therefore, we have exchangeably operated
with various arguments of polynomial/rational matrices.

The computation of right/left inverses for nonsqu-
are polynomial matrices is a rather unexplored research
area, so the new results obtained in the paper are accom-
panied with a series of open problems. In addition to a
general open issue of possible transferring of minimum-
norm/least-squares inverses of parameter matrices to the
polynomial matrix case (which is of no interest in our ca-
se), there have been a number of detailed open problems
scattered throughout the paper and specified below. Sin-
ce τ -inverses have appeared not to be of practical interest,
we have skipped over the open issue of formal defining
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of the inverses, which might deserve a research effort, at
least from a theoretical point of view. Likewise, a theore-
tical analysis of unfavorable properties of τ -inverses, in
terms of the appearance of stable/unstable poles, might be
welcome.

The new σ-inverses are definitely worth further rese-
arch effort. Firstly, the difficult problem of proving Con-
jecture 1 presents a research challenge. Secondly, a gene-
ral method for the selection of β(q−1) to provide a stable
σ-inverse is awaiting its developer. Similarly, we lack a
general methodology for designing S-inverses with arbi-
trary zeros. Also, it might be interesting to analyze pro-
perties of σ-inverses when β(q−1) is not of full normal

rank, even though in those cases B(q−1)BR(q−1) �= Iny ,
in general. Last but not least, it is of interest to seek a rela-
tion between the unique finite/infinite zero structure of the
Moore–Penrose inverse of a nonsquare polynomial matrix
and a finite/infinite zero structure of that matrix, the open
issue brought to the authors’ attention by one of the ano-
nymous reviewers. The above open problems are the sub-
ject of our current research works, in addition to seeking
further application areas for nonsquare inverse polynomial
matrices.

11. Conclusions

In this paper, new analytical expressions for various ri-
ght/left inverses of full normal rank nonsquare polynomial
matrices have been presented. The new inverses have be-
en shown to originate from the minimum variance con-
trol strategy, the application that has stimulated research
interest in this strictly mathematical field. In addition to
the well-known but renamed T -inverses, three new classes
of the inverses have been introduced, that is, τ -inverses,
σ-inverses and S-inverses. Also, the extreme points and
extreme directions method has been adopted to the inver-
se polynomial matrix solution, but the approach has not
been found promising here.

A number of the most algorithmically complicated τ -
inverses is finite so that their application is limited, even
though nice, combinatorics-related, algorithmic and tech-
nical results have been achieved. A number of more ge-
neral, algorithmically simple σ-inverses is infinite but, so
far, they suffer from the lack of a general methodology for
designing stable-pole polynomial matrix inverses, a cru-
cial requirement in control-related applications. This disa-
dvantage of σ-inverses is removed in the most general and
algorithmically simple S-inverses, employing the Smith
factorization approach.

In addition to ‘natural’ applications of the introdu-
ced polynomial matrix inverses in inverse-model control,
in particular robust minimum variance control, possible
applications in a variety of communication/vision ‘per-
fectualizing’ tasks have been indicated, with all of them
still waiting for an extension of the up-to-date exploited

minimum-norm/least-squares polynomial matrix inverses.
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Bańka, S. and Dworak, P. (2007). On decoupling of LTI MIMO
systems with guaranteed stability, Measurement Automa-
tion and Monitoring 53(6): 46–51.

Ben-Israel, A. and Greville, T.N.E. (2003). Generalized Inver-
ses, Theory and Applications, 2nd Edn., Springer-Verlag,
New York, NY.

Bernardini, R. and Rinaldo, R. (2006). Oversampled filter
banks from extended perfect reconstruction filter banks,
IEEE Transactions on Signal Processing 54(7): 2625–
2635, DOI: 10.1109/TSP.2006.874811.

Boche, H. and Pohl, V. (2006). MIMO-ISI channel
equalization—Which price we have to pay for causality,
Proceedings of the 14th European Signal Processing Con-
ference (EUSIPCO’2006), Florence, Italy, (on CD-ROM).

Bose, N.K. and Mitra, S.K. (1978). Generalized inverse of poly-
nomial matrices, IEEE Transactions on Automatic Control
23(3): 491–493.

Callier, F.M. and Kraffer, F. (2005). Proper feedback compen-
sators for a strictly proper plant by polynomial equations,
International Journal of Applied Mathematics and Compu-
ter Science 15(4): 493–507.

Castella, M. and Pesquet, J.-C. (2004). An iterative blind source
separation method for convolutive mixtures of images, in
C.G. Puntonet and A. Prieto (Eds.), Independent Compo-
nent Analysis and Blind Signal Separation, Lecture Notes
in Computer Science, Vol. 3195, Springer-Verlag, Heidel-
berg/Berlin, pp. 922–929.

Chen, J. and Hara, S. (2001). Tracking performance with fi-
nite input energy, in S.O.R. Moheimani (Ed.), Perspec-
tives in Robust Control, Lecture Notes in Control and
Information Sciences, Vol. 268, Springer-Verlag, Heidel-
berg/Berlin, Chapter 4, pp. 41–55.

Davison, E. (1983). Some properties of minimum phase sys-
tems and ‘squared-down’ systems, IEEE Transactions on
Automatic Control 28(2): 221–222.

Desoer, C.A. and Schulman, J.D. (1974). Zeros and poles of ma-
trix transfer functions and their dynamical interpretation,
IEEE Transactions on Circuits and Systems 21(1): 3–8.

Edelmayer, A., Bokor, J., Szabó, Z. and Szigeti, F. (2004). Input
reconstruction by means of system inversion: A geometric
approach to fault detection and isolation in nonlinear sys-
tems, International Journal of Applied Mathematics and
Computer Science 14(2): 189–199.



A study on new right/left inverses of nonsquare polynomial matrices 343

Ferreira, P.M.G. (1988). Some results on system equivalence,
International Journal of Control 48(5): 2033–2042, DOI:
10.1080/00207178808906303.

Fornasini, E. and Pinto, R. (2004). Matrix fraction descriptions
in convolutional coding, Linear Algebra and Its Applica-
tions 392: 119–158, DOI: 10.1016/j.laa.2004.06.007.

Forney, Jr., G.D. (1991). Algebraic structure of convolutional co-
des, and algebraic system theory, in A.C. Antoulas (Ed.),
Mathematical System Theory: The Influence of R.E. Kal-
man, Springer-Verlag, Heidelberg/Berlin, pp. 527–557.

Gan, L. and Ling, C. (2008). Computation of the
para-pseudoinverse for oversampled filter banks: For-
ward and backward Greville formulas, IEEE Transac-
tions on Signal Processing 56(12): 5851–5860, DOI:
10.1109/TSP.2008.2005086.

Gluesing-Luerssen, H., Rosenthal, J. and Smarandache, R.
(2006). Strongly-MDS convolutional codes, IEEE Trans-
actions on Information Theory 52(2): 584–598, DOI:
10.1109/TIT.2005.862100.

Guo, Y. and Levy, B.C. (2004). Design of FIR precoders and
equalizers for broadband MIMO wireless channels with
power constraints, EURASIP Journal on Wireless Com-
munications and Networking 2004(2): 344–356, DOI:
10.1155/S1687147204406185.

Harikumar, G. and Bresler, Y. (1999a). Exact image deconvolu-
tion from multiple FIR blurs, IEEE Transactions on Image
Processing 8(6): 846–862, DOI: 10.1109/83.766861.

Harikumar, G. and Bresler, Y. (1999b). Perfect blind restora-
tion of images blurred by multiple filters: Theory and effi-
cient algorithms, IEEE Transactions on Image Processing
8(2): 202–219, DOI: 10.1109/83.743855.

Hautus, M.L.J. and Heymann, M. (1983). Linear feedback
decoupling—Transfer function analysis, IEEE Transac-
tions on Automatic Control 28(8): 823–832.

Henrion, D. (1998). Reliable Algorithms for Polynomial Matri-
ces, Ph.D. thesis, Institute of Information Theory and Au-
tomation, Czech Academy of Sciences, Prague.

Hunek, W.P. (2008). Towards robust minimum variance con-
trol of nonsquare LTI MIMO systems, Archives of Control
Sciences 18(1): 59–71.

Hunek, W.P. (2009a). A new general class of MVC-related inver-
ses of nonsquare polynomial matrices based on the Smith
factorization, Proceedings of the 14th IEEE IFAC Inter-
national Conference on Methods and Models in Automa-
tion and Robotics (MMAR’2009), Miȩdzyzdroje, Poland,
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Miȩdzyzdroje, Poland, pp. 251–256.

Latawiec, K.J., Hunek, W.P. and Łukaniszyn, M. (2005). New
optimal solvers of MVC-related linear matrix polynomial
equations, Proceedings of the 11th IEEE International
Conference on Methods and Models in Automation and Ro-
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Appendix A

ExpandingBR5 for β(q−1) = b0 + b1q
−1 and

(b0 + b1q
−1)R = [I + (b0)

Rb1q
−1]−1(b0)

R,

we arrive at

BR8(q−1) = {I + {[I + (b0)
Rb1q

−1]−1(b0)
R}

× (b2q
−2)}−1{[I + (b0)

Rb1q
−1]−1(b0)

R},

while for

(b0 + b1q
−1)R = [I + (b1q

−1)Rb0]
−1(b1q

−1)R

we have

BR9(q−1) = {I + {[I + (b1q
−1)Rb0]

−1(b1q
−1)R}

× (b2q
−2)}−1{[I + (b1q

−1)Rb0]
−1

× (b1q
−1)R}.

By the same token, expanding BR6 for β(q−1) =
b0 + b2q

−2 with

(b0 + b2q
−2)R = [I + (b0)

Rb2q
−2]−1(b0)

R

and with

(b0 + b2q
−2)R = [I + (b2q

−2)Rb0]
−1(b2q

−2)R

we obtain

BR10(q−1)

= {I + {[I + (b0)
Rb2q

−2]−1(b0)
R}

× (b1q
−1)}−1{[I + (b0)

Rb2q
−2]−1(b0)

R}

and

BR11(q−1)

= {I + {[I + (b2q
−2)Rb0]

−1

× (b2q
−2)R}(b1q−1)}−1

× {[I + (b2q
−2)Rb0]

−1(b2q
−2)R},

respectively.
Finally, expandingBR7 for β(q−1) = b1q

−1+b2q
−2

with

(b1q
−1 + b2q

−2)R = [I + (b1q
−1)Rb2q

−2]−1(b1q
−1)R

and with

(b1q
−1 + b2q

−2)R = [I + (b2q
−2)Rb1q

−1]−1(b2q
−2)R

we have

BR12(q−1)

= {I + {[I + (b1q
−1)Rb2q

−2]−1(b1q
−1)R}

× (b0)}−1{[I + (b1q
−1)Rb2q

−2]−1(b1q
−1)R}

and

BR13(q−1)

= {I + {[I + (b2q
−2)Rb1q

−1]−1(b2q
−2)R}

× (b0)}−1{[I + (b2q
−2)Rb1q

−1]−1(b2q
−2)R},

respectively.
Note that all the above identity matrices shall be read

as Inu .

Appendix B

Proof of Theorem 1. Table 1 gives the numbers of τ -
inverses calculated according to Algorithm 1 at each step
k = 1, . . . ,m and for each set i = 1, . . . ,m of the inver-
ses. Table 2 is a sample of Table 1 for m = 4. We use the
standard notation for Ci

k = k!/[i!(k − i)!] as the number
of i-combinations without repetition from a k-element set.

It is essential that we calculate the total number S of
τ -inverses as a sum of all the subsums counted by columns

S = 1 +
m∑

i=1

Ci
m+1

i∑
k=1

Fk,i, (27)

with Cm+1
m+1 = 1 being the number of the T -inverse. The

constructions of the numbers of inverses for each set i =
1, . . . ,m allows calculating the factor

i∑
k=1

Fk,i = Ni−1, i = 1, . . . ,m,

in a recurrent way. Specifically, for the column i = 2 we
have F12 + F22 = N1 = 1 + C1

2N0, where N0 = 1, and
for the column i = 3 there is F13 + F23 + F33 = N2 =
1 + C1

3N0 + C2
3N1.
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Table 2. Example of Table 1 for m = 4.

1 2 3 4

0 C5
5

1 C1
5 C2

5 C3
5 C4

5

2 0 C2
5C1

2 C3
5 (C1

3 + C2
3 ) C4

5(C1
4 + C2

4 + C3
4 )

3 0 0 C3
5C2

3C1
2 C4

5C2
4C1

2 + C4
5C3

4 (C1
3 + C2

3)

4 0 0 0 C4
5C3

4C2
3C1

2

The general recurrence can be easily shown to be

Ni = 1 +
i∑

j=1

Cj
i+1Nj−1, i = 1, . . . ,m− 1.

The last recurrence is obviously included in Eqn. (27) with
S = Nm. Expanding Cj

i+1 yields the final result (13).

Appendix C

Control zeros for B(z) as in Example 1.

• unstable BR(z): 0.1, 0.1063 ± 0.4429i,
0.0190± 1.8760i;

• stable BR(z): 0.1, 0.2715 ± 0.5377i, 0.0032 ±
0.7353i.

Appendix D

Matrices Z1(w) and Z2(w) in Example 2.

Z1(w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 + 2.4w + 0.2w2 + w3 1.9 + 1.1w − 1.3w2 + 2.1w3 + 0.9w4 + 0.062w5 + 0.65w6

0.24 − 1.5w + 0.21w2 − 0.69w3 0.25 − 1.7w + w2 − 0.61w3 − 0.54w4 + 0.17w5 − 0.43w6

−0.48 + 1.2w + 0.34w2 −0.82 + 1.6w − 0.3w2 − 0.57w3 + 0.75w4 + 0.22w5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Z2(w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.8 + 0.87w − 2.8w2 + 1.2w3 − 1.3w4 . . .

0.87 − 2.3w + 2.2w2 − 1.2w3 + 0.84w4 . . .

−0.85 + 2.2w − w2 − 0.42w3 . . .

. . . 1.5 − 4w − 11w2 + 4.2w3 − 4.3w4 − 1.1w5 + 0.8w6 − 0.79w7

. . . 2.4 − 5.1w + 8.3w2 − 3w3 + 2w4 + 0.97w5 − 0.8w6 + 0.53w7

. . . −2.1 + 5.1w − 5.6w2 − 1.5w3 + 1.7w4 − 0.63w5 − 0.26w6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Appendix E

An example of a 4 × 2 MFD plant

G(z) =

⎡
⎢⎢⎢⎢⎣
z2 − 0.7z z2 − 0.8z

z2 − 2z z2 − 1.1z

⎤
⎥⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎢⎣

2z − 0.7 z − 0.2 1 z − 0.1

z − 0.2 z z − 0.15 3z − 2

⎤
⎥⎥⎥⎥⎦ ,

with the squaring down σ-inverse

BR(z) =

⎡
⎢⎢⎢⎢⎣

Ψ2×2

02×2

⎤
⎥⎥⎥⎥⎦

produced by

β(z) =

[
I2 02×2

]
,

providing a 2 × 2 MV/perfect control system with
‖u0(t)‖ < ‖uσ(t)‖.
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Appendix F

An example of a 10 × 1 MFD plant

G(z) =
1

z3 + 0.5z2 − 0.5z

[
10z2 + 5z + 3 z2 − 0.5z + 0.3 z2 + 0.5z + 0.3 7z2 + 0.5z − 0.13 . . .

. . . 17z2 + 0.5z + 0.13 z2 + 0.5z + 0.1 1.1z2 + 0.52z + 0.11 . . .

. . . −2z2 + 0.5z + 0.4 −2z2 + z + 0.4 −12z2 + 5z + 4
]
,

with the squaring down σ-inverse

BR(z) =
[

0 . . . 0 Ψ
i

0 . . . 0
]T

produced by

β(z) =
[

0 . . . 0 1
i

0 . . . 0
]
,

providing SISO MV/perfect control systems with ‖u0(t)‖ <
∥∥ui

σ(t)
∥∥ for all i = 1, . . . , 10. For example, for i = 7,

we have the scalar Ψ = Ψ(z) = 1/(1.1z2 + 0.52z + 0.11).
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