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Abstract: Recently, predictions based on big data have become more successful. In fact, research
using images or text can make a long-imagined future come true. However, the data often contain
a lot of noise, or the model does not account for the data, which increases uncertainty. Moreover,
the gap between accuracy and likelihood is widening in modern predictive models. This gap may
increase the uncertainty of predictions. In particular, applications such as self-driving cars and
healthcare have problems that can be directly threatened by these uncertainties. Previous studies
have proposed methods for reducing uncertainty in applications using images or signals. However,
although studies that use natural language processing are being actively conducted, there remains
insufficient discussion about uncertainty in text classification. Therefore, we propose a method that
uses Variational Bayes to reduce the difference between accuracy and likelihood in text classification.
This paper conducts an experiment using patent data in the field of technology management to
confirm the proposed method’s practical applicability. As a result of the experiment, the calibrated
confidence in the model was very small, from a minimum of 0.02 to a maximum of 0.04. Furthermore,
through statistical tests, we proved that the proposed method within the significance level of 0.05
was more effective at calibrating the confidence than before.
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1. Introduction

Methods for finding patterns in data and predicting the future from data have grown
into an important field of research, which has brought about advances in information
technology [1–3]. LeCun et al. expected that predictive models that can analyze images,
natural language, and signals will advance further in the near future [4]. In fact, much
modern decision making is being carried out after insights were gained from predictive
models, from self-driving cars to medical diagnoses [5–8]. However, the reliability and
efficiency of predictive models are affected by various factors such as noise in data [9–12].
Thus, we have to consider many factors—such as aleatoric uncertainty and epistemic
uncertainty—to secure confidence in a predictive model [13–15].

Kendal and Yarin argued that aleatoric uncertainty and epistemic uncertainty are,
respectively, irreducible noise contained in data and reducible errors where the model
cannot explain the data [16]. Therefore, modern machine learning and deep learning
models should ensure confidence. In other words, confidence, which is the likelihood
that a predicted label is correct, needs to be calibrated to reflect the ground truth accuracy.
Calibration refers to the statistical consistency between the accuracy and probability of
prediction [17,18]. In this respect, the model should not only provide accurate predictions
but also calibrated confidence [19]. Calibrated confidence is required for modeling fraud
detection and healthcare, in addition to self-driving cars, as mentioned above. This is
because the uncertainty in the model can pose a direct risk to objects such as persons.

As services that use natural language processing are becoming increasingly common,
research on named entity recognition, parts of speech, and question answering is being
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actively conducted [20–22]. However, research on models with calibrated confidence
for text classification is insufficient because the risk to an object is low relative to other
applications. Although Technology Management (TM) using documents such as patents
involves many factors that can threaten companies and research institutes, there has been
insufficient discussion of the uncertainty.

The reasons to consider calibrated confidence in TM based on data analysis are as follows:

• TM, implemented with strategies such as patent litigation, technology transfer and
valuation, is a time-consuming and expensive task [23,24];

• Patent litigation causes the proliferation of patent wars between companies because
it can inflict huge losses on the accused by prohibiting manufacturing, sales, and
imports [25–27];

• Technology valuation can be used for the early commercialization of excellent technol-
ogy, which can offer opportunities to expand business models [28,29];

• Technology transfer can save on the time invested in technology development and
can further serve as a cornerstone for mergers and acquisitions (M&A) between
companies [30,31];

• Most technologies do not go through a TM, and data labels can become imbalanced [32].

Based on the above evidence, TM is potentially a high-risk application. In particular,
the uncertainty of the predictive model for these activities may be high. Therefore, we need
to investigate ways of lowering the uncertainty in the model.

Many previous studies have pointed out that the confidence of a predictive model is
uncalibrated compared to the dramatically improved accuracy. Platt proposed a method
for converting the output of a predictive model into a probability using a logistic func-
tion [33]. He laid down the groundwork for measuring the confidence of many models
and comparing with their accuracy. In particular, Guo et al., in an extension of his re-
search, contributed to reducing overconfidence by developing a function that could return
a softened probability [34]. Zadrozny and Elkans judged whether their model’s confidence
was calibrated by visualizing the expected accuracy and observed accuracy [35]. Since
their method could express the uncertainty of a model in a graph, it enabled its intuitive
evaluation. Naeini et al. devised a method to approximate and measure the expected
value of the difference between confidence and accuracy [36]. Based on this study, Nixon
et al. proposed a method that could estimate the calibration error more efficiently than
existing methods [37]. However, previous studies were limited in their ability to measure
the uncertainty in the model after learning was completed.

Recently, research has been conducted to develop a model that can calibrate confi-
dence by improving the training process. Thulasidasan et al. and Zhang et al. tried to
lower the uncertainty in the model by proposing a method to increase the diversity of
representations through data mix-up [38,39]. They argued that their proposed method
could reduce the empirical risk of overfitting and overconfidence in the training data.
Furthermore, Ovadia et al. and Chan et al. emphasized that uncalibrated confidence can be
prevented by simply shifting the data’s distribution [40,41]. In addition, Hendrycks and
Gimpel proposed a method of measuring the calibration score for each object to determine
the out-of-distribution that led to uncalibrated confidence [42]. Pereyra et al. developed
a regularized training method by assigning a penalty for overconfident predictions [43].
Krishnan and Tickoo calibrated the confidence of their predictive model by optimizing
the loss function, reflecting the relationship between accuracy and uncertainty [44]. Jiang
et al. considered model confidence as knowledge that can be obtained from data and
proposed a neural network architecture that can learn it. They designed a novel learning
strategy to calibrate confidence in modern predictive models with complex and deep layers,
thereby lowering the uncertainty of deep neural networks [45]. Xenopoulos et al. presented
an interactive diagram that could visually represent both the uncertainty of individual
observations and model confidence. In addition, they attempted various validations of the
proposed method by conducting experiments on cases using both real-world and synthetic
data [46]. Furthermore, Mukdasai et al. used various measures and histograms to compre-
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hensively consider the model’s capability, steadiness, accuracy, reliability, and fitness [47].
These previous studies had the advantage that they could reduce the uncertainty of various
applications because they calibrated confidence during the model training process.

We mainly focused on calibrating the confidence of TM by using the Variational Bayes
(VB)-based generative model. Previous studies have argued that the confidence of the
predictive model can be calibrated through the process of increasing the representation
of the data. With this in mind, we propose a method of calibrating the confidence by
(i) securing the representation of various data and (ii) generating data even when the
number of training samples is small with a VB-based generative model. For that purpose,
this study uses patent data to improve the problem with TM, which is a label-imbalanced
and highly uncertain application. The patent system—the main subject of TM—encourages
industrial development by disclosing instead of guaranteeing monopoly rights to inventors.
A predictive model has been proposed for tasks such as technology transfer by extracting
the features of TM contained in patents. Liu et al. developed a deep learning-based
framework to predict patent litigation [48]. In addition, Kwon argued that a machine
learning model trained on a patent data could accurately and selectively estimate the
technology to be transferred [49,50]. Furthermore, Setiawan et al. proposed a method that
used a graph-based algorithm to determine the most efficient technology transfer path to
promote TM innovation [51]. One limitation of these previous studies is that they did not
consider potential uncertainty in patent analysis.

Patents contain aleatoric uncertainty for reasons such as decreases in value due to
the time lag between research and development (R&D). That is, patent data may contain
irreducible noise due to the aleatoric uncertainty caused by TM. In addition, because patent
labels obtained from TM may be imbalanced, researchers need to develop predictive models
that can explain data using various training skills. Therefore, they should be concerned
about epistemic uncertainty because it is difficult to guarantee how certain the results
of patent analysis are. Therefore, this paper proposes a methodology that can calibrate
confidence using a generative model to reduce the uncertainty of TM when analyzed.

In this study, our contribution is as follows:

• Since our method uses a generative model, various data representations can be ob-
tained, and the confidence can be calibrated even when the quantity of data is small;

• Since a generative model can adjust the distribution of imbalanced labels, it can
prevent the confidence of a specific label from becoming too large or too small;

• Since the proposed methodology can obtain a disentangled representation of the data
through a generative model, the results of TM can be compared in
a low-dimensional space;

• Since our method uses a large-scale, pre-trained language model, it can respond
appropriately to patent terminology and new technologies;

• This study proposes a computationally scalable method that guarantees calibrated confi-
dence in various tasks to drive sustainable management and technological innovation.

The remainder of this paper is structured as follows. Section 2 provides a theoretical
background for VB. Section 3 explains the proposed method and present research hypothe-
ses designed to prove the methodology’s validity. Section 4 presents a series of experiments
to demonstrate the applicability of our methodology and describes statistical tests of the
research hypotheses we carried out. The proposed method has several limitations, which
Section 5 discusses. Finally, Section 6 draws conclusions and suggests some future works.

2. Theoretical Background

In this study, a generative model is used to calibrate the confidence generated when a
predictive model is applied to TM. For versatility in the proposed methodology, we use
the Conditional-Variational AutoEncoder (C-VAE), a VB-based generative model that can
selectively generate data that belong to a specific class [52].

Let z be the latent variable that is generated from the prior distribution pθ(z). The
input data X for C-VAE is generated by the distribution pθ(X|z) for z, which is z ∼ pθ(z).
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Furthermore, X = {x}N
i=1 consists of N i.i.d. samples of the variable x conditioned on

x : x ∼ pθ(x|z).
Next, let y be the target variable that is generated from the distribution pθ(y|x, z).

The variable y, having M number of categories, is expressed as {cm}M
m=1. Then, the target

variable yi with category cm is em. Note that em is a vector of the standard base, where em
denotes a vector with 1 as the m-th element and 0 everywhere else.

Equation (1) is the conditional log-likelihood of L̃CVAE(x, y; θ, φ) when
z = gθ(x, y, ε), ε ∼ N(0, I). qφ(z|x), known as the recognition model, was introduced
to approximate the actual posterior pθ(z|x) and was reparametrized to the deterministic
differentiable function gφ(., .) using the variable x and the noise variable ε as arguments.
The generative model G(X, y) that maximizes Equation (1) can be divided into an encoder
and a decoder. When the number of latent dimensions is J, the encoding result of the
i-th sample is zi =

{
zi,j
}J

j=1. When the category of the i-th target variable yi is cm, the

latent vector of the data is zcm
i =

{
zcm

i,j

}J

j=1
. The function KL, called the Kullback–Leibler

divergence, computes the difference between two inputs:

log pθ(y|x) ≥ −KL(qθ(z|x, y)||pθ(z|x)) + log pθ(y|x, z) (1)

The encoder of C-VAE represents the input data as a disentangled vector according to
the label. The decoder of C-VAE receives a specific label along with the vector, and then
generates data. This generative model can be utilized in various applications. In particular,
VB shows excellent performance for detecting anomalies in network intrusion [53], credit
card fraud [54,55], and medical diagnoses [56,57] when labels are imbalanced. Further-
more, many previous studies have demonstrated that VB shows well-calibrated results in
healthcare, which is one of the fields sensitive to uncertainty [58–61].

The generative model used in this study has the following advantages. First, it is
efficient when data labels are imbalanced [62]; the labels for patent type obtained through
TM are imbalanced. For example, there are fewer transferred technologies than those
that are not. Since patents have these characteristics, there is a high risk of uncertainty in
predictions; therefore, VB can be effectively utilized in TM. Second, the VB works well with
multimodal data [63]. Patents containing quantitative indicators, such as the number of
inventors, and texts, such as abstracts, are multimodal. Since the calibration of confidence is
affected by the generative model, the proposed method can be expected to show sufficient
performance even with VB. Finally, VB is a computationally tractable method [64]. VB,
which approximates the true posterior in Bayesian inference, has a low computational cost
for training and a low risk of gradient divergence.

3. Proposed Method

When the target label is cm, KL random numbers are generated from w conditioned on
w : w ∼ NJ(µ, Σ). At this time, when the decoding condition for the k-th random number
is cm, the generated data are XKL

Dec = {xk}KL
k=1 (k = 1, 2, . . . , KL). Therefore, it holds that

yKL
Dec = {cm}KL

k=1.
The result of concatenating the raw data X and XKL

Dec in the row dimension is
XKL

Gen = {xl}N+KL
l=1 . Then, yKL

Gen is a concatenated vector of y and yKL
Dec. This study aims

to measure the change in the calibrated confidence according to KL. Equation (2) is an
operation for finding KL:

KL =
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Text is embedded in 𝑝𝑝2  dimensions through a large-scale, pre-trained language 
model. This model transforms the document into a vector in real space that reflects the 
context. The p2-dimensional space has the advantage of obtaining the distance or correla-
tion between document vectors; these variables are used as inputs to the VB-based gener-
ative model. The output is a quantitative indicator and embedding vector reflects the fea-
tures of a specific label. 

In Figure 1, the encoder encodes (𝑝𝑝1+ 𝑝𝑝2 + 𝑚𝑚)-dimensional input data into a 𝐽𝐽-dimen-
sional vector. At this time, 𝐽𝐽 is smaller than (𝑝𝑝1 + 𝑝𝑝2 + 𝑚𝑚) because the latent space of the 
data needs to be extracted. Figure A1a is the encoder architecture of the VB-based gener-
ative model. The purpose of a generative model is to generate similar data to the training 
data. Therefore, the encoder multiplies the deviation (𝜎𝜎) of the encoded input data by the 
noise (𝜖𝜖) and uses the added value with the mean (𝜇𝜇) as a latent vector. Then, the input 
data of the decoder are a latent vector and one-hot encoded label. Figure A1b is the de-
coder of the VB-based generative model. To calibrate the confidence, the proposed 
method concatenates the generated and training data and then uses it as an input for the 
classifier. 

L× N−cm − Ncm
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In Equation (5), 𝑐𝑐𝑚𝑚 means standard base. If the number of categories is 𝑀𝑀, 𝑐𝑐𝑚𝑚 de-
notes a vector with a 1 as the 𝑚𝑚-th element and 0 elsewhere. 

Text is embedded in 𝑝𝑝2  dimensions through a large-scale, pre-trained language 
model. This model transforms the document into a vector in real space that reflects the 
context. The p2-dimensional space has the advantage of obtaining the distance or correla-
tion between document vectors; these variables are used as inputs to the VB-based gener-
ative model. The output is a quantitative indicator and embedding vector reflects the fea-
tures of a specific label. 

In Figure 1, the encoder encodes (𝑝𝑝1+ 𝑝𝑝2 + 𝑚𝑚)-dimensional input data into a 𝐽𝐽-dimen-
sional vector. At this time, 𝐽𝐽 is smaller than (𝑝𝑝1 + 𝑝𝑝2 + 𝑚𝑚) because the latent space of the 
data needs to be extracted. Figure A1a is the encoder architecture of the VB-based gener-
ative model. The purpose of a generative model is to generate similar data to the training 
data. Therefore, the encoder multiplies the deviation (𝜎𝜎) of the encoded input data by the 
noise (𝜖𝜖) and uses the added value with the mean (𝜇𝜇) as a latent vector. Then, the input 
data of the decoder are a latent vector and one-hot encoded label. Figure A1b is the de-
coder of the VB-based generative model. To calibrate the confidence, the proposed 
method concatenates the generated and training data and then uses it as an input for the 
classifier. 

(2)

Ncm and N−cm denote the number of observations in category cm and those not in
category cm, respectively. When the KL values obtained using Equation (2) and the raw
data are merged, Ncm is L times N−cm (KL ∈ N).
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Let f (X, y) trained on X and y be classifier fX . Assuming that the predicted value of
the test data is fX(Xtest), the confidence of the observation with the label cm is as follows:

Lcm(Xtest; X) = − log fX(Xtest|y = cm) (3)

In Equation (3), Lcm(Xtest; X) and fX(Xtest|y = cm) are the negative log-likelihood of
the test data and predicted values for data with label cm, respectively.

In this paper, we propose a VB-based method to improve the calibrated confidence
in text classification. Figure 1 shows the architecture of the proposed methodology. First,
the proposed method extracts quantitative indicators, text, and labels from the collected
documents. Quantitative indicators refer to information, not text, in documents. A label
is a category that represents the document, such as the sentiment or subject of the text.
The proposed method scales quantitative indicators for effective convergence of VBs. The
function that converts the sample space of the input data x is as follows:

x−Min(x)
Max(x)−Min(x)

(4)
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In Equation (4), Max and Min are the maximum and minimum values of the data,
respectively. Therefore, the space of the input data is normalized to between 0 and 1.

Next, for the progress of the proposed method, labels are one-hot encoded. The
one-hot encoding of target variable y, which is category m, is as follows:

cm =


1, m− th element

0, otherwise
(5)

In Equation (5), cm means standard base. If the number of categories is M, cm denotes
a vector with a 1 as the m-th element and 0 elsewhere.

Text is embedded in p2 dimensions through a large-scale, pre-trained language model.
This model transforms the document into a vector in real space that reflects the context. The
p2-dimensional space has the advantage of obtaining the distance or correlation between
document vectors; these variables are used as inputs to the VB-based generative model. The
output is a quantitative indicator and embedding vector reflects the features of a specific label.

In Figure 1, the encoder encodes (p1+ p2 + m)-dimensional input data into a J-
dimensional vector. At this time, J is smaller than (p1 + p2 + m) because the latent space
of the data needs to be extracted. Figure A1a is the encoder architecture of the VB-based
generative model. The purpose of a generative model is to generate similar data to the
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training data. Therefore, the encoder multiplies the deviation (σ) of the encoded input
data by the noise (ε) and uses the added value with the mean (µ) as a latent vector. Then,
the input data of the decoder are a latent vector and one-hot encoded label. Figure A1b is
the decoder of the VB-based generative model. To calibrate the confidence, the proposed
method concatenates the generated and training data and then uses it as an input for
the classifier.

We propose three research hypotheses for the validity of the proposed methodology.
The research hypothesis of the proposed method is as follows:

Hypothesis 1. The quantitative indicators of text have different distributions depending on the
document’s purpose.

The model for classifying patents uses quantitative indicators, such as claims, and the
number of inventors as predictors. Then, the predictors of the classification model should
be able to explain events such as technology litigation, valuation, and transfer. Hypothesis
1 expresses that quantitative indicators will have different distributions depending on the
target label. If the distribution of indicators is similar, they will be unsuitable predictors
for classifying data [65,66]. Therefore, we assume that the indicators used in the proposed
methodology reflect the data characteristics.

Hypothesis 2. In the latent space obtained using a generative model, each document according to a
label will have a disentangled representation.

The proposed method calibrates the confidence by learning the data generated through
VB. When classifying technology transfer, data that reflect the features of the transferred
patent should be generated. Therefore, following Hypothesis 2, the latent space of a
patent according to technology transfer in the generative model should be composed
of disentangled variables. It is important to secure a disentangled latent space for the
generative model; if the data characteristics are generated in entangled space, such as noise,
it will have a negative effect on improving the performance of the predictive model [67].
Therefore, we need to statistically test whether the latent space obtained from the generative
model is disentangled depending on the data characteristics.

Hypothesis 3. The proposed method improves the calibrated confidence of document classification.

Finally, we need to calibrate the confidence of the document classification. This study
extracts various predictors and builds a VB-based generative model. Next, generative
models generate data in the disentangled space. That is, Hypothesis 3 is the basis for
judging whether the proposed method helps calibrate the confidence of the model. We
expect that the confidence of a classification model that has undergone this process will be
calibrated. To this end, this paper will not only intuitively present the results of the method
proposed through experiments through various graphs, but it will also secure the validity
of the study through statistical tests.

Therefore, our research hypothesis focuses on calibrating the confidence of document
classification and improving the validity of the classification model and the efficiency of the
generative model. All hypotheses are statistically tested with the experiments in Section 4.

4. Experimental Results
4.1. Dataset and Experimental Setup

Experiments are conducted to examine the proposed method’s applicability. The data
used in the experiment were 11,444 US patents. The patents were collected from the WipsOn
database. Table 1 shows the predictors extracted from the collected data. The table lists 10
(= p1) variables—from the number of claims to the number of family patents (famE)—that
are quantitative indicators. Embp2 is a 384 (= p2)-dimensional vector in which the text



Appl. Sci. 2022, 12, 9007 7 of 18

in the patent document is embedded. In the experiment, we used a transformer-based
document embedding model to process the natural language of the patent data [68].

Table 1. Variables used in the proposed model.

Variables Description

claim Number of claims
inventor Number of inventors

ipc Number of International Patent Classification (IPC) codes
cpc Number of Cooperative Patent Classification (CPC) codes

citeP Number of cited patents
citeC Number of countries for cited patents
citeR Number of cited non-patent documents
famP Number of family patents
famC Number of countries for family patents
famE Number of European Patent Office family patents

Embp2 Variables for text transformed into a pre-trained language model

The experiments have three target variables. The first is Litigation, which indicates
whether a patent is litigated. Patent litigation is a process for claiming the prohibition
of sale, compensation for damages, and return of unreasonable profits from a defendant
accused of infringing on the rights of the plaintiff [69]. Thus, patent litigation could inflict
huge damage on a company, and they need to predict patent litigation risks.

The second is Valuation, which is graded in accordance with the technology’s future
value. Since the number of patents being filed has rapidly increased recently, it takes a lot
of time and expense to search for prior art or vacant technology for TM. To improve this,
experts provide a grade that evaluates the future value of a patent. Then, researchers can
utilize high-grade technology to analyze patent data. Thus, we use the grades provided by
the WipsOn database. The Valuation variable used in the experiment is a binary category
that denotes whether the grade of a patent is high or low.

Finally, Transfer is a target variable that indicates whether technology is transferred.
Technology transfer, a strategy that can rapidly increase the technological competitiveness
of a company or research institute, means transferring patents [70–72]. The target variables
used in the experiment, Litigation, Valuation, and Transfer, often have imbalanced labels
due to TM. Therefore, this study applies the proposed method to confirm the practical
applicability of the three TM tasks.

In Sections 4.2– 4.4, we present the statistical tests performed for the three hypotheses
in this study. Experiments were conducted individually, in accordance with the purpose of
document classification. All statistical hypotheses were tested at the 0.05 significance level.

4.2. Comparison of Quantitative Variables Depending on the Purpose of Document Classification

Table 2 shows the results of Hypothesis 1. Statistical tests were used to compare
the differences in predictors depending on the target variables. For example, for patents
with a history of litigation, the mean and standard deviation of citeP are 223.584 and
430.433, respectively. Levene’s test for homogeneity of variance showed that there was a
statistically significant difference between numbers of cited patents that were and were
not litigated. Research hypothesis 1 could be adopted in the t-test, Wilcoxon Rank-Sum
test, and Kolmogorov–Smirnov test conducted under the assumption of equal variance.
This is because the results of statistical tests mean that the quantitative indicators of
text have different distributions according to the document’s purpose. Therefore, there
is a statistically significant difference in the number of cited patents depending on the
litigation status.
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Table 2. Results of statistical test for Hypothesis 1.

Case Statistics Claim Inventor ipc cpc citeP citeC citeR famP famC famE

Litigation

Avg. Y 23.536 1.544 3.656 4.656 223.584 3.600 66.664 74.832 5.560 20.400
Std. Y 12.981 1.874 4.785 9.004 430.433 2.626 140.082 178.146 3.965 23.832

Avg. N 18.168 1.680 3.128 3.880 69.560 2.408 8.288 3.960 32.928 8.216
Std. N 10.662 1.831 2.558 4.705 390.268 2.113 34.262 3.275 150.234 9.228

Levene 1 0.204 0.747 0.114 0.396 0.007 0.001 <0.001 0.090 0.002 <0.001
t-test 2 <0.001 0.564 0.280 0.396 0.003 <0.001 <0.001 0.046 0.001 <0.001

Wilcoxon 3 <0.001 0.360 0.784 0.405 <0.001 <0.001 <0.001 <0.001 0.001 <0.001
KS-test 4 0.001 0.614 0.721 0.721 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Valuation

Avg. Y 23.442 2.280 3.892 5.738 239.252 4.127 52.799 169.694 7.078 23.140
Std. Y 16.621 2.847 5.096 11.006 562.636 3.048 117.259 415.457 4.455 29.686

Avg. N 17.170 1.849 3.089 3.707 47.966 2.476 11.476 3.753 29.337 7.858
Std. N 8.966 2.129 2.583 5.545 130.851 1.904 48.123 3.241 159.323 9.322
Levene <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
t-test <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Wilcoxon <0.001 0.292 0.337 0.812 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
KS-test <0.001 <0.001 0.053 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Transfer

Avg. Y 17.266 2.347 3.257 4.556 80.523 3.042 17.588 44.854 4.189 10.312
Std. Y 9.586 2.439 2.839 6.158 230.131 2.560 56.210 198.785 3.123 13.353

Avg. N 18.190 1.819 3.139 3.727 61.215 2.519 13.444 3.870 38.910 8.814
Std. N 11.348 2.184 2.937 5.484 225.695 1.917 56.539 3.493 197.317 12.343
Levene 0.001 <0.001 0.428 <0.001 0.003 <0.001 0.011 0.332 0.182 0.014
t-test 0.001 <0.001 0.140 <0.001 0.002 <0.001 0.008 0.276 <0.001 <0.001

Wilcoxon 0.022 <0.001 0.026 <0.001 0.048 <0.001 <0.001 <0.001 <0.001 <0.001
KS-test 0.066 <0.001 0.147 <0.001 0.026 <0.001 <0.001 <0.001 <0.001 <0.001

1 p-value of Levene’s test for homogeneity of variance. 2 p-value of t-test for homogeneity of average. 3 p-value
of Wilcoxon Rank-Sum test, a nonparametric method for t-test. 4 p-value of Kolmogorov–Smirnov test for
homogeneity of distribution.

4.3. Comparison of Representations in Latent Space Depending on Labels in Documents

This subsection describes the results of the statistical tests for Hypothesis 2. Table 3
shows the distribution of target variables. In the raw data, the patents related to litigation
(Litigation = Y) are very few at 125 cases (1.092%). The percentages of high-grade patents
(Valuation = Y) and transferred patents (Transfer = Y) are 10.154% and 23.086%, respectively.
Through this, it is evident that the patent labels are imbalanced; therefore, this study aims
to compare how the proposed methodology works depending on the label ratio. To
evaluate the generative model G(X, y) and classifier f (X, y), the raw data were divided
into training data and test data in a 7:3 ratio.

Table 3. Result of splitting the data to train the model.

Dataset
Litigation Valuation Transfer

Y N Ratio (%) Y N Ratio (%) Y N Ratio (%)

Raw data 125 11,319 1.092 1162 10,282 10.154 2642 8802 23.086
Training data 61 5520 1.093 566 5015 10.142 1289 4292 23.096

Validation data 26 2388 1.077 245 2169 10.149 557 1857 23.074
Test data 38 3411 1.102 351 3098 10.177 796 2653 23.079

Figure A1 in Appendix B summarizes the architecture of G(X, y) used in this paper.
In the experiment, we defined the dimension J of the latent space of G(X, y) as 2 for
the statistical test of Hypothesis 2. The design of the statistical test for Hypothesis 2 is
as follows. First, the latent space of G(X, y) is divided into two-dimensional zY

i· and zN
i· ,

respectively. However, the general Kolmogorov–Smirnov test deals with the homogeneity
of the distribution of one-dimensional data. Therefore, the general Kolmogorov–Smirnov
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test and the multidimensional version of the Kolmogorov–Smirnov test [73,74] are applied
depending on the dimensions of the latent vector. Then, we can determine whether the
latent space for each condition is disentangled through statistical hypothesis testing. Since
the latent variables are not entangled in G(X, y), only data belonging to a specific label
can be generated. Furthermore, we conducted experiments depending on the types of
predictors and generative models to compare their results. In Table 4, Quant and Text are
the results of using only quantitative indicators and text of documents, respectively. In
addition, VAE refers to a generative model that does not assume conditions for a specific
label in C-VAE.

Table 4. Results of statistical tests for Hypothesis 2.

Generative
Model Predictors Parameter

Litigation Valuation Transfer

Statistics p-Value Statistics p-Value Statistics p-Value

VAE

Quant

(
zY

i, 1, zN
i, 1

)
1 0.117 0.833 0.106 0.013 0.018 >0.500(

zY
i, 2, zN

i, 2

)
2 0.148 >0.500 0.106 0.013 0.017 >0.500(

zY
i, ·, zN

i, ·

)
3 0.149 >0.500 0.106 0.026 0.017 >0.500

Text

(
zY

i, 1, zN
i, 1

)
0.141 <0.001 0.071 0.210 0.045 0.339(

zY
i, 2, zN

i, 2

)
0.141 <0.001 0.075 0.157 0.038 >0.500(

zY
i, ·, zN

i, ·

)
0.141 <0.001 0.114 0.010 0.056 0.321

Quant +
Text

(
zY

i, 1, zN
i, 1

)
0.170 0.404 0.058 0.432 0.073 0.020(

zY
i, 2, zN

i, 2

)
0.226 0.124 0.105 0.015 0.060 0.083(

zY
i, ·, zN

i, ·

)
0.267 0.071 0.113 0.009 0.102 0.001

C-VAE

Quant

(
zY

i, 1, zN
i, 1

)
0.263 0.047 0.008 >0.500 0.267 <0.001(

zY
i, 2, zN

i, 2

)
0.308 0.012 0.012 >0.500 0.259 <0.001(

zY
i, ·, zN

i, ·

)
0.308 0.018 0.014 >0.500 0.277 <0.001

Text

(
zY

i, 1, zN
i, 1

)
0.200 0.221 0.354 <0.001 0.171 <0.001(

zY
i, 2, zN

i, 2

)
0.378 0.001 0.342 <0.001 0.197 <0.001(

zY
i, ·, zN

i, ·

)
0.385 0.002 0.470 <0.001 0.232 <0.001

Quant +
Text

(
zY

i, 1, zN
i, 1

)
0.646 <0.001 0.421 <0.001 0.156 <0.001(

zY
i, 2, zN

i, 2

)
0.588 <0.001 0.177 <0.001 0.155 <0.001(

zY
i, ·, zN

i, ·

)
0.635 <0.001 0.428 <0.001 0.156 <0.001

1,2 Results of Kolmogorov–Smirnov tests. 3 Results of a multidimensional version of the Kolmogorov–Smirnov
test [73,74]. The null hypothesis for all hypothesis tests is that the two distributions are equal.

In Table 4,
(

zY
i, 1, zN

i, 1

)
and

(
zY

i, 2, zN
i, 2

)
are vectors depending on the labels of docu-

ments obtained in latent space. In the table, zY
i, · denotes a two-dimensional vector obtained

by merging zY
i, 1 and zY

i, 2. As a result of the experiment, when the generative model was
C-VAE and the quantitative indicators and document texts were used as predictors, Hy-
pothesis 2 was not rejected for all target labels. Therefore, the proposed method evidently
disentangles the document representation for each label in the latent space.

4.4. Comparison of Improvements in Calibrated Confidence in Document Classification

The purpose of this subsection is to verify that the proposed method can calibrate
the confidence of document classification through experiments on Hypothesis 3. For this,
we generate L times the data labeled Y and merge it with the training data. The optimal
value of L was determined as shown in Appendix B. Table A1 in Appendix B compares the
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prediction performance obtained using the proposed method. The optimal values of L are
1.5, 1.3, and 2.0 for cases where the target variables are Litigation, Valuation, and Transfer,
respectively. For example, when the target variable is Valuation, the optimal value of L
is 1.3. When the target variable is Valuation, there were 566 and 5015 observations with
labels Y and N in the training data, respectively. Using Equation (2), G(X, y) generated
5954 observations whose label is Y. When raw data and generated data were concatenated,
the number of observations with label Y became 6520. That is, the labels in the data
augmented through the proposed method had a Y:N ratio of 1.3 (=optimal value of L).

The model fX learns the data that contains the merged training data and generated
data. Figure 2 shows the distribution of probabilities when the labels in the test data are
predicted. In the Litigation cases, the likelihood of the proposed method increased. In the
Valuation and Transfer cases, the likelihood was higher when it was ≥0.4, indicating that
the confidence was calibrated. Therefore, the proposed method can calibrate the confidence.
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Figure 2. Distribution of the prediction probability for the target variables (when the generative
model was C-VAE and the predictors were quantitative indicators and text of documents). (a) This
figure shows the distribution of the prediction probabilities when the target variable was Litigation,
which shows that the overall likelihood increased when the proposed method was used; (b) predicted
distribution when the target variable was Valuation: this figure shows that the probability increases
by 0.4 or more; (c) predicted distribution when the target variable is Transfer: it shows a similar
pattern to the distribution in (b).

Finally, Figure 3a–c shows the comparison result of LY(Xtest; ·) obtained when the
test data with the actual label Y were applied to the baseline and the proposed method
(see Equation (3)). The LY

(
Xtest; XKL

Gen

)
obtained through the proposed method tends to

be higher than the baseline in all tasks. Figure 3d–f shows the distribution of LY(Xtest; ·)
obtained through the baseline and the proposed method. The distributions in the figure
indicate how well the proposed method secures calibrated confidence compared to the
baseline. Therefore, we compare the homogeneity of the two distributions to statistically test
Hypothesis 3. Avg_baseline in Table 5 is the average of the probability that an observation
with actual label Y is correctly classified as Y by the model. Similarly, Avg_XKL

Gen is a value
measured by the proposed method. For example, in Figure 3e, the mean of LY(Xtest; X),
which is a negative log-likelihood, is −1.855 and is 0.157 (=e−1.855) when converted to a
probability. Similarly, the mean of LY

(
Xtests; XK1.3

Gen

)
is −1.043; it is 0.353 when converted

to a probability. When the L of the Valuation case was 1.3, a miscalibration phenomenon
that resulted in a large difference between the confidence and the F1-score was observed
at the baseline. For example, in the valuation, the existing accuracy was 0.157 and the
difference from the F1-score was 0.238, which was very large. Conversely, the difference
between the value obtained by the proposed method and the F1-score was very small
at 0.042. Calculating with the same logic, the proposed method evidently calibrates the
confidence from a minimum of 0.02 to a maximum of 0.04. However, the proposed method
showed a similar level of confidence to that of the accuracy. Therefore, our method can
calibrate the confidence better than the baseline.
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Figure 3. Results of comparing the confidence of the baseline and proposed methodology (when
the generative model was C-VAE and the predictors were quantitative indicators and document
texts). (a) As a result, the proposed method calibrated the confidence better than the baseline;
(b) the proposed method calibrated the confidence better than the baseline; (c) the proposed method
calibrated the confidence of transferred patents better than the baseline; (d) the difference between
the mean of the confidence and the accuracy was smaller for the proposed method than the baseline;
(e) confidence was calibrated better than confidence in Litigation cases; (f) confidence was calibrated
better in Transfer cases than in other cases.

Table 5. Results of statistical tests for Hypothesis 3.

Case
Performance Measure Statistical Test

Avg_Baseline Avg_XKL
Gen F1-Score KS-Test 1 Paired t-Test 2 Wilcoxon 3

Litigation 0.010 0.040 0.065 <0.001 <0.001 <0.001
Valuation 0.157 0.353 0.395 <0.001 <0.001 <0.001
Transfer 0.286 0.445 0.465 <0.001 <0.001 <0.001

1 KS test for the two-sided test with log-likelihood. 2 Paired t-test for one-sided test with log-likelihood. 3 Wilcoxon
Signed Rank one-sided test. The null hypotheses for the one and two-sided tests are “the two distributions are
equal” and “the log-likelihood is lower than before”, respectively.

Figure 4 shows the results of comparing the differences in accuracy and likelihood de-
pending on the generative models and predictors. When the target variables are Litigation
and Valuation, the confidence is the most calibrated when the generative model is C-VAE
and the predictors are document texts. When the target variable was Transfer, the difference
between accuracy and likelihood was smallest when the quantitative indicators were used
together. As such, there are appropriate generative models and predictors depending on
the label of the target. However, as a result of statistical testing for Hypothesis 2, only the
proposed methodology could disentangle the data characteristics depending on the labels
in latent space. Therefore, we need to test Hypothesis 3 on the results obtained using the
proposed methodology.
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The confidence obtained using the proposed method tended to be higher than the
baseline for all tasks. Thus, we compared the homogeneity of the confidence obtained
through the baseline and the proposed method to test Hypothesis 3. Table 5 shows the
results of rejecting the null hypothesis in the Kolmogorov–Smirnov test, paired t-test, and
the Wilcoxon Signed Rank test. Therefore, it is possible to calibrate confidence in document
classification through the proposed method. The results of the experiments conducted in
this paper are as follows. First, the quantitative indicators of the patents differ depending
on the purpose of document classification. Second, in the latent space of the generative
models, documents have disentangled representations depending on their labels. Finally,
the proposed method can increase the confidence of predictions by reducing uncertainty in
document classification.

5. Discussion

Recently, various applications have pointed out that the confidence of the predictive
model does not reflect the statistical consistency between the accuracy and the probability
of prediction. TM is one field that has a high uncertainty of predictions for reasons such as
the time lag in technological development or biased expert decision making. In particular,
patents that reflect the TM contain a lot of noise due to various factors. For example,
through technology valuation, companies can find excellent technologies that they can then
apply to their business models. However, as the value of any technology changes over time,
businesses should consider the uncertainty inherent in data to make the right decisions.
Therefore, this study proposes a method that reduces uncertainty about TM.

Previous studies have mainly devised visualization methods for comparison of ex-
pected and observed accuracy, to approximate expected values for the difference between
confidence and accuracy or to estimate calibration errors. Recently, researchers have dis-
covered that a model’s confidence can be calibrated through the process of increasing the
diversity of data representation. Therefore, this study used a VB-based generative model
to augment the document representation in various ways. In addition, we were able to
intuitively grasp the degree to which the confidence was calibrated by visualizing the
predictive probability and log-likelihood obtained using the proposed method.

The experiment of the proposed method was carried out by collecting actual patents.
The proposed method calibrated the distribution of prediction probability to be less biased
than before (see Figure 2). In particular, the probability of the predictive model correcting
the ground truth occurred frequently at ≥0.4. In addition, the log-likelihood of the data
with actual label Y was larger than the baseline in all cases (see Figure 3). Specifically, when
the target variable was Litigation, the difference between accuracy and F1-score decreased
from 0.055 to 0.025. Similarly, when the target variable was Valuation and Transfer, the
difference between the two measures decreased significantly (see Figure 4). We found
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through experiments that the degree to which confidence was calibrated decreased as the
proportion of labels became imbalanced.

To reduce uncertainty, previous studies have proposed methods for measuring the
confidence of models. However, their limitation was that they measured the uncertainty of
a model that had already been trained. Therefore, an alternate method was suggested that
reduced uncertainty by calibrating the confidence while training the model. Specifically,
some methods impose a penalty using a confidence score or by shifting data. Based on
these studies, we proposed a method to calibrate confidence in text classification tasks
using imbalanced data. To this end, the VB used in this study (i) works well in various
fields such as healthcare, (ii) is suitable for multimodal data such as patents, and (iii) is a
computationally scalable method.

Nevertheless, this study has the following limitations:

• This paper did not present an optimization method to find the hyperparameter L in
the proposed methodology. The hyperparameter L, which determines how much data
are generated, is expected to be related to the precursors of the data. In the experiment,
we determined the hyperparameters using a greedy search. However, methodologies
or empirical guidelines for optimization should be proposed;

• The proposed method cannot easily guarantee calibrated confidence for multi-class
classification. To examine the proposed methodology’s applicability, we conducted
various statistical experiments. However, the experiments were conducted on binary-
class classification. Future research should consider multi-class classifications to reduce
uncertainty in various TM tasks.

Finally, this study has several limitations. First, it is expected that a method for
searching for an optimal value L can be developed by analyzing the precursors of the data.
This is because the smaller the precursors, the more data generation is required. Next,
we expect that the proposed methodology can be applied to multi-class classifications by
improving the architecture of generative models. However, a different approach is needed
to statistically test Hypothesis 2 for multi-class classification.

6. Conclusions

This paper proposed a methodology to calibrate confidence by using a generative
model to reduce uncertainty about TM when analyzing patents with imbalanced labels.
Research hypotheses were presented to ensure the proposed method’s validity. The first
hypothesis is that the quantitative indicators of patents differ depending on the purpose
of document classification. Patents are data that sufficiently reflect the TMs; therefore,
predicting TM using these data requires that the quantitative indicator of a patent must
first be able to explain the target variable. Second, the latent variable obtained through the
generative model is disentangled in accordance with the label of the patent. The proposed
method generates data under the condition of a specific label for a patent. If the patent is
entangled in a latent space, more noise is added, and uncertainty may increase. Finally, we
assume that the confidence of the TM is calibrated through the proposed method. Thus,
the proposed method is effective at reducing uncertainty.

The experiment was conducted to examine the practical applicability of the proposed
method and to verify the research hypotheses. For the experiment, 10 quantitative indi-
cators were extracted from 11,444 US patents. The text of each patent was transformed
into a 384-dimensional vector through a transformer-based model for document embed-
ding. Using these variables, we applied the proposed methods for Litigation, Valuation,
and Transfer, which are representative TMs. The results of testing Hypothesis 1 showed
that most quantitative indicators had statistically significant differences depending in the
target variables. In other words, the quantitative indicators of patents are suitable for
predicting TM. Next, by testing Hypothesis 2, we confirmed that the latent vector of the
patent obtained through the generative model was disentangled in accordance with the
label. Therefore, the proposed method can be used to calibrate confidence by selectively
generating only a specific label. In the experiment, when the target variable is Valuation,
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we confirmed that the proposed method reduced the confidence from a maximum of 0.238
to 0.042. Similarly, when the target variables were Litigation and Transfer, the confidence
decreased from its maximum of 0.179 to its minimum of 0.020. It was found that the
proposed method calibrated the confidence for the three TMs because Hypothesis 3 was
statistically significant.

In the future, it will be necessary to develop an architecture that combines the genera-
tive and predictive models. The proposed method increases the precursors of the training
data as a generative model to reduce uncertainty about the prediction. A disadvantage
of this approach is that the results may fluctuate depending on the predictive model.
Therefore, we expect that sustainable TM will be possible through the development of a
methodology that can merge generative and predictive models.
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to illustrate the validity of this study; J.L. and S.P. wrote the paper and performed all of the research
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Appendix A

Appendix A describes the architecture of the generative model used in the experiment.
We used Python 3.7.3 and TensorFlow 2.5.0, which is a deep learning framework, to
implement C-VAE. Figure A1 shows the developed encoder and decoder of C-VAE. The
encoder input data include 394 variables, and the labels are extracted from patent data.
The input is the result of concatenating 10 quantitative indicators and a 384-dimensional
text vector. The label is a binary class for the TM and is a two-dimensional vector obtained
through one-hot encoding. The output of the encoder is a two-dimensional latent vector.
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The input of the decoder is a vector that is concatenated with a latent vector and
a one-hot encoded label. In this case, the latent vector can be replaced with a random
number. In the model training process, the dropout rate for each layer was set to 0.2 to
prevent overfitting. In addition, that batch size was 256, and the optimizer used root-mean-
squared propagation.

Appendix B

Appendix B describes the process for determining the hyperparameter of the proposed
method. First, we predicted the test data with a model trained only on raw data to determine
the performance baseline. The performance measures used in the experiment were F1-score,
Geometric Mean (GM), False Positive Rate (FPR), and Area Under the Curve (AUC). The
measures were calculated as True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN).

The F1-score is calculated as follows:

F1− score = 2× Precision× Recall
Precision + Recall

(A1)

where Precision is TP/(TP + FP) and Recall is TP/(TP + FN). Furthermore, the FPR is
FP/(FP + TN).

The GM is calculated as follows:

GM =
√

Recall × Speci f icity (A2)

where the Specificity is TN/(TN/FP). AUC indicates the area of the Receiver Operating
Characteristics (ROC) curve. For all measures, it is judged that the closer the value is to 1,
the better the prediction performance.

Table A1. Result of comparing the performance to determine the hyperparameter of the proposed method.

Results
Litigation Valuation Transfer

F1-Score GM FPR AUC F1-Score GM FPR AUC F1-Score GM FPR AUC

Baseline 0.000 0.000 0.000 0.500 0.229 0.372 0.009 0.565 0.336 0.473 0.051 0.593

XK1.0
Gen 0.066 0.493 0.075 0.594 0.404 0.675 0.118 0.699 0.452 0.621 0.188 0.644

XK1.3
Gen 0.062 0.494 0.082 0.592 0.395 0.681 0.133 0.701 0.457 0.633 0.223 0.646

XK1.5
Gen 0.065 0.515 0.085 0.602 0.385 0.681 0.144 0.699 0.458 0.637 0.243 0.647

XK1.7
Gen 0.063 0.514 0.087 0.601 0.376 0.679 0.153 0.695 0.459 0.641 0.258 0.648

XK1.9
Gen 0.062 0.513 0.090 0.600 0.372 0.679 0.159 0.695 0.463 0.646 0.272 0.651

XK2.0
Gen 0.061 0.513 0.091 0.599 0.370 0.679 0.161 0.694 0.465 0.649 0.276 0.653

Table A1 shows the results of a greedy search for several L values to find the optimal
value. The model’s performance may fluctuate due to the randomness of the generative
model. Therefore, the measures used the average of the values obtained using a 10-fold
cross-validation. The predictive model for predicting target variables is logistic regression.
The model returns well-corrected predictions because it optimizes for log-loss. As a result,
the performance improvement of the proposed method evidently increases as the label
becomes imbalanced.
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