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We study and obtain results on Ricci solitons in Kenmotsu manifolds satisfying �(�,�) ⋅ � = 0, �(�, �) ⋅ � = 0, �(�, �) ⋅ � = 0,�(�,�) ⋅ � = 0, and �(�, �) ⋅ � = 0, where � and � are C-Bochner and pseudo-projective curvature tensor.

1. Introduction

A Ricci soliton is a natural generalization of an Einstein
metric and is de�ned on a Riemannian manifold (	, 
). A
Ricci soliton is a triple (
, �, �) with 
 a Riemannian metric,� a vector �eld, and � a real scalar such that

L�
 + 2� + 2�
 = 0, (1)

where � is a Ricci tensor of 	 and L� denotes the Lie
derivative operator along the vector �eld�. �e Ricci soliton
is said to be shrinking, steady, and expanding accordingly as� is negative, zero, and positive, respectively [1]. In this paper,
we prove conditions for Ricci solitons inKenmotsumanifolds
to be shrinking, steady, and expanding.

In 1972, Kenmotsu [2] studied a class of contact Rie-
mannian manifolds satisfying some special conditions and
this manifold is known as Kenmotsu manifolds. Kenmotsu
proved that a locally Kenmotsumanifold is a warped product ×�� of an interval  and aKaehlermanifold�withwarping

function �(�) = ���, where � is a nonzero constant. Kenmotsu
proved that if in a Kenmotsumanifold the condition�(�, �)⋅� = 0 holds, then the manifold is of negative curvature −1,
where � is the curvature tensor of type (1, 3) and �(�, �)
denotes the derivation of the tensor algebra at each point of
the tangent space.

�e authors in [3–7] have studied Ricci solitons in contact
and Lorentzian manifolds. �e authors in [8] have obtained
some results on Ricci solitons satisfying �(�,�) ⋅ �̃ = 0,
�(�, �) ⋅ �̃ = 0, �(�,�) ⋅ � = 0 and �̃(�, �) ⋅ � = 0 and
now we extend the work to �(�,�) ⋅ � = 0, �(�, �) ⋅ � = 0,�(�, �) ⋅ � = 0, �(�,�) ⋅ � = 0 and �(�, �) ⋅ � = 0.

2. Preliminaries

An �-dimensional di�erential manifold 	 is said to be an
almost contact metric manifold [9] if it admits an almost
contact metric structure (�, �, �, 
) consisting of a tensor �eld� of type (1, 1), a vector �eld �, a 1-form �, and a Riemannian
metric 
 compatible with (�, �, �, 
) satisfying

�2 = − + � ⊗ �, � (�) = 1,
� ∘ � = 0, �� = 0,


 (��, ��) = 
 (�, �) − � (�) � (�) , 
 (�, �) = � (�) ,
(2)

for all vector �elds�, � on	.
An almost contact metric manifold	(�, �, �, 
) is said to

be Kenmotsu manifold [2] if

(∇��)� = 
 (��, �) � − � (�) ��. (3)

From (3), we have

∇�� = � − � (�) �, (4)

where ∇ denotes the Riemannian connection of 
.
In an �-dimensional Kenmotsu manifold, we have

� (� (�, �)�) = 
 (�, �) � (�) − 
 (�, �) � (�) , (5)

� (�, �) � = � (�)� − � (�)�, (6)
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� (�,�) � = � (�)� − 
 (�, �) �, (7)

� (�,�) � = � − � (�) �, (8)

where � is the Riemannian curvature tensor.
Let (
, �, �) be a Ricci soliton in an �-dimensional

Kenmotsu manifold	. From (4) we have

(L�
) (�, �) = 2 [
 (�, �) − � (�) � (�)] . (9)

From (1) and (9) we get

� (�, �) = − (� + 1) 
 (�, �) + � (�) � (�) . (10)

�e above equation yields that

$� = − (� + 1)� + � (�) �, (11)

� (�, �) = − �� (�) , (12)

% = − �� − (� − 1) , (13)

where � is the Ricci tensor,$ is the Ricci operator, and % is the
scalar curvature on	.

2.1. Example for 3-Dimensional Kenmotsu Manifolds. We

consider 3-dimensional manifold	 = {(&, ', *) ∈ �3; * ̸= 0},
where (&, ', *) are the standard coordinates in�3. Let {41, 42,43} be linearly independent given by

41 = * 5
5& , 42 = * 5

5' , 43 = −* 5
5* . (14)

Let 
 be the Riemannian metric de�ned by 
(41, 42) = 
(42,43) = 
(41, 43) = 0, 
(41, 41) = 
(42, 42) = 
(43, 43) = 1,
where 
 is given by


 = 1
*2 (6& ⊗ 6& + 6' ⊗ 6' + 6* ⊗ 6*) . (15)

�e (�, �, �) structure is given by

� = −1
*6*, � = 43 = −* 5

5* ,
�41 = −42, �42 = 41, �43 = 0.

(16)

�e linearity property of � and 
 yields that �(43) = 1, �27 =−7 + �(7)43, 
(�7, �8) = 
(7,8) − �(7)�(8), for any
vector �elds7,8 on	. By de�nition of Lie bracket, we have

[41, 42] = 0, [41, 43] = 41, [42, 43] = 42. (17)

Let ∇ be the Levi-Civita connection; with respect to above
metric 
 is given by Koszula formula

2
 (∇� �,�) = � (
 (�, �)) + � (
 (�,�))
− � (
 (�, �)) − 
 (�, [�, �])
− 
 (�, [�, �]) + 
 (�, [�, �]) ,

(18)

and by virtue of it we have

∇�143 = 41, ∇�243 = 42, ∇�343 = 0,
∇�142 = 0, ∇�242 = −43, ∇�342 = 0,
∇�141 = −43, ∇�241 = 0, ∇�341 = 0.

(19)

Clearly (19) shows that (�, �, �, 
) satis�es (2), (3), and (4).
�us	 is a Kenmotsu manifold.

It is known that

� (�, �)� = ∇�∇�� − ∇�∇�� − ∇[�,�]�. (20)

With the help of (19) and (20), it can be easily veri�ed that

� (41, 42) 42 = −41, � (41, 43) 43 = −41,
� (41, 41) 41 = 0, � (42, 41) 41 = −42,
� (42, 43) 43 = −42, � (42, 42) 42 = 0,
� (43, 41) 41 = −43, � (43, 42) 42 = −43,

� (43, 43) 43 = 0.

(21)

From the above expression of the curvature tensor we obtain

� (41, 41) = 
 (� (41, 42) 42, 41)
+ 
 (� (41, 43) 43, 41) = −2. (22)

Similarly we have

� (42, 42) = � (43, 43) = −2,
(L�
) (4	, 4	) = 2 [
 (4	, 4	) − � (4	) � (4	)] .

(23)

Now by � = � = 4	, in (1), where 9 = 1, 2, 3 and by virtue of
above equations we get the value of � which is strictly greater
than 0. �us this is an example of expanding Ricci solitons in
Kenmotsu manifolds.

3. Ricci Soliton in a Kenmotsu
Manifold Satisfying �(�,�) ⋅�=0

Bochner introduced aKähler analogue of theWeyl conformal
curvature tensor by purely formal considerations, which is
now well known as the Bochner curvature tensor [10]. A
geometric meaning of the Bochner curvature tensor is given
by Blair in [11] by using the Boothby-Wang’s �bration. In 1969,
Matsumoto and Chūman [12] constructed the notion of C-
Bochner curvature tensor in a Sasakianmanifold and studied
its several properties.
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�eC-Bochner curvature tensor [13] � in	 is de�ned by

� (�, �)� = � (�, �)� + 1
� + 3

× [
 (�, �)$� − � (�, �)�
− 
 (�, �)$� + � (�, �) �
+ 
 (��,�)$�� − � (��, �) ��
− 
 (��, �)$�� + � (��,�) ��
+ 2� (��, �) �� + 2
 (��, �)$��
+ � (�) � (�)$� − � (�) � (�, �) �
+� (�) � (�, �) � − � (�) � (�)$�]

− : + � − 1
� + 3 [
 (��, �) �� − 
 (��, �) ��

+ 2
 (��, �) ��]
+ :

� + 3 [� (�) 
 (�, �) � − � (�) � (�)�
+ � (�) � (�) � − � (�) 
 (�, �) �]

− : − 4
� + 3 [
 (�, �) � − 
 (�, �)�] ,

(24)

where: = (% + � − 1)/(� + 1).
Taking � = � in (24) and using (6), (10), (11), we get

� (�, �) � = [1 − �
� + 3 + 4

� + 3] [� (�)� − � (�)�] .
(25)

Similarly using (5), (10), (11), (12) in (24), we get

� (� (�, �)�) = [1 − �
� + 3 + 4

� + 3]
× [
 (�, �) � (�) − 
 (�, �) � (�)] .

(26)

We assume that the condition �(�,�) ⋅ � = 0, then we have

� (�,�) � (�, �)8 − � (� (�, �) �, �)8
− � (�, � (�, �)�)8 − � (�, �) � (�, �)8 = 0. (27)

Using (7) in (27), we get

� (� (�, �)8)� − 
 (� (�, �)8,�) � + 
 (�, �) � (�, �)8
− � (�) � (�, �)8 + 
 (�, �) � (�, �)8
− � (�) � (�,�)8 + 
 (�,8)� (�, �) �
− � (8)� (�, �)� = 0.

(28)

By taking an inner product with �, we have

� (� (�, �)8) � (�) − 
 (� (�, �)8,�)
+ 
 (�, �) � (� (�, �)8) − � (�) � (� (�, �)8)
+ 
 (�, �) � (� (�, �)8) − � (�) � (� (�,�)8)
+ 
 (�,8) � (� (�, �) �) − � (8) � (� (�, �)�) = 0.

(29)

By using (25), (26) in (29), we have

[1 − �
� + 3 + 4

� + 3] [
 (�,8) 
 (�,�) − 
 (�,8) 
 (�,�)]
− 
 (� (�, �)8,�) = 0.

(30)

In view of (24) in (30), then we have

[1 − �
� + 3 + 4

� + 3] [
 (�,8) 
 (�,�) − 
 (�,8) 
 (�,�)]
− 
 (� (�, �)8,�)
− 1

� + 3 [
 (�,8) � (�,�) − � (�,8) 
 (�,�)
− 
 (�,8) � (�,�) + � (�,8) 
 (�,�)
+ 
 (��,8) � (��,�) − � (��,8) 
 (��,�)
− 
 (��,8) � (��,�) + � (��,8) 
 (��,�)
+ 2� (��, �) 
 (�, �8) + 2
 (��, �) � (�, �8)
+ � (8) � (�) � (�,�) − � (�) � (�) � (�,8)
+ � (�) � (�) � (�,8) − � (8) � (�) � (�,�)]

− :
� + 3 [� (�) � (�) 
 (�,8) − � (8) � (�) 
 (�,�)

+ � (8) � (�) 
 (�,�) − � (�) � (�) 
 (�,8)]
+ : + � − 1

� + 3 [
 (��,8) 
 (��,�)
− 
 (��,8) 
 (��,�)
+ 2
 (��, �) 
 (�, �8)]

+ : − 4
� + 3 [
 (�,8) 
 (�,�) − 
 (�,8) 
 (�,�)] = 0.

(31)
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Taking � = � = �	 in (31) and summing over 9 = 1, 2, . . . , �.
By virtue of (10), (11), (12), and on simpli�cation, we get

� (�,8)
= [− (� + 4) � − 2� − 3

� + 3 + −�2 − 6� + 8
� + 3 − %

� + 3]
 (8,�)

+ [(� + 1) (� + 4) − 2 + �
� + 3 + % + 4 (� − 1)

� + 3 ] � (8) � (�) .
(32)

Putting � = 8 = � in (32) and by virtue of (10) and (13), we
have

� = (� − 1) . (33)

�erefore, � positive that is, the Ricci soliton in Kenmotsu
manifold is expanding.

Hence we state the following theorem:

�eorem 1. A Ricci soliton in a Kenmotsu manifold satisfying�(�,�) ⋅ � = 0 is expanding.
4. Ricci Soliton in a Kenmotsu Manifolds

Satisfying �(�, �) ⋅ �=0
�e condition �(�, �) ⋅ � = 0 implies that

� (� (�, �) �, �) + � (�, � (�, �)�) = 0. (34)

By using (10) in (34), we have

� (�) � (� (�, �) �) − (� + 1) 
 (� (�, �) �, �)
− (� + 1) 
 (�, � (�, �)�) + � (�) � (� (�, �)�) = 0,

(35)

the above equation implies that

[� (�) � (� (�, �) �) + � (�) � (� (�, �)�)]
= (� + 1) [
 (� (�, �) �, �) + 
 (�, � (�, �)�)] . (36)

By using (24) and (26) in (36), we have

2� (�) � (�) � (�) [1 − �
(� + 3) + 4

(� + 3)]

− [1 − �
(� + 3) + 4

(� + 3)]
× [
 (�, �) � (�) + 
 (�, �) � (�)] = 0.

(37)

Put� = � = � in (37) then the equation is identically satis�ed
and we do not get the value for �. So, we proceed as follows:
Taking � = � = �	 in (37) and summing over 9 = 1, 2, . . . , �
and by virtue of (13) and �(�) ̸= 0 conditions, we obtain

� = � + 7. (38)

�erefore, � is positive that is Ricci soliton in Kenmotsu
manifolds satisfying �(�, �) ⋅ � = 0 is expanding.

Hence we can state the following theorem.

�eorem 2. A Ricci soliton in a Kenmotsu manifold satisfying�(�, �) ⋅ � = 0 is expanding.

5. Ricci Soliton in a Kenmotsu Manifold
Satisfying �(�, �) ⋅ � = 0

Using the following equations:

� ((�, �) ⋅ �) (7, �)8
= ((�∧
 �) ⋅ �) (7, �)8 = (�∧
 �) � (7,�)8
+ � ((�∧
 �)7, �)8 + � (7, (�∧
 �)�)8
+ � (7,�) (�∧
 �)8,

(39)

where the endomorphism�∧
 � is de�ned by

(�∧
 �)� = � (�, �)� − � (�, �) �, (40)

we have

� ((�, �) ⋅ �) (7, �)8
= � (�, � (7, �)8)� − � (�, � (7,�)8) �
+ � (�, 7) � (�,�)8 − � (�,7) � (�, �)8
+ � (�, �) � (7,�)8 − � (�,�) � (7, �)8
+ � (�,8)� (7,�)� − � (�,8)� (7,�) �.

(41)

By using the condition �(�, �) ⋅ � = 0, and by virtue of (10),
(12), we have

− �� (� (7, �)8)�
− [− (� + 1) 
 (�, � (7, �)8) + � (�) � (� (7,�)8)] �
− �� (7) � (�,�)8
− [− (� + 1) 
 (�,7) + � (�) � (7)] � (�, �)8
− �� (�) � (7,�)8
− [− (� + 1) 
 (�,�) + � (�) � (�)] � (7, �)8
− �� (8)� (7,�)�
− [− (� + 1) 
 (�,8) + � (�) � (8)] � (7, �) � = 0.

(42)

By taking an inner product with � and by virtue of (5), (6),
(7), and (8), we have

− (� + 1) � (�) [
 (7,8) � (�) − 
 (�,8) � (7)]
+ � [
 (�,8) � (�) � (7) − 
 (7,8) � (�) � (�)

− 
 (7,�) � (�) � (8) + 
 (�,�) � (7) � (8)]
+ (� + 1) 
 (�, � (7, �)8)
+ (� + 1) 
 (�,7) [� (8) � (�) − 
 (�,8)]
+ (� + 1) 
 (�,�) [
 (7,8) − � (8) � (7)]
+ 
 (�,8) � (�) � (7) − 
 (7,8) � (�) � (�) = 0.

(43)
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Taking � = 7 = �	 and summing over 9 = 1, 2, . . . , �, we
obtain

2 (� + 1) [
 (�,8) − � (8) � (�)]
+ (� + 1) � (�,8) − (� + 1) (� − 1) 
 (�,8)
+ (� − 1) � (�) � (8) = 0.

(44)

Taking � = 8 = � in (44) and by virtue of (12), (13), we
obtain

−� (� + �) = 0. (45)

�is implies either

� = 0 or � = −�. (46)

�erefore for any � = 0 or � = −� the Ricci soliton in
Kenmotsu manifolds satisfying �(�, �) ⋅� = 0 is either steady
or shrinking.

Hence we can state the following theorem.

�eorem 3. A Ricci soliton in a Kenmotsu manifold satisfying�(�, �) ⋅ � = 0 is either steady or shrinking.
6. Ricci Soliton in a Kenmotsu Manifolds

Satisfying �(�, �) ⋅ � = 0
�e Pseudo-projective curvature tensor � is de�ned by

� (�, �)� = G� (�, �)� + H [� (�, �)� − � (�, �) �]
− %

� ( G
� − 1 + H) [
 (�, �)� − 
 (�,�) �] ,

(47)

where G, H ̸= 0 are constants. Taking � = � in (47) and using
(6), (10), (11), we get

� (�, �) � = [G + H� + %
� ( G

� − 1 + H)] [� (�)� − � (�)�] .
(48)

Similarly using (5), (10), (11), (12) in (47), we get

� (� (�, �)�) = [G + H (� + 1) + %
� ( G

� − 1 + H)]
× [
 (�, �) � (�) − 
 (�, �) � (�)] .

(49)

We assume that the condition �(�,�) ⋅ � = 0, then we have

� (�, �) � (7, �)8 − � (� (�, �)7,�)8
− � (7, � (�, �)�)8 − � (7,�) � (�, �)8 = 0. (50)

Using (7) in (50), we �nd

� (� (7, �)8)� − 
 (�, � (7, �)8) �
− � (7) � (�,�)8 + 
 (�,7) � (�, �)8
− � (�) � (7,�)8 + 
 (�,�) � (7, �)8
− � (8)� (7,�)� + 
 (�,8)� (7,�) � = 0.

(51)

By taking an inner product with � then we get

� (� (7, �)8) � (�) − 
 (�, � (7, �)8)
− � (7) � (� (�,�)8) + 
 (�,7) � (� (�, �)8)
− � (�) � (� (7,�)8) + 
 (�,�) � (� (7, �)8)
− � (8) � (� (7,�)�) + 
 (�,8) � (� (7,�) �) = 0.

(52)

By using (48), (49) in (52), we have

− 
 (�, � (7, �)8) + [G + H (� + 1) + %
� [ G

� + 1 + H]]
× [
 (�,�) 
 (7,8) − 
 (�,7) 
 (�,8)] = 0.

(53)

In view of (47) in (53), we have

− G
 (�, � (7, �)8)
− H [(� + 1) {
 (�,�) 
 (7,8) −
 (�,8) 
 (7,�)}

+ � (�) � (8) 
 (7,�)
− 
 (�,�) � (7) � (8)]

+ [G + H (� + 1)]
× [
 (�,�) 
 (7,8) − 
 (�,7) 
 (�,8)] = 0.

(54)

Taking � = 7 = �	 in (54) and summing over 9 = 1, 2, . . . , �,
and on simpli�cation, we get

G� (�,8) = −G (� − 1) 
 (�,8) − H (� − 1) � (�) � (8) .
(55)

Putting � = 8 = � in (55) and by virtue of (12), (13), we get
the following equation:

� = (� − 1) (G + H)
G . (56)

Since (G+ H)/G ̸= 0 implies that � > 0, that is, the Ricci soliton
in Kenmotsumanifold satisfying�(�,�)⋅� = 0 is expanding,

hence we state the following theorem.

�eorem 4. A Ricci soliton in a Kenmotsu manifold satisfying

�(�, �) ⋅ � = 0 is expanding.
7. Ricci Soliton in a Kenmotsu

Manifolds Satisfying �(�,�) ⋅ � = 0
�e condition �(�, �) ⋅ � = 0 implies that

� (� (�, �) �, �) + � (�, � (�, �)�) = 0. (57)
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By using (10) in (57), we have

� (�) � (� (�, �) �) − (� + 1) 
 (� (�, �) �, �)
− (� + 1) 
 (�, � (�, �)�) + � (�) � (� (�, �)�) = 0,

(58)

that is,

[� (�) � (� (�, �) �) + � (�) � (� (�, �)�)]
= (� + 1) [
 (� (�, �) �, �) + 
 (�, � (�, �)�)] . (59)

By using (47) and (48) in (59), we have

[G + %
� [ G

� − 1 + H]]
× [2� (�) � (�) � (�)

− 
 (�, �) � (�) − 
 (�, �) � (�)] = 0.
(60)

Put � = � = � in (60); then the equation is identically
satis�ed and we do not get the value for �. So, we proceed as
follows: taking� = � = �	, summing over 9 = 1, 2, . . . , �, and
by virtue of (13) and �(�) ̸= 0 conditions we obtain

� = (� − 1)2 (G − H)
� [G + H (� − 1)] . (61)

�erefore, if G = H in (61) then � = 0; that is, Ricci soliton
in Kenmotsu manifolds satisfying �(�, �) ⋅ � = 0 is steady. IfG ̸= H then either � > 0 for G > H or � < 0 for G < H, that is, the
Ricci soliton in Kenmotsu manifold satisfying �(�, �) ⋅ � = 0
is expanding or shrinking.

Hence we can state the following theorem.

�eorem5. ARicci soliton in aKenmotsumanifolds satisfying

�(�, �) ⋅ � = 0 is steady for G = H, expanding for G > H and
shrinking for G < H.
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