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A Study on Reference Microphone Selection for

Multi-Microphone Speech Enhancement
Jie Zhang, Huawei Chen and Richard C. Hendriks

Abstract—Multi-microphone speech enhancement methods
typically require a reference position with respect to which
the target signal is estimated. Often, this reference position is
arbitrarily chosen as one of the reference microphones. However,
it has been shown that the choice of the reference microphone
can have a significant impact on the final noise reduction
performance. In this paper, we therefore theoretically analyze
the impact of selecting a reference on the noise reduction perfor-
mance with near-end noise being taken into account. Following
the generalized eigenvalue decomposition (GEVD) based optimal
variable span filtering framework, we find that for any linear
beamformer, the output signal-to-noise ratio (SNR) taking both
the near-end and far-end noise into account is reference depen-
dent. Only when the near-end noise is neglected, the output SNR
of rank-1 beamformers does not depend on the reference position.
However, in general for rank-r beamformers with r > 1 (e.g.,
the multichannel Wiener filter) the performance does depend on
the reference position. Based on these, we propose an optimal
algorithm for microphone reference selection that maximizes
the output SNR. In addition, we propose a lower-complexity
algorithm that is still optimal for rank-1 beamformers, but sub-
optimal for the general r > 1 rank beamformers. Experiments
using a simulated microphone array validate the effectiveness of
both proposed methods and show that in terms of quality, several
dB can be gained by selecting the proper reference microphone.

Index Terms—Speech enhancement, multi-channel beamform-
ing, reference microphone, relative acoustic transfer function,
variable span linear filters, low-rank approximation.

I. INTRODUCTION

DURING the last few decades, speech enhancement and

noise reduction have become widely used in numerous

applications. Usually, it is employed as a front-end step to

improve the speech quality and speech intelligibility in audio

processing scenarios, like speech recognition [1], binaural

hearing aids (HAs) [2], teleconferencing systems [3], source

localization [4] and mobile robot systems [5]. These appli-

cations use both single-microphone algorithms [6]–[8] and
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multi-microphone algorithms [9]–[12]. Compared to single-

microphone noise reduction algorithms, in which only tempo-

ral (spectral) information is exploited, the multi-microphone

counterpart (e.g., beamforming) generally leads to a better

noise reduction performance, as both temporal and spatial

information can be used.

The multi-microphone noise reduction methods can be

classified into 1) linearly constrained beamforming [9], [10],

[13] and 2) unconstrained beamforming [14]–[16]. Two well-

known linearly constrained approaches are the linearly con-

strained minimum variance (LCMV) beamformer and the

minimum variance distortionless response (MVDR) beam-

former [10], [13]. Both are designed to minimize the output

signal variance. The LCMV beamformer can take a set of

linear constraints into account, while the MVDR beamformer

only includes a single linear constraint to guarantee an undis-

torted target signal. Therefore, the MVDR beamformer can be

viewed as a special case of the LCMV beamformer.

Unconstrained beamforming, e.g., the multi-microphone

Wiener filter (MWF) based algorithms, aim at minimizing

the mean square-error (MSE) between the target signal at a

reference position (typically at one of the reference micro-

phones) and the estimated target signal at the same reference

position. The MWF distorts the target signal inevitably, since

no distortionless constraints are taken into account. In order

to alleviate this drawback, one can add a constraint to the

MWF to control the signal distortion level, leading to the

speech distortion weighted MWF (SDW-MWF) [16], which

can then trade-off the noise reduction capability and the signal

distortion level.

Both the linearly-constrained and unconstrained beamform-

ers require a reference position with respect to which the target

signal is estimated. This could be the original source location,

in which case, the beamformers become dependent on the

acoustic transfer function (ATF) of the desired source from

the original location to the microphones. However, often the

reference position is chosen as one of the microphones, which

turns the ATF into a relative acoustic transfer function (RTF).

It is known that under specific conditions, the beamforming

performance is not influenced by the chosen reference micro-

phone [17]–[19]. It is known that this holds when the target

source correlation matrix has rank one and the performance is

measured using the output signal-to-noise ratio (SNR) defined

as the ratio between the variance of the estimated target at the

output of the beamformer and the variance of the processed

far-end noise, i.e., the noise in the beamformer output [19].

However, in practice, it turns out that the chosen reference

microphone does influence the final performance of certain
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beamformers [20]. This depends on the type of beamformers,

the rank of the estimated target correlation matrix and also on

the performance metric that is used.

In order to increase the beamformer performance in practice,

it is thus of relevance to understand the exact relation between

the chosen reference microphone and the final performance. As

a performance metric to optimize, we will constrain ourselves

in this work to the output SNR. However, we will extend this

by including also near-end noise to demonstrate the impact of

reference microphone selection for more general performance

metrics than the conventional output SNR. In the case of

more conventional microphone arrays, the impact of choosing

a reference microphone might be small [20], due to the fact

that the microphones are usually spatially close. In the case of

distributed microphone arrays (i.e., a wireless acoustic sensor

network (WASN)), reference microphone selection can have a

more severe influence on the performance [21], due to the

larger spatial diversity. For instance, it was experimentally

shown in [22] that choosing different reference microphones

heavily affects the speech recognition accuracy (e.g., word

error rates) in meeting recognition scenarios using a distributed

microphone array. In [20], an approach was proposed to

select the optimal reference microphone for the MWF. This

method was refered to as maxoSNR. However, this method

requires to evaluate the performance of all M (the number of

microphones) filters. To overcome this drawback, several sub-

optimal but more practical methods were suggested in [20],

including choosing the microphone that has the highest input

SNR (maxiSNR), selecting the one that is closest to the target

source (minDist) and using the microphone that has the largest

input power (maxEnergy).

Prior to presenting an improved method for reference mi-

crophone selection, we study in this work first more system-

atically the dependence of the output SNR on the microphone

reference. To do so, we consider an extended version of the

output SNR by also including the near-end noise. We will

show that in general, the beamformer performance in terms of

the output SNR always depends on the selected microphone

reference. In addition, we show that even when the near-end

noise can be neglected, the performance of general rank-r
(r > 1) beamformers in terms of the output SNR still depends

on the chosen reference microphone. Only when we consider

rank-1 beamformers (e.g., the MVDR beamformer) without

near-end noise, it indeed follows as already known from [19]

that the output SNR is microphone reference independent.

As the more general case of rank-r (r > 1) beamformers

(e.g., the MWF) with near-end noise resembles the practical

situation, it is of relevance to understand how to choose a

proper reference microphone. We will show that dependent on

the exact setup, the loss in performance by not selecting the

optimal reference microphone can be in the order of several

dB. Based on the theoretical foundings, we propose an optimal

reference microphone selection approach by maximizing the

output SNR of general rank-r beamformers, which is in line

with the selection criterion proposed in [20] and is referred

to as maxoSNR. Instead of verifying the beamformers for

all possible reference microphones, we demonstrate that the

optimal reference microphone can be determined by checking

the diagonal elements of two matrices, which are constructed

by the generalized eigenvalues and eigenvectors of the noise

and noisy correlation matrices. In addition, we present an

alternative selection criterion by considering a semi-definite

programming problem. Furthermore, we show that given the

principal eigenvector, which is basically equivalent to the

RTF in the case of a single target source, searching for its

maximum absolute value gives a sub-optimal solution for the

reference microphone selection. We refer this method to as

maxRTF. Compared to the initial maxoSNR method in [20],

both the proposed maxoSNR and maxRTF methods do not

require to evaluate all possible M filters. As the proposed

maxoSNR and [20] use the same problem formulation and

achieve the same solution, but differ in solvers, we will stick

to the same name in this work. In order to validate the

proposed approach, we conduct experiments using a simulated

microphone array. It is shown that the proposed maxoSNR
method improves the output SNR against other (sub-optimal)

strategies or naive (random) selection, without the need to

evaluate the performance of all M possible filters.

The rest of this paper is structured as follows. Section II

presents the required fundamental knowledge. In Section III,

we summarize the MMSE-based optimal variable span filters.

In Section IV, we theoretically analyze the impact of the signal

rank and the reference microphone on the performance of

MMSE beamformers in terms of output SNR. In Section V, we

propose two reference microphone selection approaches. The

proposed algorithms are validated in Section VI via numerical

simulations. Finally, Section VII concludes this work.

II. FUNDAMENTALS

A. Signal model

In this work, we consider an array of M microphones.

These could be part of a conventional microphone array,

or, a distributed WASN. Let i and k denote the time-frame

index and the frequency-bin index, respectively, in the short-

time Fourier transform (STFT) domain. Assuming an additive

signal model, the acoustic signal at the mth microphone is

then given by

Ym(i, k) = Xm(i, k) +Nm(i, k)

= am(k)S(i, k) +Nm(i, k), (1)

with

• Xm(i, k) the target source STFT coefficient received by

microphone m;

• Nm(i, k) the noise STFT coefficient at the mth micro-

phone, which might include the coherent noise (e.g.,

interference, reverberation) and incoherent noise (e.g.,

sensor self noise);

• am(k) the ATF from the target position to the mth

microphone1;

1In this work, we assume that the single target source keeps static during
the observation time period of interest, as tracking or estimating dynamic
source(s) is beyond the scope of this paper. Under this assumption, the ATF
or RTF of the target source with respect to the microphone array is time-
invariant, i.e., only frequency-dependent.
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• S(i, k) the target source STFT coefficient at the source

position.

Often, instead of the ATF, the RTF is used. This is due

to the fact that the ATF is a scaled version of the RTF and

the scaling factor is hard to determine, while the RTF can

be estimated using e.g., [23]–[27]. The RTF is defined as the

normalized ATF with respect to an arbitrarily chosen reference

microphone n, given by

hn,m(k) = am(k)/an(k), (2)

which can be estimated using the covariance subtraction or

covariance whitening method [23]–[25]. Clearly, when n = m,

hn,m(k) = 1. With the RTF, the signal model in (1) can be

written as

Ym(i, k) = hn,m(k)Xn(i, k) +Nm(i, k). (3)

For notational brevity, we will omit the time-frequency indices

(i, k) in the sequel bearing in mind that all the operations take

place in the STFT domain. Using vector notation, the signal

model can be written as

y = x+ n

= aS + n

= hnXn + n, (4)

where

y = [Y1(i, k), Y2(i, k), . . . , YM (i, k)]T ,

x = [X1(i, k), X2(i, k), . . . , XM (i, k)]T ,

n = [N1(i, k), N2(i, k), . . . , NM (i, k)]T ,

a = [a1(k), a2(k), . . . , aM (k)]T ,

hn = [hn,1(f), hn,2(f), . . . , hn,M (f)]T ,

where (·)T denotes the matrix/vector transpose.

B. Second-order statistics

Assuming that the target source and the noise components

are mutually uncorrelated, we can formulate the correlation

matrix of the microphone measurements as

Φyy = E
{
yyH

}

= E
{
xxH

}
+ E

{
nnH

}

= Φxx +Φnn, (5)

where Φxx and Φnn denote the correlation matrix of the signal

component and the correlation matrix of the noise components,

respectively, and E{·} denotes mathematical expectation, and

(·)H the matrix/vector complex conjugate transpose. For the

single target source case, Φxx is a rank-1 matrix in theory,

since by definition we have

Φxx = E
{
xxH

}

, σ2
Saa

H , σ2
Xn

hnh
H
n , (6)

where σ2
S = E

{
|S|2

}
and σ2

Xn
= E

{
|Xn|

2
}

denote the

power spectral density (PSD) of the target source and the

PSD of the signal component at the reference microphone

n, respectively. However, in practice the correlation matrices

Φyy, Φnn and Φxx are unknown and have to be estimated.

For example, Φyy can be estimated from the noisy data, Φnn

from the noise-only data using a voice activity detector (VAD),

and Φxx by subtracting the estimated Φnn from Φyy, i.e.,

Φ̂xx = Φ̂yy − Φ̂nn. (7)

Due to inevitable estimation errors, the estimated correlation

matrix Φ̂xx will hardly ever be rank one, even when Φxx

is rank one. For that reason, we consider in the theoretical

analysis of optimal reference microphone selection the case

where Φxx has in general rank r ≥ 1 for rank-r approximating

beamformers.

C. Problem formulation and existing approaches

For the multi-microphone noise reduction problem, the key

step is designing a frequency-dependent spatial filter w =
[w1, w2, . . . , wM ]T . With such a spatial filter, the estimated

speech signal can be obtained as

Ŝ = wHy. (8)

The SNR after beamforming, i.e., the output SNR, is given by

oSNR(k) =
wHΦxxw

wHΦnnw
, (9)

where the denominator only contains the output noise of

the beamformer, i.e., the far-end noise. In our analysis in

Section IV, we will extend this definition with near-end noise,

as this resembles the realistic practical setup and will be shown

to significantly influence the reference microphone selection.

In case Φxx truly has rank r = 1, it is known that the output

SNR as defined in (9) is microphone reference independent.

However, in practice when the estimate of Φxx has rank r > 1,

the output SNR turns out to be reference dependent for general

rank-r beamformers like the MWF. The most intuitive criterion

of reference microphone selection is by maximizing the (mea-

sured) output SNR [20]. Suppose that the mth microphone is

selected as the reference microphone. Let the corresponding

spatial filter be denoted by wm and the resulting output SNR

by oSNRm. The optimal reference microphone selection in

the sense of maximizing the output SNR can be formulated

as the following maxoSNR optimization problem:

nk = argmax
m

oSNRm(k). (10)

In [20], this optimization problem (10) is solved via an

exhaustive search, i.e., designing M filters and evaluating the

output SNR of each filter. The exhaustive search might be

problematic due to the time complexity in designing all M
filters, particularly when M is large, e.g., in WASNs.

As the original maxoSNR requires to examine the per-

formance of all filters, several sub-optimal low-complexity

approaches were also introduced in [20].

1) maxiSNR: Instead of selecting the reference based on

the output SNR, it was proposed in [20] to perform the

selection based on the input SNR. In this case, the reference

is selected as

nk = argmax
m

iSNRm(k), (11)
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with the frequency-dependent input SNR defined as

iSNRm(k) =

∑

i |Xm(i, k)|
2

∑

i |Nm(i, k)|
2 . (12)

Notice that this selection mechanism does not include the filter

wk and leads thus to a sub-optimal solution.

2) minDist: The input SNR and the signal PSD σ2
Xm

are

directly related to the distance between the target source posi-

tion and the microphone. The closer a microphone to the target

source, the larger input SNR it obtains. An alternative sub-

optimal reference selection method was therefore presented

where the microphone that is closest to the target source is

chosen as the reference microphone. Clearly, minDist depends

on the source localization and microphone calibration results.

3) maxEnergy: Another sub-optimal selection procedure

introduced in [20] is based on choosing the microphone that

has the maximum input power, i.e.,

nk = argmax
m

∑

i

|Ym(i, k)|
2
, (13)

since in case the noise sources are far away from the micro-

phones or the input SNRs are high, the input power is domi-

nated by the speech component. Note that maxEnergy might

lose validity if the noise source is close to the microphones.

Notice that the maxoSNR, maxiSNR and maxEnergy
are frequency-dependent, and thus might select a different

reference at different frequency bins (i.e., soft selection), while

minDist employs a hard selection. In this work, in order to

avoid an exhaustive search, we will theoretically analyze the

impact of reference microphone selection on the performance

and then propose a low-complexity approach.

III. OPTIMAL BEAMFORMER DESIGN

To guide the reader, we summarize in this section the work

on optimal variable span linear filters presented in [19] and

also based on the work in [28], [29]. We will use these variable

span linear filters in Section IV to get more understanding on

the relation between the optimal reference, the output SNR

and the rank of the (estimated) correlation matrix Φxx.

A. Joint diagonalization

Given two correlation matrices Φxx ∈ C
M×M and Φnn ∈

C
M×M , the joint diagonalization of such a matrix pencil is

equivalent to solving the generalized eigenvalue decomposi-

tion (GEVD) problem as [30]

ΦxxU = ΦnnUΛ, (14)

where U = [u1, . . . ,uM ] ∈ C
M×M contains the generalized

eigenvectors and the diagonal matrix Λ = diag(λ1, . . . , λM )
contains the corresponding eigenvalues. Given matrices U and

Λ, Φxx and Φnn can be jointly diagonalized as

UHΦxxU = Λ, (15)

UHΦnnU = IM , (16)

where IM denotes an M -dimensional identity matrix. Based

on the GEVD of {Φxx,Φnn} and due to the fact that Φnn is

always positive definite, we can see that

Φ−1
nnΦxxU = UΛ, (17)

implying that (λj ,uj), ∀j are the right eigenpairs of Φ−1
nnΦxx.

Further, the noisy correlation matrix Φyy can be diagonalized

as

UHΦyyU = Λ+ IM . (18)

Therefore, Φxx can be diagonalized by calculating the eigen-

pairs based on the use of noise and noisy correlation matrices.

B. Optimal MMSE beamformer

Given a reference microphone m, the optimal minimum

mean square-error (MMSE) beamformer is formulated as the

following constrained optimization problem [16], [19], [31]

min
w

E
[
|wHx−Xm|2

]

s.t. E
[
|wHn|2

]
≤ c,

(19)

where 0 ≤ c ≤ σ2
Nm

with σ2
Nm

denoting the noise PSD at the

reference microphone. Applying this MMSE beamformer to

the input noisy microphone signals, the signal component at

the reference microphone is estimated.

In order to formulate different types of linear beamformers

as a function of the generalized eigenvectors, the solution of

(19) is defined in the form

w = Uν, (20)

where ν ∈ C
M . Substituting w = Uν into (19), we obtain

ν = (Λ+ µIM )
−1

UHΦxxem, (21)

where em is a column vector with the mth element equal

to one and zeros elsewhere. Notice that em functions as

a selection vector selecting microphone m as the reference

microphone. Consequently, the optimal beamformer is thus

given by

w = U (Λ+ µIM )
−1

UHΦxxem, (22)

where the Lagrange multiplier µ ≥ 0 is chosen such that

νHν = c. Different choices of µ can trade off the signal

distortion level and noise reduction performance. The resulting

beamformer is referred to as the speech distortion weighted

multichannel Wiener filter (SDW-MWF) [32], [33].

C. Low-rank approximation for beamformer design

Let P ≤ M be the rank of Φxx. In theory, Rank(Φxx)
is equal to the number of the sources of interest. However,

due to the estimation errors in the noise and noisy correlation

matrices, P can be greater. In many applications, one makes

a rank-r approximation of Φxx, where r ≤ P ≤ M [11],

[19], [28], [30]. Letting U−H = Q = [q1, . . . ,qM ], we can

decompose Φxx as

Φxx = QΛQH =
M∑

j=1

λiqjq
H
j . (23)
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Further, it is easy to verify that

Φnn = QQH , QHΦ−1
nnΦxx = ΛQH , (24)

which means that qi, ∀i are the left eigenvectors of Φ−1
nnΦxx.

For the single speech source scenario with Φxx rank-1, the

normalized principal eigenvector q1 gives the RTF [23]–[25].

Consequently, with Q, a rank-r approximation of Φxx can

be constructed by exploiting the r-maximum eigenvalues and

the corresponding eigenvectors as

Φ̂xx = QrΛrQ
H
r =

r∑

j=1

λjqjq
H
j . (25)

Substituting the low-rank approximation of Φxx into (22), the

rank-r optimal MMSE beamformer is given by

wr = Ur (Λr + µIr)
−1

ΛrQ
H
r em. (26)

Choosing particular values for r and/or µ, well-known special

cases of wr are obtained.
1) Classic MWF: In case µ = 1 and r = P = M , we can

see that

wMWF = U (Λ+ I)
−1

UH

︸ ︷︷ ︸

Φ
−1

yy

QΛQH

︸ ︷︷ ︸

Φxx

ek, (27)

since UHQ = IM (i.e., the left and right eigenvectors are

bi-orthogonal). This filter is known as the classic MWF.
2) Rank-1 beamformer: In case r = 1, we obtain the rank-1

beamformer as

w1 =
λ1q

∗

1m

λ1 + µ
u1, (28)

where q∗1m = qH
1 em denotes the complex conjugate of the

mth element of q1.
3) MVDR beamformer: In case r = 1 and µ = 0, we obtain

the classic MVDR beamformer as

wMVDR = q∗1mu1, (29)

which is a special case of the rank-1 beamformer. By setting

proper required parameters, one can obtain different variants of

the optimal MMSE beamformer, e.g., see [19] for an overview.

IV. PERFORMANCE ANALYSIS

In this section, we will analyze the dependence of the

output SNR of the MMSE beamformers on the reference

microphone m. In realistic speech communication systems,

as Fig. 1 shows, it is required not only to enhance the target

signal, but also to play out the enhanced speech signal for the

listener. The speech quality and speech intelligibility of the

beamformer output signal then also depend on the acoustic

noise in the listening environment, as the enhanced signal

would be acoustically mixed with the near-end noise in a noisy

environment [34]. For this, we first extend the definition of the

frequency-dependent output SNR to also include the near-end

noise. That is,

oSNRnear
m =

wHΦxxw

wHΦnnw + σ2
U

, (30)

where σ2
U denotes the near-end noise variance of the noise

in the environment of the listener that gets acoustically mixed

with the beamformer output. In Fig. 4 and Fig. 5, we visualize

the combination of the far-end and near-end scenarios.
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𝜎,
#
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…

Figure 1. An illustrative example of realistic speech communication systems
consisting of the far-end beamforming and near-end listening modules.

A. Rank-r beamformer with near-end noise

Using the rank-r optimal filter given in (26) with 1 ≤ r ≤
M , the near-end output SNR in (30) can be calculated as

oSNRnear
m =

wH
r Φxxwr

wH
r Φnnwr + σ2

U

=
eHmAem

eHmBem + σ2
U

, (31)

where the matrices A and B are given by

A = QrΛr (Λr + µIr)
−1

UH
r ΦxxUr (Λr + µIr)

−1
ΛrQ

H
r ,

B = QrΛr (Λr + µIr)
−1

UH
r ΦnnUr (Λr + µIr)

−1
ΛrQ

H
r .

By inspection, we have

UH
r ΦxxUr = UH

r QΛQHUr

=
[
Ir 0r×(M−r)

]
Λ
[
Ir 0(M−r)×r

]T
= Λr,

UH
r ΦnnUr = UH

r QQHUr = Ir.

As a consequence, we obtain

A = QrΛr (Λr + µIr)
−1

Λr (Λr + µIr)
−1

ΛrQ
H
r

=

r∑

j=1

λ3
j

(λj + µ)2
qjq

H
j , (32)

B = QrΛr (Λr + µIr)
−1

(Λr + µIr)
−1

ΛrQ
H
r

=

r∑

j=1

λ2
j

(λj + µ)2
qjq

H
j . (33)

The output SNR of rank-r beamformers is thus given by

oSNRnear
m =

∑r

j=1

λ3

j

(λj+µ)2 |qmj |
2

∑r

j=1

λ2

j

(λj+µ)2 |qmj |2 + σ2
U

, (34)

which is clearly reference microphone dependent via the factor

qmj included in the summation over j.

B. Rank-r beamformer without near-end noise

If σ2
U = 0, i.e., the near-end noise is neglected, the far-end

output SNR of the rank-r beamformer is then given by

oSNRfar
m =

eHmAem

eHmBem
=

∑r

j=1

λ3

j

(λj+µ)2 |qmj |
2

∑r

j=1

λ2

j

(λj+µ)2 |qmj |2
, (35)

which is still reference microphone dependent via the factor

qmj . This dependence implies that the selection of a reference
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Figure 2. The narrowband far-end output SNR in terms of rank r using the
nth microphone as the reference without near-end noise.

microphone also affects the noise reduction performance of

general rank-r beamformers (e.g., the conventional MWF,

SDW-MWF) without near-end noise, certainly when imple-

mented with the estimated (higher rank) correlation matrices.

C. Rank-1 beamformer without near-end noise

As a special case, applying the rank-1 beamformers, the

far-end output SNR is given by

oSNRfar
m =

uH
1 Φxxu1

uH
1 Φnnu1

= λ1. (36)

Obviously, the rank-1 beamformer is capable of maximizing

the output SNR, which equals the maximum generalized eigen-

value. Therefore, for all rank-1 beamformers (e.g., MVDR

beamformer, maximum SNR beamformer), the far-end out-

put SNR (i.e., when neglecting the near-end noise) is then

reference microphone independent.

Furthermore, the output SNR of any rank-r beamformer

cannot exceed the maximum eigenvalue. An illustrative exam-

ple of the output SNR in terms of the rank r is shown in Fig. 2.

We use a uniform linear array (ULA) consisting of M = 8
microphones and design the rank-r optimal beamformer given

in (26) for noise reduction. In this case, one can choose any

microphone as the reference. It is clear that for r = 1, the

maximum output SNR is obtained independent of the reference

microphone. For any rank-r beamformer with 2 ≤ r ≤ M ,

the output SNR depends on the reference. With an increase in

the rank, the performance decreases. This also follows from

Theorem 1.

Theorem 1. Given the same reference microphone, the far-end

output SNR of rank-r MMSE beamformers satisfies [19]

λ1 = oSNRr=1 ≥ oSNRr=2 ≥ · · · ≥ oSNRr=M . (37)

Proof. Letting xj =
λ2

j

(λj+µ)2 |qmj |
2 > 0, ∀j = 1, . . . , r, then

it can be shown that

oSNRr=1 − oSNRr=2 = λ1 −
λ1x1 + λ2x2

x1 + x2

=
(λ1 − λ2)x2

x1 + x2
≥ 0,

since λ1 ≥ λ2 ≥ . . . ,≥ λM . This can be easily generalized

to show oSNRr=j ≥ oSNRr=j+1 for j ≥ 2. This completes

the proof.

Altogether, we can conclude that in general the output SNR

of any rank-r beamformer is affected by the reference, and

only when σ2
U = 0, the rank-1 beamformers are not affected

by the reference microphone. Next, we will optimize the

output SNR given in (30) for the general case via reference

microphone selection.

V. PROPOSED REFERENCE SELECTION APPROACH

In this section, we will propose two reference microphone

selection approaches.

A. maxoSNR

Typically, the estimated correlation matrix Φ̂xx has a rank

Rank(Φ̂xx) > 1 because of inaccuracies in the estimated

correlation matrices (which are estimated using a limited

amount of data). Based on the previous analysis, we know

from (36) that for rank-1 beamformers, with the absence

of near-end noise the output SNR does not depend on the

reference regardless of the actual rank Rank(Φ̂xx). However,

generally, when the near-end noise is also present, for any

rank-r beamformer, it holds that they do depend on the

reference microphone. Their performance is thus affected by

the chosen reference for any r. The MMSE beamformers are

calculated per frequency bin and for each frequency bin the

narrowband SNR can be quite different depending on the

reference microphone. Therefore, we first propose to optimize

the frequency-dependent output SNR by selecting a reference

microphone for each frequency bin individually. At the end of

this subsection, this will be extended to broadband reference

selection where one microphone is selected for the complete

frequency range. In line with (30), the frequency-dependent

optimal reference microphone can be determined by solving

the following problem formulation:

nk =argmax
m

oSNRnear
m = argmax

m

eHmAem

eHmCem
,

s.t. 1T
Mem = 1, em ∈ {0, 1}M ,

(38)

where 1M denotes an M -dimensional all-ones column vector,

and the constraints are to force that only one element in ek
equals one, and C = B + σ2

UI. Clearly, this is a Boolean

optimization problem, which can be maximized by taking the

maximum of the element-wise division between the diagonal

elements of A and C. As an alternative, we can also solve

this as a semi-definite programming (SDP) problem. To do so,

we first relax (38) as

max
em,η

eHmAem/η

s.t. eHmCem ≤ η

1T
Mem = 1, em ∈ {0, 1}M ,

(39)

by introducing a new variable η > 0. Note that the first

constraint can be re-written as a linear inequality constraint

using the Schur complement [35]
[
C−1 em
eTm η

]

� OM+1, (40)
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due to the fact that C is positive definite. Furthermore, if we

relax ek using the continuous surrogates as 0 ≤ em[i] ≤ 1, ∀i,
we can reformulate (38) as the following SDP problem [35]:

max
em,η

eHmAem/η

s.t.

[
C−1 em
eTm η

]

� OM+1

1T
Mem = 1, em ∈ [0, 1]M ,

(41)

which can be solved using a toolbox like CVX [36]. In

principal, (39) can be seen as a special case of the general

microphone subset selection problem proposed in [37], as only

one microphone needs to be selected. The final reference mi-

crophone is given by the index of the maximum value of em.

The proposed selection method is performed per frequency

bin, that is, the reference microphone might be changing across

frequencies, thus referred to as narrowband maxoSNR. Note

that different from [20], the proposed maxoSNR method (ei-

ther by simply checking the diagonal elements of the matrices

A and C or by considering the SDP problem) does not need

to design M filters and includes the effect of the near-end

noise. Also, checking the diagonal elements and considering

the SDP problem lead to the same reference selection.

In order to use the same microphone as the reference

for all frequency bins (i.e., broadband selection), one can

consider to maximize the broadband output SNR instead of

the narrowband SNR as in (38). That is,

n = argmax
m

∑

k e
H
mA(k)em

∑

k (e
H
mB(k)em + σ2

U )

= argmax
m

∑

k e
H
mA(k)em

∑

k e
H
m (B(k) + σ2

UIM ) em

= argmax
m

eHm
∑

k A(k)em
eHm

∑

k C(k)em
, (42)

where C(k) = B(k)+σ2
UIM , subject to the constraints given

in (38). Taking the summations
∑

k A(k) and
∑

k C(k) as

two individual matrices, (42) can then be solved using exactly

the same two techniques presented earlier in this section,

which gives the optimal single reference microphone across

all frequencies. We will refer to this method as the broadband

maxoSNR reference selection method.

B. maxRTF

By ignoring the Boolean constraints in (38), (38) can be

relaxed as

max
ψ

ψHAψ

ψHBψ + σ2
U

, (43)

where ψ ∈ C
M . Due to the fact that the matrices A and B

are positive definite, for any ψ we know that ψHAψ > 0 and

ψHBψ > 0. Further, since B = QrΛ2Q
H
r , where

Λ2 = Λr (Λr + µIr)
−1

(Λr + µIr)
−1

Λr,

ψHBψ is thus bounded by

λ2
r

(λr + µ)
2 ≤ ψHBψ ≤

λ2
1

(λ1 + µ)
2 . (44)

Therefore, we obtain

ψHAψ

ψHBψ + σ2
U

=

ψHAψ

ψHBψ

1 +
σ2

U

ψHBψ

≥

ψHAψ

ψHBψ

1 +
σ2

U
(λ1+µ)2

λ2

1

, (45)

since
σ2

U

ψHBψ
≥ 0 with equality obtained when ψ = q1. As a

consequence, (43) can be optimized by maximizing the scaled

lower bound, i.e., solving the generalized Rayleigh quotient

problem:

max
ψ

g(ψ) =
ψHAψ

ψHBψ
. (46)

For this, we need the following theorem.

Theorem 2. For ψ ∈ C
M , g(ψ) is bounded by

λM ≤ g(ψ) ≤ λ1,

the minimum is obtained if and only if ψ = qM , and the

maximum is obtained if and only if ψ = q1.

Proof. From the analysis in Section IV, we know that A =
QrΛ1Q

H
r and B = QrΛ2Q

H
r , where Λ1 is given by

Λ1 = Λr (Λr + µIr)
−1

Λr (Λr + µIr)
−1

Λr

= Λ2Λr.

Therefore, we have A = QrΛ2ΛrQ
H
r = BΛr, since Λr is

a diagonal matrix. The GEVD of the matrix pencil {A,B} is

then given by

AQr = BΛrQr, (47)

or equivalently by B−1AQr = ΛrQr. Maximizing or mini-

mizing the generalized Rayleigh quotient ψ
HAψ

ψHBψ
turns out to

be solving the GEVD problem. Therefore, the maximum can

be obtained when ψ = q1 (e.g., the principal eigenvector) and

the minimum is obtained when ψ = qM (i.e., the eigenvector

corresponding to the minimum eigenvalue). This completes

the proof.

In this case, the optimal unknown is given by the principal

eigenvector q1. Motivated by this, selecting the reference

microphone by searching for the maximum absolute value of

q1 gives a sub-optimal solution as

nk = argmax
m

|qm1|
2. (48)

Remark 1. For any rank-1 MMSE beamformer, the reference

dependent near-end output SNR is given by

oSNRnear
m =

wH
1 Φxxw1

wH
1 Φnnw1 + σ2

U

=
αmλ1

αm + σ2
U

, (49)

where

αm =

(
λ1

λ1 + µ

)2

|q1m|2, (50)

implying that optimizing (48) enables an optimal reference in

the sense of SNR. This is due to the fact that the reference-

dependent SNR monotonically increases with |q1m|2, i.e.,

maximizing oSNRnear
m is equivalent to optimizing |q1m|2 in the

rank-1 case. For a higher-rank case, (48) is then sub-optimal.

Since the RTF is equivalent to the principal left eigenvec-

tor [23]–[25], we thus refer to (48) as the proposed narrowband
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Figure 3. A microphone array based speech enhancement system.

maxRTF method. Similarly to the broadband maxoSNR
method, we can also design a broadband maxRTF procedure

by choosing the microphone whose RTF has the maximum

average power over all frequencies, i.e.,

n = argmax
m

F∑

k=1

|q1m(k)|
2
/F, (51)

where F is the total number of frequency bins.

VI. EXPERIMENTAL RESULTS

In this section, the proposed reference selection algorithms

for the MMSE beamformers are evaluated using a simulated

microphone array. Section VI-A shows the experimental setup.

In Section VI-B and Section VI-C, the instrumental speech

quality and speech intelligibility are evaluated, respectively. In

Section VI-D, we evaluate the performance of two often-used

filters, i.e., the MWF and MVDR beamformer. The proposed

maxoSNR method and the proposed maxRTF will be com-

pared to the reference methods maxiSNR [20], minDist [20],

maxEnergy [20] and a random reference selection procedure.

For the maxiSNR and maxEnergy methods, which are in-

troduced as a narrowband selection procedure in [20], the

corresponding broadband versions will also be compared2. For

the minDist method, we assume that the source-microphone

distances are known, which in practice need to be estimated.

The performance of the average random selection method

is a broadband selection that is evaluated by averaging the

performance that is obtained by all possible M filters. In order

to clearly observe the superiority of the proposed methods over

the baselines, we use “prop.” to indicate the proposed methods

in the legends of graphs.

A. Experimental setup

We use a conventional ULA consisting of M = 8 omni-

directional microphones with a spacing of 2 cm. The micro-

phones are indexed as m ∈ {1, 2, · · · , 8} from left to right.

2Each narrowband method considers reference selection for each frequency
bin individually, that is, different frequency bins might use a difference micro-
phone as the reference. The broadband maxiSNR method can be designed
by choosing the microphone having the maximum average input SNR over
all frequencies, and the broadband maxEnergy method by choosing the
microphone having the maximum average energy, such that their reference
for all frequency bins keeps the same. Note that minDist and the random
selection method are already broadband.

We consider a simulated 2D room with dimensions (4× 3) m

as Fig. 3 depicts, where a single target source and a coherent

interfering point source are located at (1, 2) m and (3, 1) m,

respectively. The target speech source is a 5 minute audio

stream that is obtained by concatenating several speech signals

originating from the TIMIT database [38]. The interfering

source is a stationary Gaussian speech shaped noise signal.

The sampling frequency is 16 kHz. The ATFs are generated

using the toolbox in [39]. All the filtering processes take place

in the STFT domain, where a square-root Hann window of

50 ms for segmentation with 50% overlap, and the estimated

speech signal is recovered via inverse STFT. Due to the

thermal noise of electronic devices, we model the microphone

self noise using a zero-mean uncorrelated Gaussian noise

at an SNR of 40 dB. The reverberation time is set to be

T60 = 200 ms. The trade-off parameter is set to be µ = 1.

Further, the source-to-interference ratio (SIR) is set to be 0 dB.

In order to focus on the influence of reference microphone

selection, we assume that an ideal VAD is available, such

that the microphone recordings can be classified into noise-

only segments and speech-plus-noise segments, and during

these two periods the correlation matrices Φnn and Φyy are

estimated using the average smoothing method, respectively.

Throughout the numerical simulations, the actual rank of the

estimated autocorrelation matrix Φ̂xx is P = M due to the

limited amount of measurements.

As evaluation metrics, we use the SNR gain to measure

the speech quality, and the gain in short-time objective in-

telligibility (STOI) [40] and the gain in speech intelligibility

in bits (SIIB) [41], [42] to measure the instrumental speech

intelligibility. The SNR gain (denoted by ∆SNR) is obtained

by subtracting the input SNR from the output SNR, similarly

for ∆STOI and ∆SIIB. The STOI score is to measure the

instrumental intelligibility of a speech signal, which represents

the correlation between the short-time temporal envelopes of

the clean and enhanced (or noisy) signals, and has been shown

to be highly correlated to human speech intelligibility score.

The STOI score ranges from 0 to 1, and the higher it is, the

more intelligible the speech is. The SIIB score measures the

amount of information shared between the clean speech (i.e.,

the talker at the start point of a realistic speech communication

system) and the degraded speech (i.e., the listener at the end

point) in bits per second (bps), and has been shown to be

more reliable than STOI for a larger diversity of processing

conditions [42]. Similarly to STOI, the higher the SIIB score

is, the more intelligible the obtained speech is. In simulations,

we set the total number of frequency bins to be F = 1024.

B. Instrumental speech quality

In order to study the impact of the rank-r approximation

of Φ̂xx on the noise reduction performance, we first show

the SNR gain of the rank-r MMSE beamformer in terms

of the rank-r approximation of the beamformers summarized

in Section III using different reference microphone selection

methods in Fig. 4. To model the near-end noise, we add zero-

mean Gaussian noise at a variance of σ2
U = 10−4 to the

beamformer output. The target to near-end noise ratio (TNNR)
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Figure 4. The SNR gain of the MMSE beamformers in terms of the rank r

with TNNR = 40 dB.

is around 40 dB. For implementation, after the noise and noisy

correlation matrices Φ̂nn and Φ̂yy are estimated, we use the r
eigenvectors corresponding to the r-maximum eigenvalues and

the corresponding eigenvalues (minus one) of {Φ̂yy, Φ̂nn} to

perform the rank-r approximation of Φ̂xx. As expected from

the theoretical analysis, with an increase in the rank, the SNR

gain of all comparison methods decreases. From Fig. 4, we

can observe that for any rank-r case, the SNR gain depends

on the reference microphone in case the near-end noise is taken

into account. As expected from Section V-B, for the rank-1

case the narrowband maxoSNR and maxRTF obtain the same

SNR gain, as they are equivalent in this case. The proposed

narrowband maxoSNR method achieves the best performance

in SNR gain, and the proposed narrowband maxRTF approach

is near-optimal. In general, the narrowband selection procedure

outperforms the corresponding broadband counterpart with

respect to the SNR. Notably, with an increase in the rank, the

selection of a reference microphone has a more severe impact

on the performance of MMSE beamformers, e.g., the SNR

gap between the proposed method and maxEnergy becomes

larger. Interestingly, comparing the broadband methods, the

performance of the proposed broadband maxoSNR, maxRTF,

the broadband maxiSNR and minDist approaches overlaps,

which is better than the random selection method. That is, in

the broadband sense the microphone that is located closest to

the target source is optimal for maximizing the SNR gain. For

the full-rank case, the proposed narrowband and broadband

maxoSNR methods can improve the SNR gain by 3 dB and

0.5 dB compared to the random selection, respectively.

In Fig. 5, we show the SNR gain of the rank-1 beamformer

in terms of the rank r for σ2
U = 0. It is clear that for r = 1,

the SNR gain of rank-1 MMSE beamformers is reference inde-

pendent without near-end noise being taken into account, and

the maximum SNR gain is achieved. Furthermore, the SNR

gain of the rank-1 MMSE beamformers in terms of the TNNR

is shown in Fig. 6. It is clear that for the rank-1 case, the

proposed narrowband maxoSNR and maxRTF methods are

equivalent. The SNR gain of all reference selection methods

based rank-1 MMSE beamformers increases with an increase

in the TNNR (i.e., a decrease in the near-end noise variance
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Figure 5. The SNR gain of the MMSE beamformers in terms of the rank r

that is used for approximating Φ̂xx without near-end noise, i.e., σ2

U
= 0.
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Figure 6. The SNR gain of the rank-1 MMSE beamformer in terms of TNNR.

σ2
U ). When the near-end noise is negligible, all the considered

reference selection methods obtain a similar performance,

that is, the reference does not affect the near-end output

SNR. In case the variance of the near-end noise increases,

selecting a proper reference becomes more important for rank-

1 beamformers, as the performance gap between the proposed

narrowband methods and other approaches becomes larger.

C. Instrumental speech intelligibility

In this section, we evaluate the reference selection algo-

rithms in terms of the predicted instrumental intelligibility with

the TNNR fixed to be 40 dB. Fig. 7(a) shows the STOI gain

in terms of the rank r that is used for approximating Φ̂xx.

The proposed broadband maxoSNR, broadband maxRTF,

broadband maxiSNR and minDist methods all select the

first microphone as the reference, resulting in the maximum

improvement in STOI. In Fig. 7(a), it is clear that the broad-

band methods (except for the broadband maxEnergy and the

random method) can achieve a better speech intelligibility

compared to the narrowband approaches, while in Fig. 4

the narrowband method achieves a better SNR gain. All the

narrowband methods (except for the narrowband maxEnergy)

have a similar performance in terms of intelligibility. We
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Table I
NEAR-END NOISE REDUCTION PERFORMANCE USING THE CLASSIC MWF (µ = 1, r = M ) AND THE MVDR BEAMFORMER (µ = 0, r = 1).

Method
MWF (µ = 1, r = M ) MVDR (µ = 0, r = 1)

∆SNR ∆STOI ∆SIIB ∆PESQ RefMic (#) ∆SNR ∆STOI ∆SIIB ∆PESQ RefMic (#)

prop. narrow maxoSNR 32.738 0.350 220.61 1.423 1 (213) 37.301 0.352 183.43 1.384 1 (201)

prop. narrow maxRTF 31.894 0.352 195.37 1.423 1 (211) 37.301 0.352 206.89 1.384 1 (201)

narrow maxiSNR 31.613 0.354 199.98 1.437 1 (241) 36.986 0.355 217.09 1.402 1 (243)

narrow maxEnergy 29.517 0.334 167.21 1.345 8 (239) 36.690 0.345 218.52 1.312 8 (237)

broad maxoSNR, maxRTF
broad maxiSNR, minDist

29.905 0.392 320.76 1.508 1 (1024) 36.518 0.383 325.73 1.474 1 (1024)

broad maxEnergy 29.130 0.313 158.28 1.395 8 (1024) 36.192 0.335 197.57 1.356 8 (1024)

broad random 29.319 0.354 212.77 1.471 4 (1024) 36.283 0.354 228.38 1.436 4 (1024)
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Figure 7. The STOI gain and the SIIB gain (in bits per second) in terms of the rank r with TNNR = 40 dB.

can conclude that, in general, the narrowband procedure is

better in SNR gain, while the broadband version is better

in terms of speech intelligibility. This is due to the fact

that the narrowband methods change the reference micro-

phone across frequencies, that is, the phase and magnitude

of the target signal might change per frequency, which will

influence the speech intelligibility. Interestingly, the narrow-

band maxEnergy (which might use different microphones as

the reference across frequencies) outperforms the broadband

maxEnergy (which uses microphone 8 as the reference for

all frequencies) in both SNR and STOI, as the signal recorded

by microphone 8 is dominated by the noise source. Fig. 7(b)

shows the speech intelligibility in terms of the SIIB gain

(in bits per second). These results are similar to Fig. 7(a).

Comparing the proposed broadband maxoSNR to the random

selection method, it is clear that apart from the signal quality in

terms of SNR, the speech intelligibility can also be improved

by choosing a proper reference microphone. That is, in practice

the reference microphone should not be arbitrarily chosen, as

this will harm the performance.

D. Evaluation of MWF and MVDR

Finally, we consider two often-used spatial filters, i.e., the

classic MWF (i.e., µ = 1, r = M ) and the rank-1 MVDR

beamformer (i.e., µ = 0, r = 1) with TNNR = 40 dB. The

speech enhancement performance is shown in Table I, where

we also show the gain in the perceptual evaluation of speech

quality (PESQ) [43], denoted by ∆PESQ. We also indicate

the microphone index that is most frequently chosen as the

reference microphone and the corresponding times it is chosen

by different approaches. The performance of the broadband

maxoSNR, maxRTF, maxiSNR and minDist approaches is

identical, as they all select the first microphone as the reference

for all frequencies. Therefore, we show these methods in one

row together in Table I. The proposed narrowband maxoSNR
obtains the best output SNR. Given the source-microphone

distance, the broadband minDist method obtains the best

predicted speech intelligibility improvement. This is due to the

fact that the closest microphone has the maximum input SNR

and its recording is dominated by the clean signal component.

However, the minDist is an impractical method, due to the

unavailability of the source-microphone distance. In this case,

the proposed broadband methods can be applied to obtain

an informative reference. Randomly choosing a reference

microphone can do better than the maxEnergy method, but

it is still worse than using more elaborate strategies (e.g., the

proposed methods, maxiSNR and minDist). The broadband

maxEnergy method uses microphone 8 as the reference, but

achieves the worst performance, as this microphone is closest

to the coherent interfering source and its measurement is

dominated by the noise source. The conclusions in terms of

PESQ gain are similar to the conclusions related to speech

intelligibility gain. Altogether, we see that we gain about 3

dB in terms of SNR by selecting the right reference micro-

phone and increase the predicted instrumental intelligibility as
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Figure 8. Spectrograms: (a) clean signal, (b) noisy signal at microphone 1, enhanced signals using (c) narrowband maxoSNR, (d) narrowband maxRTF, (e)
maxiSNR, (f) maxEnergy, (g) random selection, and (h) broadband maxoSNR. Note that the enhanced signals of the broadband maxoSNR, maxRTF,
maxiSNR and minDist approaches are the same, as they use the same microphone as the reference.

measured by SIIB with around 100 bps. Finally, we show the

spectrograms of the clean, noisy and enhanced signals using

different reference selection approaches for the MWF in Fig. 8.

It is obvious that the spectrograms of the proposed methods are

more similar to that of the clean signal than that of comparison

approaches, particularly in the square area.

VII. CONCLUSIONS

In this paper, we systematically investigated the impact of

choosing a reference microphone on the spatial filtering based

multi-microphone noise reduction problem. From theoretical

analysis, we found that for any rank-r MMSE beamformer, the

near-end output SNR including the near-end noise depends on

the reference. If and only if the near-end noise is neglected, the

output SNR of rank-1 beamformers (e.g., MVDR) is reference

independent. The proposed narrowband maxoSNR method

is optimal for MMSE beamformers in SNR. In addition,

the proposed narrowband maxRTF approach is sub-optimal

in terms of SNR. For the rank-1 beamformers, maxoSNR
and maxRTF are equivalent. The broadband version of both

methods reduces to the optimal minDist case, i.e., selecting

the microphone closest to the target source as the reference

for all frequencies. Using a simulated microphone array, it was

shown that the proposed narrowband maxoSNR and maxRTF
approaches can improve the signal SNR as compared to other

practical reference microphone selection methods. In general,

the narrowband selection procedure can improve the SNR,

while the broadband counterpart is beneficial for improving

the speech intelligibility. It is reasonable that the effectiveness

of the proposed methods are also valid in other more complex

multichannel noise reduction scenarios, as the proposed theory

was built without strict assumptions on the number of sources,

the positional relationship between the target source and the

interfering source, etc.
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