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Abstract

The sigmoid kernel was quite popular for support vector machines due to its

origin from neural networks. However, as the kernel matrix may not be positive semi-

definite (PSD), it is not widely used and the behavior is unknown. In this paper, we

analyze such non-PSD kernels through the point of view of separability. Based on the

investigation of parameters in different ranges, we show that for some parameters, the

kernel matrix is conditionally positive definite (CPD), a property which explains its

practical viability. Experiments are given to illustrate our analysis. Finally, we discuss

how to solve the non-convex dual problems by SMO-type decomposition methods.

Suitable modifications for any symmetric non-PSD kernel matrices are proposed with

convergence proofs.

1 Introduction

Given training vectors xi ∈ Rn, i = 1, . . . , l in two classes, labeled by the vector

y ∈ Rl such that yi ∈ {1,−1}, the support vector machine (SVM) (Boser, Guyon,

and Vapnik 1992; Cortes and Vapnik 1995) tries to separate the training vectors in a

φ-mapped (and possibly infinite dimensional) space, with an error cost C > 0:

min
w,b,ξ

1

2
wT w + C

l∑
i=1

ξi

subject to yi(w
T φ(xi) + b) ≥ 1− ξi, (1.1)

ξi ≥ 0, i = 1, . . . , l.
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Due to the high dimensionality of the vector variable w, we usually solve (1.1) through

its Lagrangian dual problem:

min
α

F (α) =
1

2
αT Qα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l, (1.2)

yT α = 0,

where Qij ≡ yiyjφ(xi)
T φ(xj) and e is the vector of all ones. Here,

K(xi, xj) ≡ φ(xi)
T φ(xj) (1.3)

is called the kernel function where some popular ones are, for example, the polyno-

mial kernel K(xi, xj) = (axT
i xj + r)d, and the RBF (Gaussian) kernel K(xi, xj) =

e−γ‖xi−xj‖2 . We can see that by the definition (1.3), the matrix Q is symmetric and

positive semi-definite (PSD). After (1.2) is solved, w =
∑l

i=1 yiαiφ(xi) so the decision

function for any test vector x is

sgn(
l∑

i=1

αiyiK(xi, x) + b), (1.4)

where b is calculated through the primal-dual relationship.

In practice, some non-PSD matrices are used in (1.2). An important one is the

sigmoid kernel K(xi, xj) = tanh(axT
i xj + r) which is related to neural networks. It

was first pointed out in (Vapnik 1995) that its kernel matrix might not be PSD for

certain values of the parameters a and r. More discussions are in, for instance, (Burges

1998; Schölkopf and Smola 2002). Without K(xi, xj) being the inner product of two

vectors, there is no problem (1.1) so it is unclear what kind of classification problems

we are solving. Surprisingly, the sigmoid kernel has been successfully used in some

practical cases. Some explanations are in (Schölkopf 1997).

Recently, quite a few kernels specific to different applications are proposed. How-

ever, similar to the sigmoid kernel, some of them are not PSD either (e.g. kernel

jittering in (DeCoste and Schölkopf 2002) and tangent distance kernels in (Haasdonk

and Keysers 2002)). Thus, it is essential to analyze such non-PSD kernels. In Section

2, we discuss them by considering the separability of training data. Then in Section

3, we explain the practical viability of the sigmoid kernel by showing that for param-

eters in certain ranges, it is conditionally positive definite (CPD). We also discuss in

Section 4 that for some parameters, the sigmoid kernel behaves like the RBF kernel.
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Section 5 presents experiments showing that the linear constraint yT α = 0 in the dual

problem is essential for the sigmoid kernel matrix to work for SVM.

In addition to unknown behaviors, the non-PSD kernels also cause difficulties on

solving the dual problem. Due to the high density of the Hessian matrix Q of (1.2),

currently a special approach called the decomposition method is the major way to

solve it. However, this method was designed for convex problems where Q is PSD.

If the sigmoid or other non-PSD kernels are used, it may get into serious troubles.

In Section 6, we propose modifications for SMO-type decomposition methods which

guarantee the convergence to a local minimum for non-PSD kernels. Finally, some

discussions are in Section 7.

2 The Separability of Using non-PSD Kernel Ma-

trices

When using non-PSD kernels such as the sigmoid, K(xi, xj) cannot be separated as

the inner product form in (1.3). Thus, the relationship between (1.1) and (1.2) does

not hold. In other words, after obtaining α from (1.2), it is not clear how the training

data are classified since (1.1) may not exist any more. To analyze what we actually

obtained when using a non-PSD Q, we consider a new problem:

min
α,b,ξ

1

2
αT Qα + C

l∑
i=1

ξi

subject to Qα + by ≥ e− ξ, (2.1)

ξi ≥ 0, i = 1, . . . , l.

It is from substituting w =
∑l

i=1 yiαiφ(xi) into (1.1) so that wT w = αT Qα and

yiw
T φ(xi) = (Qα)i. Note that in (2.1), αi may be negative. This problem was used

in (Osuna and Girosi 1998) and some subsequent work. (Lin and Lin 2003) shows

that if Q is symmetric PSD, the optimal solution α of the dual problem (1.2) is also

optimal for (2.1). However, the opposite may not be true unless Q is symmetric

positive definite (PD).

From now on, we consider that Q (or K) may not be PSD. However, we still

assume that it is symmetric. The next theorem tries to address the relation between

(1.2) and (2.1).

Theorem 1 Any local optimal solution α̂ of (1.2) is a feasible point of (2.1).
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Proof.

As (1.2) is a linearly constrained problem, any local optimum α̂ of (1.2) satisfies

the Karash-Kunh-Tucker (KKT) condition. As Q is symmetric, the KKT condition

of (1.2) is that there are scalar p, and non-negative vectors λ and µ such that

Qα̂− e− µ + λ− py = 0,

µi ≥ 0, µiα̂i = 0,

λi ≥ 0, λi(C − α̂i) = 0, i = 1, . . . , l.

If we consider αi = α̂i, b = −p, and ξi = λi, then µi ≥ 0 implies that (α̂,−p, λ) is

feasible for (2.1). 2

An immediate implication is that if α̂, a local optimum of (1.2), has enough zero

components, the training error is not large as many α̂i’s corresponding inequalities

(Qα̂)i + byi ≥ 1 are satisfied. Thus, even if Q is not PSD, it is still possible that the

training error is small. Next, we give a more formal analysis on the separability of

training data:

Theorem 2 Consider the problem (1.2) without C:

min
α

1

2
αT Qα− eT α

subject to 0 ≤ αi, i = 1, . . . , l, (2.2)

yT α = 0.

If it attains a global optimal solution at α̂, then

1. Its optimal objective value is not −∞.

2. (2.1) has a feasible solution with ξi = 0, for i = 1, . . . , l.

3. After C is large enough, α̂ is also a global optimal solution of (1.2).

The proof is directly from Theorem 1 which shows that α̂ is feasible for (2.1) with

ξi = 0. The third property comes from the fact that when C ≥ maxi α̂i, α̂ is also

optimal for (1.2).

Theorem 2 suggests that even if Q is not PSD, if the optimal solution of (2.2) is

attained, the kernel matrix has the ability to fully separate the training data. This

somehow gives an explanation why sometimes non-PSD kernels work. The next issue

is to see if any conditions on a kernel matrix imply this property. This will help the

analysis of the sigmoid kernel.
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Several earlier work have given useful results for the analysis here. In particular,

it has been shown that a conditionally PSD (CPSD) kernel is good enough for SVM.

A matrix K is CPSD (CPD) if for all v 6= 0 with
∑l

i=1 vi = 0, vT Kv ≥ 0 (> 0). Note

that some earlier work use different names: conditionally PD (strictly PD) for the

case of ≥ 0 (> 0). More properties can be seen in, for example, (Berg, Christensen,

and Ressel 1984). Then, the use of a CPSD kernel is equivalent to the use of a PSD

one as yT α = 0 in (1.2) plays a similar role of
∑l

i=1 vi = 0 in the definition of CPSD

(Schölkopf 2000). Note that here for easier analyses, we will work only on the kernel

matrices but not the kernel functions. Therefore, results will be more restricted. The

following theorem gives properties which imply the existence of optimal solutions of

(2.2).

Theorem 3

1. A kernel matrix K is CPD if and only if there is ∆ such that K + ∆eeT is PD.

2. If K is CPD, then the solution of (2.2) is attained and its optimal objective

value is greater than −∞.

Proof.

The “if” part of the first result is very simple by definition. For any v 6= 0 with

eT v = 0,

vT Kv = vT (K + ∆eeT )v > 0,

so K is CPD.

On the other hand, if K is CPD but there is no ∆ such that K + ∆eeT is PD,

there are infinite {vi, ∆i} with ‖vi‖ = 1, ∀i and ∆i →∞ as i →∞ such that

vT
i (K + ∆iee

T )vi ≤ 0,∀i. (2.3)

As {vi} is in a compact region, there is a subsequence {vi}, i ∈ K which converges to

v∗. Since vT
i Kvi → (v∗)T Kv∗ and eT vi → eT v∗,

lim
i→∞,i∈K

vT
i (K + ∆iee

T )vi

∆i

= (eT v∗)2 ≤ 0.

Therefore, eT v∗ = 0. By the CPD of K, (v∗)T Kv∗ > 0 so

vT
i (K + ∆iee

T )vi > 0 after i is larger enough,

which contradicts (2.3).
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For the second result of this theorem, if K is CPD, we have shown that K +∆eeT

is PD. Hence (2.2) is equivalent to

min
α

1

2
αT (Q + ∆yyT )α− eT α

subject to 0 ≤ αi, i = 1, . . . , l, (2.4)

yT α = 0,

which is a strict convex programming problem. Hence (2.4) attains a unique global

minimum and so does (2.2). 2

Unfortunately, the property that (2.2) has a finite objective value is not equivalent

to the CPD of a matrix. The main reason is that (2.2) has additional constraints

αi ≥ 0, i = 1, . . . , l. We illustrate this by a simple example: If

K =




1 2 −1
2 1 −1
−1 −1 0


 and y =




1
1
−1


 ,

we can get that

1

2
αT Qα− eT α =

1

2
[3(α1 − 2

3
)2 + 3(α2 − 2

3
)2 + 8α1α2 − 8

3
]

≥ −4

3
if α1 ≥ 0 and α2 ≥ 0.

However, K is not CPD as we can easily set α1 = −α2 = 1, α3 = 0 which satisfy

eT α = 0 but αT Kα = −2 < 0.

Moreover, the first result of the above theorem may not hold if K is only CPSD.

For example, K = [ 1 0
0 −1 ] is CPSD as for any α1 + α2 = 0, αT Kα = 0. However, for

any ∆ 6= 0, K + ∆eeT has an eigenvalue ∆−√∆2 + 1 < 0. Therefore, there is no ∆

such that K + ∆eeT is PSD. On the other hand, even though K + ∆eeT PSD implies

its CPSD, they both may not guarantee the optimal objective value of (2.2) is finite.

For example, if K = [ 0 0
0 0 ] , it satisfies both properties but the objective value of (2.2)

can be −∞.

Next we use concepts given in this section to analyze the sigmoid kernel.

3 The Behavior of the Sigmoid Kernel

In this section, we consider the sigmoid kernel K(xi, xj) = tanh(axT
i xj+r). The kernel

takes two parameters: a and r. For a > 0, we can view a as a scaling parameter of
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the input data, and r as a shifting parameter that controls the threshold of mapping.

For a < 0, the dot-product of the input data is not only scaled but reversed. In

the following table we summarize the behaviors in different parameter combinations,

which will be discussed in the rest of this section. It concludes that the first case,

a > 0 and r < 0, is more suitable for the sigmoid kernel.

a r results
+ − K is CPD after r is small; similar to RBF for small a
+ + in general not as good as the (+,−) case
− + objective value of (2.2) −∞ after r large enough
− − easily the objective value of (2.2) −∞

Case 1: a > 0 and r < 0
We analyze the limiting case of this region and show that when r is small enough,

the matrix K is CPD. To prove this, we begin with a lemma about the sigmoid

function:

Lemma 1 Given any δ,

lim
x→−∞

1 + tanh(x + δ)

1 + tanh(x)
= e2δ.

Proof.

Since tanh(x) = (ex − e−x)/(ex + e−x), 1 + tanh(x) = 2ex/(ex + e−x). Then,

1 + tanh(x + δ)

1 + tanh(x)
=

ex + e−x

2ex

2ex+δ

ex+δ + e−x−δ
=

e2x + 1

e2x+2δ + 1
e2δ.

Therefore,

lim
x→−∞

1 + tanh(x + δ)

1 + tanh(x)
= e2δ.

2

With this lemma, we can prove that the sigmoid kernel matrices are CPD when

r is small enough:

Theorem 4 Given any training set, if xi 6= xj, for i 6= j and a > 0, there exists r̂

such that for all r ≤ r̂, K + eeT is PD.
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Proof.

Let Hr ≡ (K + eeT )/(1 + tanh(r)), where Kij = tanh(axT
i xj + r). From Lemma

1,

lim
r→−∞

Hr
ij

= lim
r→−∞

1 + tanh(axT
i xj + r)

1 + tanh(r)

= e2axT
i xj .

Let H̄ = limr→−∞ Hr. Thus, H̄ij = e2axT
i xj = ea‖xi‖2e−a‖xi−xj‖2ea‖xj‖2 . If written

in matrix products, we can see that the first and last terms form the same diagonal

matrices with positive elements. And the middle one is in the form of an RBF kernel

matrix. From (Micchelli 1986), if xi 6= xj, for i 6= j, the RBF kernel matrix is PD.

Therefore, H̄ is PD.

If Hr is not PD after r is small enough, there is an infinite sequence {ri} with

limi→∞ ri = −∞ and Hri ,∀i are not PD. Thus, for each ri, there exists ‖vi‖ = 1 such

that vT
i Hrivi ≤ 0.

Since vi is a bounded infinite sequence, there is a subsequence which converges to

v̄ 6= 0. Therefore, v̄T H̄v̄ ≤ 0 which contradicts the fact that H̄ is PD. So there is r̂

such that for all r ≤ r̂, Hr is PD. By the definition of Hr, K + eeT is PD as well. 2

With Theorems 3 and 4, K is CPD after r is small enough. In addition, we can

define a new kernel:

K̃(xi, xj) = tanh(axT
i xj + r) + 1 = 2/(1 + e−2(axT

i xj+r)).

It is in the form of a logistic function commonly used in neural networks.

Corollary 1 For a > 0 and any training set with xi 6= xj for i 6= j, there exists r̂ < 0

such that for all r ≤ r̂, the logistic function K̃(xi, xj) = 2/(1 + e−2(axT
i xj+r)) can be

used to form a PD kernel matrix.

Note that Theorem 4 provides a connection between the sigmoid and a special PD

kernel related to the RBF kernel when a is fixed and r gets small enough. In Section

4, we will discuss more about the relation between the sigmoid and the RBF kernels.

Case 2: a > 0 and r ≥ 0
It was stated in (Burges 1999) that if tanh(axT

i xj + r) is PD, then r ≥ 0 and

a ≥ 0. However, the inverse does not hold so for this case, kernels may not be PD
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and the practical viability is not clear. As Section 2 has shown that useful kernels

are in a broader set than PD ones, we discuss this case by checking the separability

of training data.

Comparing to Case 1, we show that it is more possible that the objective value

of (2.2) goes to −∞. Therefore, with experiments in Section 4, we conclude that in

general using a > 0 and r ≥ 0 is not as good as a > 0 and r < 0.

The following theorem discusses possible situations that (2.2) has the objective

value −∞:

Theorem 5

1. If there are i and j such that yi 6= yj and Kii + Kjj − 2Kij ≤ 0, (2.2) has the

optimal objective value −∞.

2. For the sigmoid kernel, if

max
i

(a‖xi‖2 + r) ≤ 0, (3.1)

then Kii + Kjj − 2Kij > 0 for any xi 6= xj.

Proof.

For the first result, let αi = αj = ∆ and αk = 0 for k 6= i, j. Then, the objective

value of (2.2) is

1

2
αT Qα− eT α

= ∆2(Kii − 2Kij + Kjj)− 2∆.

Thus, ∆ →∞ leads to a feasible solution of (2.2) with objective value −∞.

For the second result, now

Kii − 2Kij + Kjj

= tanh(a‖xi‖2 + r)− 2 tanh(a‖xT
i xj‖+ r) + tanh(a‖xj‖2 + r). (3.2)

Since maxi(a‖xi‖2+r) ≤ 0, by the monotonicity of tanh(x) and its strict convexity

when x ≤ 0,

tanh(a‖xi‖2 + r) + tanh(a‖xj‖2 + r)

2

≥ tanh(
(a‖xi‖2 + r) + (a‖xj‖2 + r)

2
) (3.3)

= tanh(a
‖xi‖2 + ‖xj‖2

2
+ r)

> tanh(axT
i xj + r). (3.4)

9



Note that the last inequality uses the property that xi 6= xj.

Then, by (3.2) and (3.4), Kii − 2Kij + Kjj > 0, so the proof is complete. 2

The requirement that xi 6= xj is in general true if there are no duplicated training

instances. Apparently, (3.1) must happen (for a > 0) when r is negative. If (3.1) is

wrong, it is possible that a‖xi‖2+r ≥ 0 and a‖xj‖2+r ≥ 0. Then due to the concavity

of tanh(x) at the positive side, “≥” in (3.3) becomes “≤.” Thus, Kii − 2Kij + Kjj

may be ≤ 0 and (2.2) has the optimal objective value −∞.

Case 3: a < 0 and r > 0
The following theorem tells us that the parameters a < 0 and large r > 0 may

not be a good choice.

Theorem 6 For any given training set, if a < 0 and each class has at least one data

point, there exists r̄ > 0 such that for all r ≥ r̄, (2.2) has optimal objective value

−∞.

Proof.

Since Kij = tanh(axT
i xj + r) = − tanh(−axT

i xj − r), by Theorem 4, there is

−r̄ < 0 such that for all −r ≤ −r̄, −K + eeT is PD. That is, there exist r̄ > 0 such

that for all r ≥ r̄, any α with yT α = 0 and α 6= 0 satisfies αT Qα < 0.

Since there is at least one data point in each class, we can find yi = +1 and

yj = −1. Let αi = αj = ∆, and αk = 0 for k 6= i, j be a feasible solution of (2.2).

The objective value decreases to −∞ as ∆ → ∞. Therefore, for all r ≥ r̄, (2.2) has

optimal objective value −∞. 2

Case 4: a < 0 and r ≤ 0
The following theorem provides evidence that the optimal objective value of (2.2)

easily goes to −∞ in this case:

Theorem 7 For any given training set, if a < 0, r ≤ 0, and there are xi, xj such

that

xT
i xj ≤ min(‖xi‖2, ‖xj‖2)

and yi 6= yj, (2.2) has optimal objective value −∞.

Proof.

10



By xT
i xj ≤ min(‖xi‖2, ‖xj‖2), (3.2), and the monotonicity of tanh(x),

Kii − 2Kij + Kjj

≤ tanh(a‖xi‖2 + r) + tanh(a‖xj‖2 + r)− 2 tanh(a min(‖xi‖2, ‖xj‖2) + r)

≤ 0.

Then the proof follows from Theorem 5. 2

Note that the situation xT
i xj < min(‖xi‖2, ‖xj‖2) and yi 6= yj easily happens if

the two classes of training data are not close in the input space. Thus, a < 0 and

r ≤ 0 is generally not a good choice of parameters.

4 Relation with the RBF Kernel

In this section we extend Case 1 (i.e. a > 0, r < 0) in Section 3 to show that the

sigmoid kernel behaves like the RBF kernel when (a, r) are in a certain range.

Lemma 1 implies that when r < 0 is small enough,

1 + tanh(axT
i xj + r) ≈ (1 + tanh(r))(e2axT

i xj). (4.1)

If we further make a close to 0, ea‖x‖2 ≈ 1 so

e2axT
i xj = ea‖xi‖2e−a‖xi−xj‖2ea‖xj‖2 ≈ e−a‖xi−xj‖2 .

Therefore, when r < 0 is small enough and a is close to 0,

1 + tanh(axT
i xj + r) ≈ (1 + tanh(r))(e−a‖xi−xj‖2), (4.2)

a form of the RBF kernel.

However, the closeness of kernel elements does not directly imply similar general-

ization performance. Hence, we need to show that they have nearly the same decision

functions. Note that the objective function of (1.2) is the same as:

1

2
αT Qα− eT α =

1

2
αT (Q + yyT )α− eT α (4.3)

=
1

1 + tanh(r)
(
1

2
α̃T Q + yyT

1 + tanh(r)
α̃− eT α̃),

where α̃ ≡ (1 + tanh(r))α, and (4.3) comes from the equality constraint in (1.2).

Multiplying the objective function of (1.2) by (1 + tanh(r)), and setting C̃ = (1 +
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tanh(r))C, solving (1.2) is the same as solving

min
α̃

Fr(α̃) =
1

2
α̃T Q + yyT

1 + tanh(r)
α̃− eT α̃

subject to 0 ≤ α̃i ≤ C̃, i = 1, . . . , l, (4.4)

yT α̃ = 0.

Given a fixed C̃, as r → −∞, since (Q+yyT )ij = yiyj(Kij+1), the problem approaches

min
α̃

FT (α̃) =
1

2
α̃T Q̄α̃− eT α̃

subject to 0 ≤ α̃i ≤ C̃, i = 1, . . . , l, (4.5)

yT α̃ = 0,

where Q̄ij = yiyje
2axT

i xj is a PD kernel matrix when xi 6= xj for all i 6= j. Then, we

can prove the following theorem:

Theorem 8 Given fixed a and C̃, assume that xi 6= xj for all i 6= j, and the optimal

b of the decision function from (4.5) is unique. Then for any data point x,

lim
r→−∞

decision value at x using the sigmoid kernel in (1.2)

= decision value at x using (4.5).

We leave the proof in Appendix A. Theorem 8 tells us that when r < 0 is small

enough, the separating hyperplanes of (1.2) and (4.5) are almost the same. Similar

cross-validation accuracy will be shown in the later experiments.

(Keerthi and Lin 2003, Theorem 2) shows that when a → 0, for any given C̄, the

decision value by the SVM using the RBF kernel e−a‖xi−xj‖2 with the error cost C̄
2a

approaches the decision value of the following linear SVM:

min
ᾱ

1

2

∑
i

∑
j

ᾱiᾱjyiyjx
T
i xj −

∑
i

ᾱi

subject to 0 ≤ ᾱi ≤ C̄, i = 1, . . . , l, (4.6)

yT ᾱ = 0.

The same result can be proved for the SVM in (4.5). Therefore, under the assumption

that the optimal b of the decision function from (4.6) is unique, for any data point x,

lim
a→0

decision value at x using the RBF kernel with C̃ = C̄
2a

= decision value at x using (4.6) with C̄

= lim
a→0

decision value at x using (4.5) with C̃ = C̄
2a

.
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Then we can get the similarity between the sigmoid and the RBF kernels as

follows:

Theorem 9 Given a fixed C̄, assume that xi 6= xj for all i 6= j, and each of (4.5)

after a is close to 0 and (4.6) has a unique b. Then for any data point x,

lim
a→0

lim
r→−∞

decision value at x using the sigmoid kernel with C = C̃
1+tanh(r)

= lim
a→0

decision value at x using (4.5) with C̃ = C̄
2a

= lim
a→0

decision value at x using the RBF kernel with C̃ = C̄
2a

= decision value at x using the linear kernel with C̄.

From Theorems 8 and 9, the sigmoid SVM with an error cost C would perform

similarly to (4.5) with C̃ = (1+tanh(r))C when r is small. If we further make a close

to 0, the sigmoid SVM with C would also perform similarly to the RBF SVM with

C̃. We can observe these from Figure 1. The contours show five-fold cross-validation

accuracy of the data set heart in different r and C. The contours with a = 1 are

on the left-hand-side, while those with a = 0.01 are on the right-hand-side. Other

parameters considered here are log2 C from −2 to 13, with grid space 1, and log2(−r)

from 0 to 4.5, with grid space 0.5. Detailed description of data sets as well as the

tool used to draw the contours will be shown later in this section.

From both sides of Figure 1, we can see that the middle contour (using (4.5)) is

similar to the top one (using tanh) when r gets small. This verifies our approximation

in (4.1) as well as Theorem 8. However, on the left-hand-side, since a is not small

enough, the data-dependent scaling term ea‖xi‖2 between (4.1) and (4.2) is large and

causes a difference between the middle and bottom contours. When a is reduced to

0.01 on the right-hand-side, the top, middle, and bottom contours all become similar

when r is small. This observation corresponds to Theorem 9.

We observe this on other data sets, too. Note that for some problems, unlike

Figure 1, the performance using small a values may not be better than that using

large a values. That is, Figure 1 and Theorem 9 shows only a connection between

the sigmoid and the RBF kernels when (a, r) are in a limited range. Thus, we try to

compare the two kernels using parameters in other ranges. In Table 1 we compare

the best five-fold CV rates using the sigmoid and RBF kernels.

We fix a to 1/n, where n is the number of features, and change the value of r.

Cross-validation on different r (-2 to 2 with grid space 0.2) and log2 C (-2 to 13 with

grid space 1) is conducted. For the RBF kernel, K(xi, xj) = e−a‖xi−xj‖2 so the two

13
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Figure 1: Performance of different kernels
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parameters are a and C. The grid search is then on log2 a (-11 to -2 with grid space

1) and log2 C (-2 to 13 with grid space 1).

Four problems are tested: heart, german, diabete, and a1a. They are from (Michie,

Spiegelhalter, and Taylor 1994) and (Blake and Merz 1998). The first three data sets

are linearly scaled so values of each attribute are in [-1, 1]. For a1a, its values of each

attribute are in [0, 1] so we do not scale it. We solve (1.2) using LIBSVM (Chang

and Lin 2001), with its model selection tool for grid search and contour drawing.

Note that LIBSVM, an SMO-type decomposition implementation, uses techniques in

Section 6 for solving non-convex optimization problems. A local optimum of (1.2) is

obtained for constructing the decision function.

Table 1: Comparison of cross-validation rates between kernels
data set Sigmoid kernel: tanh(xT

i xj/n + r) RBF kernel: e−a‖xi−xj‖2

best (r, log2 C) best CV rate best (log2 a, log2 C) best CV rate
heart (1.6,−1) 84.1% (−11, 7) 84.1%
german (−1.4, 4) 77.8% (−5, 3) 77.5%
diabete (−0.4, 5) 77.7% (−9, 13) 77.6%
a1a (0, 8) 83.9% (−8, 6) 83.8%

The resulting contours are also shown on the left-hand-side of Figure 2 of the next

Section. We can see that the performance of the sigmoid kernel is comparable to that

of the RBF kernel. From the limited experiments here, on one hand, for appropriate

parameters, the sigmoid kernel performs well in practice. On the other hand, it is not

better than RBF. As RBF has properties of being PD and having fewer parameters,

somehow there is no strong reason to use the sigmoid.

5 The Importance of the Linear Constraint yTα = 0

In Section 3 we show that for certain parameters, the kernel matrix using the sigmoid

kernel is CPD. This is strongly related to the linear constraint yT α = 0 in the dual

problem (1.2). In this section, we would like to investigate the effect with and without

this linear constraint.

Recall that yT α = 0 of (1.2) is originally derived from the bias term b of (1.1). It

has been known that if the kernel function is PD and xi 6= xj for all i 6= j, Q will

be PD and the problem (2.2) attains an optimal solution. In other words, training

data is guaranteed to be fully separated. Therefore, for PD kernels such as the RBF,

in many cases, the performance is not affected much if the biased term b is not used.
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By doing so, the dual problem becomes

min
α

1

2
αT Qα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l. (5.1)

For the sigmoid kernel, we may think that (5.1) is also acceptable. It turns out

that without yT α = 0, in more cases, (5.1) without the upper bound C, has the

objective value −∞. Thus, training data are not properly separated. The following

theorem gives an example on such cases:

Theorem 10 If there is one Kii < 0 and there is no upper bound C of α, (5.1) has

optimal objective value −∞.

Proof.

Let αi = ∆ and αk = 0 for k 6= i. We can easily see that ∆ → ∞ leads to an

optimal objective value −∞. 2

Note that for sigmoid kernel matrices, this situation happens when mini(a‖xi‖2 +

r) < 0. Thus, when a > 0 but r is small, unlike our analysis in Case 1 of Section 3,

solving (5.1) may lead to very different results. We can further show that the training

error may be large. If α is a global optimum of (5.1),

min(
1

2

∑
yi=yj=1

KijC
2 −

∑
yi=1

C,
1

2

∑
yi=yj=−1

KijC
2 −

∑
yi=−1

C) (5.2)

≥ optimal objective value of (5.1)

≥ 1

2

∑
αi>0,αj>0

KijC
2 −

∑
αi>0

C. (5.3)

The first inequality is by setting αi = C for all yi = 1 or −1 as a feasible solution

of (5.1), and using the property Kij = Qij if yi = yj. The second inequality comes

from Kij ≤ 0 when r is small, and αi ≤ C by (5.1). Without considering the linear

term when C is not small, we can clearly see that (5.3) may be larger than (5.2) if

there are too many zero αi. Therefore, the optimal solution should not contain too

many zero αi so the training error may be large, a situation which makes the sigmoid

kernel perform poorly. This will be shown in the following experiments.

We compare the five-fold cross-validation accuracy using problems (1.2) and (5.1).

The same four problems as in Table 1 are used, with the same ranges of parameters.

We use LIBSVM for solving (1.2), and a modification of BSVM (Hsu and Lin 2002)

for (5.1). Results of CV accuracy are presented in Figure 2. Contours of (1.2) are on
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the left column, and those of (5.1) are on the right. For each contour, the horizontal

axis is log2 C, while the vertical axis is r. The internal optimization solver of BSVM

can handle non-convex problems, so its decomposition procedure guarantees the strict

decrease of function values throughout all iterations. However, unlike LIBSVM which

always obtains a local minimum of (1.2) using the analysis in Section 6, for BSVM,

we do not know whether its convergent point is a local minimum of (5.1) or not.

When (1.2) is solved, from Figure 2, higher accuracy generally happens when

r < 0 (especially german and diabete). This corresponds to our analysis about the

CPD of K when a > 0 and r small enough. However, sometimes the CV accuracy is

also high when r > 0. We have also tried the cases of a < 0, results are worse.

In addition, by comparing the left and right columns, solving (5.1) gives much

worse performance. Also, the good regions shift to r ≥ 0. This confirms our analysis

in Theorem 10 as when r < 0, (5.1) without C tends to have the objective value −∞.

In other words, without yT α = 0, CPD of K for small r is not useful.

The experiments fully demonstrate the importance of incorporating constraints

of the dual problem into the analysis of the kernel. An earlier work (Sellathurai and

Haykin 1999) on the sigmoid kernel explains that each kernel element (i.e., Kij) is

from a hyperbolic inner product. Thus, a special type of maximal margin still exists.

However, as shown in Figure 2, without yT α = 0, the performance is very bad.

Thus, the separability of the sigmoid kernel does not come from its own properties.

Therefore, a direct analysis on the non-PSD kernel matrix itself may not be very

useful.

6 SMO-type Implementation for non-PSD Kernel

Matrices

First we discuss how decomposition methods work for PSD kernels and the difficulties

for non-PSD cases. The decomposition method (e.g. (Osuna, Freund, and Girosi

1997; Joachims 1998; Platt 1998; Chang and Lin 2001)) is an iterative process. In

each step, the index set of variables is partitioned to two sets B and N , where B is

the working set. Then in that iteration variables corresponding to N are fixed while a

sub-problem on variables corresponding to B is minimized. Thus, if αk is the current

17
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Figure 2: Comparison of cross validation rates between problems with the linear
constraint (left) and without it (right) 18



solution, the following sub-problem is solved:

min
αB

1

2

[
αT

B (αk
N)T

] [
QBB QBN

QNB QNN

] [
αB

αk
N

]
− [

eT
B (ek

N)T
] [

αB

αk
N

]

subject to yT
BαB = −yT

Nαk
N , (6.1)

0 ≤ αi ≤ C, i ∈ B.

The objective function of (6.1) can be simplified to

min
αB

1

2
αT

BQBBαB + (QBNαk
N − eB)T αB

after removing constant terms.

The extreme of the decomposition method is the Sequential Minimal Optimization

(SMO) algorithm (Platt 1998) whose working sets are restricted to two elements. The

advantage of SMO is that (6.1) can be easily solved without an optimization package.

A simple and common way to select the two variables is through the following form

of optimal conditions (Keerthi, Shevade, Bhattacharyya, and Murthy 2001; Chang

and Lin 2001): α is a local optimum of (1.2) if and only if α is feasible and

max
t∈Iup(α,C)

−yt∇F (α)t ≤ min
t∈Ilow(α,C)

−yt∇F (α)t, (6.2)

where

Iup(α,C) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1},
Ilow(α,C) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1}.

Thus, when αk is feasible but not optimal for (1.2), (6.2) does not hold so a simple

selection of B = {i, j} is

i ≡ argmax
t∈Iup(αk,C)

−yt∇F (αk)t and j ≡ argmin
t∈Ilow(αk,C)

−yt∇F (αk)t. (6.3)

By considering the variable αB = αk
B + d, and defining

d̂i ≡ yidi and d̂j ≡ yjdj,

the two-variable sub-problem is

min
d̂i,d̂j

1

2

[
d̂i d̂j

] [
Kii Kij

Kji Kjj

] [
d̂i

d̂j

]
+

[
yi∇F (αk)i yj∇F (αk)j

] [
d̂i

d̂j

]

subject to d̂i + d̂j = 0, (6.4)

0 ≤ αk
i + yid̂i, α

k
j + yj d̂j ≤ C.
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To solve (6.4), we can substitute d̂i = −d̂j into its objective function:

min
d̂j

1

2
(Kii − 2Kij + Kjj)d̂

2
j + (−yi∇F (αk)i + yj∇F (αk)j)d̂j. (6.5a)

subject to L ≤ d̂j ≤ H, (6.5b)

where L and H are upper and lower bounds of d̂j after including information on d̂i:

d̂i = −d̂j and 0 ≤ αk
i + yid̂i ≤ C. For example, if yi = yj = 1,

L = max(−αk
j , α

k
i − C) and H = min(C − αk

j , α
k
i ).

Since i ∈ Iup(α
k, C) and j ∈ Ilow(αk, C), we can clearly see L < 0 but H only≥ 0. If Q

is PSD, Kii+Kjj−2Kij ≥ 0 so (6.5) is a convex parabola or a straight line. In addition,

from the working set selection strategy in (6.3), −yi∇F (αk)i + yj∇F (αk)j > 0, so

(6.5) is like Figure 3. Thus, there exists d̂j < 0 such that the objective value of (6.5) is

strictly decreasing. In addition, d̂j < 0 also shows the direction toward the minimum

of the function.

If Kii + Kjj − 2Kij > 0, the way to solve (6.5) is by calculating the minimum of

(6.5a) first:

−−yi∇F (αk)i + yj∇F (αk)j

Kii − 2Kij + Kjj

< 0. (6.6)

Then, if d̂j defined by the above is less than L, we reduce d̂j to the lower bound. If

the kernel matrix is only PSD, it is possible that Kii − 2Kij + Kjj = 0, as shown

in Figure 3(b). In this case, using the trick under IEEE floating point standard

(Goldberg 1991), we can make sure that (6.6) to be −∞ which is still defined. Then,

a comparison with L still reduce d̂j to the lower bound. Thus, a direct (but careful)

use of (6.6) does not cause any problem. More details are in (Chang and Lin 2001).

The above procedure explains how we solve (6.5) in an SMO-type software.

If Kii−2Kij+Kjj < 0, which may happen if the kernel is not PSD, (6.6) is positive.

That is, the quadratic function (6.5a) is concave (see Figure 4) and a direct use of (6.6)

move the solution toward (6.5a)’s maximum. Therefore, the decomposition method

may not have the objective value strictly decreasing, a property usually required for

an optimization algorithm. Moreover, it may not be feasible to move along a positive

direction d̂j. For example, if αk
i = 0, yi = 1 and αk

j = 0, yj = −1, H = 0 in (6.5) so we

can neither decrease αi nor αj. Thus, under the current setting for PSD kernels, it

is possible that the next solution stays at the same point so the program never ends.

In the following we propose different approaches to handle this difficulty.
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Figure 4: Solving the concave sub-problem (6.5)
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6.1 Restricting the Range of Parameters

The first approach is to restrict the parameter space. In other words, users are allowed

to specify only certain kernel parameters. Then the sub-problem is guaranteed to be

convex so the original procedure for solving sub-problems works without modification.

Lemma 2 If a > 0 and

max
i

(a‖xi‖2 + r) ≤ 0, (6.7)

any two-variable sub-problem of an SMO algorithm is convex.

We have explained that the sub-problem can be reformulated as (6.5) so the proof

is reduced to show that Kii − 2Kij + Kjj ≥ 0. This, in fact, is nearly the same as

the proof of Theorem 5. The only change is that without assuming xi 6= xj, “> 0”

becomes “≥ 0.”

Therefore, if we require that a and r satisfy (6.7), we will never have an endless

loop staying at one αk.

6.2 An SMO-type Method for General non-PSD Kernels

Results in Section 6.1 depend on properties of the sigmoid kernel. Here we will

propose an SMO-type method which is able to handle all kernel matrices no matter

they are PSD or not. To have such a method, the key is on solving the sub-problem

when Kii − 2Kij + Kjj < 0. In this case, (6.5a) is a concave quadratic function like

that in Figure 4. The two sub-figures clearly show that the global optimal solution

of (6.5) can be obtained by checking the objective values at two bounds L and H.

A disadvantage is that this procedure of checking two points is different from the

solution procedure of Kii − 2Kij + Kjj ≥ 0. Thus, we propose to consider only the

lower bound L which, as L < 0, always ensures the strict decrease of the objective

function. Therefore, the algorithm is as follows:

If Kii − 2Kij + Kjj > 0, then d̂j is the maximum of (6.6) and L,

Else d̂j = L.
(6.8)

Practically the change of the code may be only from (6.6) to

−−yi∇F (αk)i + yj∇F (αk)j

max(Kii − 2Kij + Kjj, 0)
. (6.9)

When Kii + Kjj − 2Kij < 0, (6.9) is −∞. Then the same as the situation of Kii +

Kjj − 2Kij = 0, d̂j = L is taken.
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An advantage of this strategy is that we do not have to exactly solve (6.5). (6.9)

also shows that a very simple modification from the PSD-kernel version is possi-

ble. Moreover, it is easier to prove the asymptotic convergence. The reason will be

discussed after Lemma 3. In the following we prove that any limit point of the decom-

position procedure discussed above is a local minimum of (1.2). In earlier convergence

results, Q is PSD so a local minimum is already a global one.

If the working set selection is via (6.3), existing convergence proofs for PSD kernels

(Lin 2001; Lin 2002) require the following important lemma which is also needed here:

Lemma 3 There exists σ > 0 such that for any k,

F (αk+1) ≤ F (αk)− σ

2
‖αk+1 − αk‖2. (6.10)

Proof.

If Kii +Kjj−2Kij ≥ 0 in the current iteration, (Lin 2002) shows that by selecting

σ as the following number

min{ 2

C
, min

t,r
{Ktt + Krr − 2Ktr

2
| Ktt + Krr − 2Ktr > 0}}, (6.11)

(6.10) holds.

If Kii + Kjj − 2Kij < 0, d̂r = L < 0 is the step chosen so (−yi∇F (αk)i +

yj∇F (αk)j)d̂j < 0. As ‖αk+1 − αk‖2 = 2d̂2
j from d̂i = −d̂j, (6.5a) implies that

F (αk+1)− F (αk) <
1

2
(Kii + Kjj − 2Kij)d̂

2
j (6.12)

=
1

4
(Kii + Kjj − 2Kij)‖αk+1 − αk‖2

≤ −σ′

2
‖αk+1 − αk‖2,

where

σ′ ≡ −max
t,r
{Ktt + Krr − 2Ktr

2
| Ktt + Krr − 2Ktr < 0}. (6.13)

Therefore, by defining σ as the minimum of (6.11) and (6.13), the proof is complete.

2

Interestingly, if we exactly solve (6.5), so far we have not been able to establish

Lemma 3. The reason is that if d̂j = H is taken, (−yi∇F (αk)i + yj∇F (αk)j)d̂j > 0

so (6.12) may not be true. A possible way to have it is by modifying the sub-problem

(6.1) as shown in (Palagi and Sciandrone 2002). Then the sub-problem is less obvious

but Lemma 3 is easily obtained.

Next we give the main convergence result:
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Theorem 11 For the decomposition method using (6.3) for the working set selection

and (6.8) for solving the sub-problem, any limit point of {αk} is a local minimum of

(1.2).

Proof.

If we carefully check the proof in (Lin 2001; Lin 2002), it can be extended to non-

PSD Q if (1) (6.10) holds and (2) a local minimum of the sub-problem is obtained in

each iteration. Now we have (6.10) from Lemma 3. In addition, d̂j = L is essentially

one of the two local minima of problem (6.5) as clearly seen from Figure 4. Thus, the

same proof follows. 2

7 Discussions

From the results in Sections 3 and 5, we clearly see the importance of the CPD-

ness which is directly related to the linear constraint yT α = 0. We suspect that for

many non-PSD kernels used so far, their viability is based on it as well as inequality

constraints 0 ≤ αi ≤ C, i = 1, . . . , l of the dual problem. It is known that some

non-PSD kernels are not CPD. For example, the tangent distance kernel matrix in

(Haasdonk and Keysers 2002) may contain more than one negative eigenvalue, a

property that indicates the matrix is not CPD. Further investigation on such non-

PSD kernels and the effect of inequality constraints 0 ≤ αi ≤ C will be interesting

research directions.

Our analysis indicates that for certain parameters the sigmoid kernel behaves like

the RBF kernel. Experiments also show that their performance are similar. Therefore,

with the result in (Keerthi and Lin 2003) showing that the linear kernel is essentially

a special case of the RBF kernel, among existing kernels, RBF should be the first

choice for general users.
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A Proof of Theorem 8

The proof of Theorem 8 contains three parts: the convergence of the optimal solution,

the convergence of the decision value without the bias term, and the convergence of

the bias term. Before entering the proof, we first need to know that (4.5) has a PD

kernel under our assumption xi 6= xj for all i 6= j. Therefore, the optimal solution

α̂∗ of (4.5) is unique. From now on we denote α̂r as a local optimal solution of (1.2),

and br as the associated optimal b value. For (4.5), b∗ denotes its optimal b.

1. The convergence of optimal solution:

lim
r→−∞

θrα̂
r = α̂∗, where θr ≡ 1 + tanh(r). (A.1)

Proof.

By the equivalence between (1.2) and (4.4), θrα̂
r is the optimal solution of (4.4).

The convergence to α̂∗ comes from (Keerthi and Lin 2003, Lemma 2) since Q̄

is PD and the kernel of (4.4) approaches Q̄ by Lemma 1. 2

2. The convergence of the decision value without the bias term: For any x,

lim
r→−∞

l∑
i=1

yiα̂
r
i tanh(axT

i x + r) =
l∑

i=1

yiα̂
∗
i e

2axT
i xj . (A.2)

Proof.

lim
r→−∞

l∑
i=1

yiα̂
r
i tanh(axT

i x + r)

= lim
r→−∞

l∑
i=1

yiα̂
r
i (1 + tanh(axT

i x + r)) (A.3)

= lim
r→−∞

l∑
i=1

yiθrα̂
r
i

1 + tanh(axT
i x + r)

θr

=
l∑

i=1

yi lim
r→−∞

θrα̂
r
i lim

r→−∞
1 + tanh(axT

i x + r)

θr

=
l∑

i=1

yiα̂
∗
i e

2axT
i x. (A.4)
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(A.3) comes from the equality constraint in (1.2) and (A.4) comes from (A.1)

and Lemma 1. 2

3. The convergence of the bias term:

lim
r→−∞

br = b∗. (A.5)

Proof.

By the KKT condition that br must satisfy,

max
i∈Iup(α̂r,C)

−yi∇F (α̂r)i ≤ br ≤ min
i∈Ilow(α̂r,C)

−yi∇F (α̂r)i,

where Iup and Ilow are defined in (6.2). In addition, because b∗ is unique,

max
i∈Iup(α̂∗,C̃)

−yi∇FT (α̂∗)i = b∗ = min
i∈Ilow(α̂∗,C̃)

−yi∇FT (α̂∗)i.

Note that the equivalence between (1.2) and (4.4) implies∇F (α̂r)i = ∇Fr(θrα̂
r)i.

Thus,

max
i∈Iup(θrα̂r,C̃)

−yi∇Fr(θrα̂
r)i ≤ br ≤ min

i∈Ilow(θrα̂r,C̃)
−yi∇Fr(θrα̂

r)i.

By the convergence of θrα̂
r when r → −∞, after r is small enough, all index

i’s satisfying α̂∗i < C̃ would have θrα̂
r
i < C̃. That is, Iup(α̂

∗, C̃) ⊆ Iup(θrα̂
r, C̃).

Therefore, when r is small enough,

max
i∈Iup(α̂∗,C̃)

−yi∇Fr(θrα̂
r)i ≤ max

i∈Iup(θrα̂r,C̃)
−yi∇Fr(θrα̂

r)i.

Similarly,

min
i∈Ilow(α̂∗,C̃)

−yi∇Fr(θrα̂
r)i ≥ min

i∈Ilow(θrα̂r,C̃)
−yi∇Fr(θrα̂

r)i.

Thus, for r < 0 small enough,

max
i∈Iup(α̂∗,C̃)

−yi∇Fr(θrα̂
r)i ≤ br ≤ min

i∈Ilow(α̂∗,C̃)
−yi∇Fr(θrα̂

r)i.

Taking limr→−∞ on both sides, using Lemma 1 and (A.1),

lim
r→−∞

br = max
i∈Iup(α̂∗,C̃)

−yi∇FT (α̂∗)i = min
i∈Ilow(α̂∗,C̃)

−yi∇FT (α̂∗)i = b∗. (A.6)

2

Therefore, with (A.4) and (A.6), our proof of Theorem 8 is complete.
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