
A Study on the Current State of the Art in Tool-Supported UML-Based
Static Reverse Engineering

Ralf Kollmann1, Petri Selonen2, Eleni Stroulia3, Tarja Systä2, Albert Zündorf4

(kollmann@tzi.de, pselonen@cs.tut.fi, stroulia@cs.ualberta.ca,
tsysta@cs.tut.fi, zuendorf@upb.de)

1University of Bremen, Department of Computer Science, Germany
2Tampere University of Technology, Software Systems Laboratory, Finland

3University of Alberta, Computing Science Center, Canada
4Technical University of Braunschweig, Institute for Software, Germany

Abstract

Today, software-engineering research and industry alike
recognize the need for practical tools to support reverse-
engineering activities. Most of the well-known CASE
tools support reverse engineering in some way. The Uni-
fied Modeling Language (UML) has emerged as the de
facto standard for graphically representing the design of
object-oriented software systems. However, there does not
yet exist a standard scheme for representing the reverse-
engineered models of these systems. The various CASE
tools usually adopt proprietary extensions to UML and,
as a result, it is difficult, or even impossible, to ensure
that model semantics remains unambiguous when working
with different tools at the same time.

In this paper, we examine the capabilities of the two
most successful industrial-strength CASE-tools in reverse
engineering the static structure of software systems and
compare them to the results produced by two academic
prototypes. The comparisons are carried out both manually
and automatically using a research prototype for manipu-
lating and comparing UML models.

Keywords:

UML, static reverse engineering, empirical study, tool
evaluation

1 Introduction
Reverse engineering has been a subject of long-term active
research and in that time several well known techniques
have been developed. In parallel, a lot of related fields
of research have also been developed, and as their rela-
tions to software modeling have been recognized and elab-
orated, round-trip engineering has emerged as a relatively

new software-development methodology. In line with the
recognition that tool support for software modeling is nec-
essary during development, it has become more and more
commonplace for modern CASE-tools to also support re-
verse engineering to a certain degree.

In most cases, the reverse-engineering facilities pro-
vided by CASE-tools supporting the Unified Modeling
Language (UML) [11] are limited to class diagram ex-
traction. In the case of Java software systems, package
hierarchies are usually shown as well. However, a class
diagram provides only limited help for understanding the
underlying architectural decisions. Further support, such
as abstracting class diagrams into component diagrams and
recognizing design patterns, would be very desirable for
real UML-based reverse engineering.

While a class diagram shows the static information at
the lowest level possible in UML, it nonetheless represents
an abstraction of the actual object-oriented code of the sub-
ject system. As a modeling language, UML does not tell
how the model is to be implemented. More specifically,
there is no one-to-one mapping between class diagram ele-
ments and the source code. For instance, composition and
aggregation relationships can be implemented similarly
even though they are conceptually different. Associations
in general are difficult to be detected, especially for dy-
namically typed languages. Furthermore, other language-
dependent difficulties occur: usage of abstract classes and
interfaces in purely object-oriented languages (such as Java
and Smalltalk) differs from their usage in hybrid languages
(e.g., C++). Even the interpretation of generalization at
the design level differs from inheritance at the source code
level: in model inheritance, it is used for subtyping, while
in the source code it is used, e.g., for subclassing.

Because of the differences in concepts at the design and

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

implementation levels, interpretations are necessary for the
extraction of class diagrams from the source code. Cur-
rently, there exists no standard way to do that. Moreover,
the tools do not allow the user to influence the interpre-
tations. Instead, the interpretation is typically built in the
tools’ algorithms. These built-in tool-dependent interpre-
tations can lead to inconsistencies, misunderstandings, and
limitations. However, the interpretations themselves seem
to be less harmful than hiding the rationale behind them
from the end user. If the CASE-tool supports round-trip en-
gineering, the same interpretations can and should be used
consistently both in reverse engineering and in code gen-
eration. The danger of misunderstandings becomes less
crucial the better the user understands the interpretations
and the limitations of the tool. While tools supporting code
generation often allow the user to influence coding conven-
tions, it is surprising that similar customizability is rarely
supported when reverse engineering class diagrams from
the source code, especially since constructing abstractions
requires understanding and is thus known to be a process
that should be carried out (semi-)manually.

In this paper, our objective is to examine and report on
the state-of-the-art in object-oriented software reverse en-
gineering through a case study comparing the results of
different tools on a single subject system. The examination
also serves the CASE-tool users in understanding the built-
in interpretations and limitations of the tools. We chose
two popular commercial CASE-tools and two research
prototypes especially targeted on UML-based reverse and
round-trip engineering. The examined commercial CASE-
tools are Together [19] and Rational Rose [15], and the re-
search prototypes are IDEA [6, 8] and FUJABA [20]. The
reverse engineering support of these tools was compared
by using them for analyzing the subject Java software sys-
tem Mathaino [5, 18]. A suite of model properties captur-
ing important design decisions has been identified and used
as a measure for comparing the results of each tool.

In addition, the class diagrams extracted by Together,
Rose, and IDEA have been stored in UML1.3/XMI1.1 for-
mat [14] and imported to a modeling tool TED [4], where
automatic model comparison is carried out using a research
prototype for manipulating and comparing UML models.

2 Examined Tools
Together Together supports reverse engineering of soft-
ware systems developed in C++, Java, C#, VB, etc. When
reverse engineering a Java program, Together constructs a
tree view similar to one produced by Rose but it also pro-
duces the UML class diagram at the same time (assum-
ing that the user has chosen this type of diagram to start
with). Together is able to reverse engineer the information
from the source code (.java files), byte code (.class files),

jar files, or packed zip files, but the models it extracts are
not exactly the same across these types of input. The Java
reverse engineer can be given instructions on the files, di-
rectories (packages), and libraries (for instance, Java foun-
dation classes) to be examined. Furthermore, Together can
provide, upon demand, a large array of metrics on the code
examined (e.g. LOC, Halstead, complexity) and audits on
the coding style used.

Rose Rational Rose supports reverse engineering of, e.g.,
C++ and Java software systems. When reverse engineering
a Java program, Rose constructs a tree view that contains
classes, interfaces, and associations found at the highest
level. Methods, variables etc. are nested under the owner
classes. Rose also constructs (on demand) a class diagram
representation of the extracted information and generates
a default layout for it. Additionally, Rose automatically
constructs a package hierarchy as a tree view. Rose is able
to reverse engineer the information from the source code,
byte code, jar files, or packed zip files. Quite similar to
Together, the Java reverse engineering module can be given
instructions on files, directories, packages, and libraries to
be examined.

Fujaba Fujaba is a UML based CASE-tool that has been
developed since 1998 at University of Paderborn. It sup-
ports code generation from class diagrams as well as activ-
ity diagrams, statecharts and collaboration diagrams. This
allows the use of the UML as a kind of visual programming
language for the development of full fledged applications
without any manual coding. Fujaba aims to provide round-
trip engineering support: if some developer or other tools
(e.g. a version control system) modify the generated code
and if these modifications stick to certain coding standards,
then the Fujaba environment is able to analyze the changed
code and to (re)create the corresponding UML specifica-
tion. Again, this covers the static structure, i.e. the class
diagrams, as well as the dynamic structure, i.e. the method
bodies. To some extent, this round-trip engineering func-
tionality may also be used for reverse engineering foreign
code. This holds especially for class diagrams.

Idea The reverse engineering tool IDEA has been devel-
oped at University of Bremen, Germany, within the UML-
AID (Abstract Implementation and Design with the Unified
Modeling Language) project. The main objective of IDEA
is the redocumentation of Java programs using the UML,
with focus on the static analysis of object-oriented struc-
tures using UML class diagrams. These are generally con-
sidered the most-employed and best-understood diagrams
included in the UML.

In the context of IDEA, a metamodel for the Java lan-
guage has been developed. The models of the actual pro-
grams examined are stored as instances of a data structure

2

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

James A Kettner
Highlight

corresponding to the assumed metamodel. A translation
framework is employed to create UML models from the
Java models, providing a standardized translation scheme.
In several successive steps, transformations are applied to
the model with the goal of creating an abstract design
level representation of the examined program. These are
the same features that have been applied for the study
presented in this paper and include for example recogni-
tion of container classes, multiplicities and inverse associ-
ations [6].

Recent research addresses the extension of IDEA’s
functionality by several metric-based analyses [8]. These
allow to visualize metrics graphically in the context of their
underlying architecture, what makes it possible to under-
stand the composition of metric values. The primary sub-
ject of this approach, however, is an algorithm for metric-
based partitioning of large diagrams that allows selective
visualization of semantically coherent diagram regions.

3 A Case Study
Mathaino is a tool for simultaneously migrating legacy user
interfaces to multiple web-based platforms [5, 18]. Math-
aino is part of the CelLEST environment for interaction-
based reengineering of legacy systems [3]. The complete
system consists of about 450 classes. Of these, the core
package has been selected for reverse engineering.

3.1 Examined Model Properties
Number of Classes (NOC) This is a general measure
for the overall size of a software module, such as a Java
package for example. NOC values can be counted in vari-
ous ways, depending on how interfaces are represented and
how “special” classes, such as container and inner classes,
are counted. Therefore, high NOC values may indicate a
more detailed representation.

Number of Associations (NOA) This metric measures
the amount of interconnectedness between different classes
by means of associations. However, more care has to
be taken when interpreting NOA values than concerning
NOC. Low NOA values may hint on an imprecise reverse-
engineering algorithm, but can also be the result of abstrac-
tion, for example recognition of inverse associations. As
in the latter case, low values are considered better, NOA
should be measured both before and after doing abstrac-
tions.

Types of Associations The UML supports different
kinds of associations like directed, bidirectional, aggrega-
tion and composition. Additionally, the meaning of an as-
sociation may be modified by applying adornments (e.g.,
tags or qualifiers) to its ends. In this section, we examine,

which UML adornments and association kinds have been
encountered, and under which conditions they have been
employed in reverse engineering. This allows conclusions
about the meaning that has been imposed on a feature by a
particular tool.

Handling of Interfaces An interface is a specifier for
the externally-visible operations of a class, component, or
other classifier (including subsystems) without specifica-
tion of internal structure [12]. In UML diagrams, inter-
faces are drawn as classifier rectangles (with a stereotype
�Interface�) or as circles. The interfaces are attached by
a dashed generalization arrow to classifiers that support it.
This indicates that the class provides (implements) all of
the operations of the interface. The circle notation is used
when the operations of the interface are hidden.

A class that uses or requires the operations supplied by
the interface may be attached to the circle by a dashed
arrow pointing to the circle. From the reverse engineer-
ing point of view, generation of such dependencies is im-
portant for understanding the usage of interfaces and for
concluding component structures and dependencies (e.g.,
to abstract a set of class diagrams to a component dia-
gram). Furthermore, different ways of handling interfaces
may impact the NOC metric and possibly the readability of
the respective class diagram.

Handling of Java Collection classes Java collection
classes are an implementation-specific means to handle
collections (e.g. sets, list or maps) of objects. In design,
such features do not appear, but are rather modeled by us-
ing association adornments like multiplicity or qualifiers.
We examine, whether the reverse-engineering algorithms
recognize Java collections and their contained types, or
handle them like ordinary classes. Container resolution is
important not only in design recovery, but also in metric-
based analysis [8].

Multiplicities In the UML, to-many associations be-
tween objects are described by means of multiplicities.
Precise information about multiplicities is difficult to de-
rive and requires ideally dynamic-analysis techniques,
which are not supported currently by the tools we exam-
ined. We examine, if and to what extent multiplicities are
recognized by means of the available static analysis meth-
ods.

Role Names The function of role names at association
ends is comparable to that of attribute names in the sense of
giving to an association between classes a meaningful de-
scriptor, which depends on the end it is attached to. There-
fore in reverse engineering, role names can hold relevant
additional information about the system infrastructure. We

3

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Rose Together
Classes 84 42

Conventional 39 39
Inner classes 3 + 42 3

Interfaces 4 4
Associations 38 + 45 16

Aggregation N/A N/A
Multiplicities N/A N/A
Roles this$0 N/A

variable names

Table 1: Metrics for Rose and Together

examine, whether role names are used and if so, what kind
of information they represent.

Inner classes Java inner classes, too, are an implemen-
tation specific feature that hides a class definition within
the specification of another class. Thus, recognizing inner
classes is important to reflect the entire system structure.

Class Compartment Details We examine the level of
details when resolving method signatures, e.g., whether pa-
rameter identifiers are resolved (in addition to the parame-
ter type). This is especially important when analyzing the
complete source code from method implementations.

4 Results from the Tools
4.1 Industrial Case tools
The metrics we collected on the behavior of Rose and To-
gether are summarized in Table 1.

Classes Rose was able to find altogether 39 classes, 42
unnamed anonymous inner classes, and three named non-
anonymous inner classes. Out of 39 conventional classes,
11 have inner classes (named or unnamed). Rose mod-
els inner classes the same way as any other classes (with
rectangles); thus, the total number of classes in the class
diagram was 84. The name of the (non-anonymous) inner
class in the source code is used as the name of the modeled
inner classes. In the case of unnamed inner classes, Rose
generates numbers (in numerical order, starting from “1”)
to label the unnamed inner classes. For instance, one of
the classes, called MathainoMainFrame, has 27 unnamed
inner classes, named “1”, “2”,: : :, “27”. Rose found 42
unnamed inner classes owned by 11 different classes and
only three named inner classes.

Together, when applied to the “*.java” files of Math-
aino, recognized the 39 classes of the core package and

the three named inner classes. Interestingly enough, when
applied to the “*.class” files of Mathaino, Together recog-
nized all 45 inner classes, both anonymous and named. In
both cases, the inner classes were shown on the diagram as
part of the classes in which they belong to (not as separate
rectangles).

The name compartment of the class reverse engineered
by Rose contains the name of the actual class and the name
of its package. Both the attribute and operations compart-
ments contain the names, types, and visibility (public, pro-
tected, or private) of the variables and methods, respec-
tively. For each method, the parameter types are also given.
Together’s diagrammatic representation of classes is simi-
lar.

Both Rose and Together (when applied to the “*.class”
files of the project) can identify the classes of external
packages on demand or if there exists a relationship (or a
reference) to/from the analyzed package. We did not count
the classes of the external packages.

Handling of Interfaces Rose uses a circle to illustrate
interfaces in the class diagram. The (abstract) methods of
the interfaces are written below the circle, separated with
two horizontal lines, which is not the style recommended
in UML. Together illustrates them using class rectangles
with an�Interface� stereotype shown above the interface
name. This notation is also available as an option in Rose.

Both Rose and Together found four interfaces in the
Mathaino core package. Both connect the interfaces to the
classes that realize them, that is, the classes that imple-
ment the abstract methods defined in the interfaces. When
the circle notation in used, Rose does that with a solid line.
When a class with a�Interface� stereotype is used, both
tools use a dashed line with a triangle at the end pointing
to the interface (similar to the inheritance notation).

However, neither Rose nor Together were able to gen-
erate any dependencies between interfaces and the classes
that use them (typically shown with a dashed arrow from
a class pointing to the interface). This is an obvious limi-
tation to understanding the roles of the interfaces. Further,
interface dependencies are needed for abstracting a class
diagram into a component diagram, understanding the in-
teraction among different components, etc.

Associations The total number of associations found by
Rose was 83. In Rose models, the relationship between an
owner class and its inner class (named or unnamed) using
an association with a fixed role name, this$0. Therefore,
45 of the modeled associations are generated based on an
inner class – owner class relationship. The other 38 associ-
ations model the relationship between a class and the types
of variables it defines. In these associations, only the end
of the association which is connected to the class repre-

4

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

senting the type of the variable is given a role name. The
role is named by the variable itself. Rose does not produce
multiplicities for the associations. In all cases, associations
are directed.

Together did not extract any associations when applied
to the “*.class” files of Mathaino. When applied to the
“*.java” files, it extracted 16 associations. These associa-
tions are directional but do not specify any roles, neither
do they specify multiplicities.

Neither tool generated any aggregation or composition
relationships.

Handling of Java Collection Classes Rose and Together
handle container classes similarly. The container types of
attributes used in the Mathaino core package (namely, Vec-
tors) were not represented differently from any other at-
tribute types; they are written (as strings) in the variable
compartment of the class. That is, if a class has a variable,
say v, the type of which is Vector, the variable compartment
contains a string v : java.util.Vector.

4.2 Fujaba
At the time of the writing, reverse engineering the Math-
aino package with FUJABA does not (yet) produce so-
phisticated results. Especially, FUJABA is not yet able
to reasonably deal with the to-many associations in Math-
aino. According to the round-trip engineering approach,
FUJABA assumes that all attributes are encapsulated with
certain access methods where the method names contain
the attribute name. The Mathaino system does not em-
ploy such access methods. Instead, the private container
attributes are used directly within various logical methods.
Due to the lack of explicit access methods, the analysis of
container/Vector entry types is not even triggered. Instead,
uni-directional to-one associations to the class Vector are
created. Similarly, FUJABA is not yet able to merge any
pair of uni-directional associations to one bi-directional as-
sociation. In FUJABA, this merge relies on the existence
of explicit access methods that call each other, mutually.
Without explicit access methods, this feature is not even
triggered.

Generally, FUJABA provides a very flexible reverse-
engineering mechanism, that e.g. allows the user to de-
fine application specific patterns for the detection of cer-
tain higher level design pattern elements. Unfortunately,
this does not yet apply for basic reverse-engineering fea-
tures like association detection. Due to this case study, this
will be fixed in the near future.

Classes FUJABA is able to identify the top-level classes
and all explicit, named inner classes. However, FUJABA
ignores anonymous inner classes since it does not use this

construct in forward engineering and thus it does not ex-
pect it in reverse engineering. However, this information is
provided by our parser and the FUJABA team is currently
discussing, whether such anonymous inner classes should
be contained in the class diagram. In addition to the Math-
aino classes, FUJABA shows all non-primitive classes that
are used as attribute types as the target of to-one associa-
tions. Classes used as parameter or return types or for local
variables are shown optionally.

Handling of Interfaces Interface classes are shown as
usual classes with the stereotype �Interface�. Classes
implementing the interface inherit from it. Interface usage
is not depicted, although usage information is provided by
the FUJABA parser. An optional incorporation of uses re-
lationships is current work.

Role Names Role names are derived from the identifiers
of non-primitive attributes and are shown at the target as-
sociation end of directed associations. When merging di-
rected associations, both role names are taken, resulting in
an undirected association with role names at both ends.

Handling of Java Collection Classes FUJABA uses an
adaptable list of pre-defined container classes. Attributes
of this type are automatically examined for their entry type
by looking for usages of their add methods. On success
such container attributes are turned into to-many associa-
tions. However, due to performance reasons, currently this
mechanism is triggered through a name-based identifica-
tion of encapsulating access methods. This heuristic did
not work for the Mathaino system.

Merging Inverse Associations The merging of pairs of
inverse associations is (again) based on the identification
of access methods that call each other mutually. While this
works great in round-trip engineering, this did not work for
the Mathaino system. The FUJABA team currently consid-
ers additional heuristics.

Aggregation and Composition In FUJABA, aggrega-
tion and composition is reflected in certain “isolateYour-
selfAndBecomeGarbageCollected” methods, that are for-
warded to contained elements in case of a composition re-
lationship. The Mathaino system does not contain such
methods.

Multiplicities Due to conceptual considerations, FU-
JABA does not support lower multiplicity bounds, neither
for to-one nor for to-many associations, neither on forward
nor on reverse engineering. Thus, non-primitive attributes
are shown using a 0..1 multiplicity and container attributes
with identified entry types are shown using a 0..n multi-
plicity.

5

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Inner Classes Named inner classes are shown as usual
classes in the class diagram. If applicable, the optionally
shown package name contains the surrounding class and or
method name. So far, anonymous inner classes are ignored.

Class Compartment Details All standard UML class
compartment details like (class name, attributes and meth-
ods) are supported at implementation detail level. For at-
tributes, visibility, identifier, type and an optional multi-
plicity for arrays are shown. Method signatures include
identifiers and types of parameters. Since this easily over-
crowds the class diagram, the attribute and the method
compartment may be collapsed by default if they exceed
a certain size. The next version of FUJABA will provide
scrollers for large attribute or method departments.

4.3 Idea
When reverse engineering the Mathaino core package with
IDEA, several transformation steps have been applied to
the basic implementation level UML model to recognize
the examined model properties. Descriptions of these steps
are included in the following sections about the analysis re-
sults. Since some characteristics of the UML model change
during the transformation steps, the pre-defined metrics
suite was calculated anew after each step.

Metric Calculations For calculation of the NOC metric,
both the number of classes from the mathaino core package
as well as the total number of classes related to it (e.g. by
UML associations) have been counted. Inner classes have
been taken into account in addition to plain classes, if they
were defined uniquely with a separate name. Classes from
external packages were considered, if a relationship (or ref-
erence from method bodies) to the Mathaino core package
existed.

In total, 42 classes have been discovered. This number
is composed of 39 plain classes and three named (unique)
inner classes (in total, 45 inner classes have been found, but
anonymous inner classes were not considered here). Addi-
tionally, 35 external classes have been found, resulting in
a total of 77 classes (not counting the anonymous inner
classes).

The initial number of associations was 56. As expected,
this number was reduced after each transformation step.
During container resolution, two associations were dis-
carded, because the respective contained classes were of
type String, which is handled like a primitive type and is
not shown as an individual class (cf. section 4.3; NOA
after container resolution was 54). Finally, seven associa-
tion pairs have been merged to bidirectional associations,
resulting in a final NOA of 47.

Handling of Interfaces For interfaces, the default UML
metamodel representation as subclasses of Classifier is
used. This means that they appear in the resulting class
diagrams as separate interface rectangles. The number of
interfaces is independent from the number of classes and
no subset of the latter. Four interfaces have been found in
the core package and another six external interfaces have
been in use, summing up to a total of 10.

Role Names Role names are derived from the identifiers
of non-primitive attributes and are shown at the target asso-
ciation end of directed associations. In the special case of
an association depicting the relationship of an inner class
to its defining class, the keyword ’this’ is used at role name
at the association end of the defining class. When merging
directed associations, both role names are taken, resulting
in an undirected association with role names at both ends.

Handling of Java Collection Classes At implementa-
tion level, containers are shown as individual classes. To
reveal the true relationships between a source object and
the objects stored in a container, a resolution process is
employed that analyzes the source code for accesses to the
interface of container objects [6].

While examining the Mathaino core package, 16 con-
tainer type attributes have been found, all of which were
Vectors. 15 of these could be resolved. Two could not be
represented graphically because the type of the contained
objects was String, which is not represented in the diagram
as an individual class but handled as a primitive attribute.
These were rendered using the textual UML attribute no-
tation with a multiplicity attached. Finally, one container
attribute could not be resolved at all, because the source
code of its containing class did not contain any invocations
of the container attribute’s store operation. Since IDEA
examines the source code for invocations of the collection
classes’ interface to determine the contained type, this one
was not resolvable. Because of the single remaining asso-
ciation, the container class Vector was kept in the diagram.

For the graphical representation of the resolved contain-
ers, the UML qualifier notation has been employed [6],
which shows a qualified attribute (the vector index) at the
association source end and a 0..1 multiplicity at the target
end, denoting that the number of contained elements is fi-
nite. Experience with this UML notation has shown that
it is not always suitable in large diagrams. The problem is
that the notation consists of two parts (one at each associ-
ation end), but that it is not always possible to view both
ends at the same time. Having only the multiplicity end
without the qualifier tends to be confusing, since only the
source end, but not the target end gives a hint on the qual-
ifier of the association. We have circumvented this UML-
specific problem by extending the qualifier notation by a

6

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

tagged value fqualifiedg at the target association end.

Merging Inverse Associations We discovered seven
pairs of potentially inverse associations [6]. All of them
were unique, that is, no ambiguities with other associations
were encountered during the merging process. Therefore,
we decided to merge all of them. Three different kinds of
inverses have been found:

� Between independent classes. In this case, predefined
pairs of role names or known relations from the design
can be taken as hints for merging. When these are not
available, it is only possible to analyze the role names
and rule out ambiguities.

� Between class and contained class (i.e. a class whose
objects are stored in a container attribute of the source
class). These are considered related because of the to-
many association between source and targets.

� Between class and inner class. These were considered
inherently associated because of the tight relation be-
tween inner class and defining class (cf. section 4.3).

To recognize the second group of inverses, the sequence
of model abstraction steps is crucial, as they can only be
discovered after resolution of container classes.

Aggregation and Composition According to the UML
specification documents [13] [12], aggregation is an infor-
mal feature that is not characterizable in a precise way, as
would be required to recognize it from the source code.
Different than composition, aggregation has a rather im-
precise definition, which describes a whole-part relation-
ship between source and target classes. The best way to
recover this relation from existing programs is sufficient
knowledge of the software architecture. Since we did not
have a person locally available knowing the system in de-
tail, we decided to use aggregation only in one rather clear
case, namely where a role name (at the association be-
tween classes MathainoDesktopHandler and Mathain-
oMainFrame) contained the keyword “owner” and thus
suggested an aggregation relationship.

In the UML, composition defines constraints about the
instances of classes, not about classes themselves. There-
fore, correct recognition of composition requires dynamic
analysis techniques, which are not yet supported by IDEA.
However, this is subject to future work.

Multiplicities The following multiplicity values and
ranges are discovered by the IDEA tool:

� ’0..1’ The target element is initialized somewhere in
the source code (at an unknown position). It cannot
be determined statically, whether an initialization will
actually happen at runtime.

� ’1’ The target element is definitely initiated at object
creation time, i.e. either in the constructor or the class
initialization block.

� ’*’ The star multiplicity represents a container class,
e.g., a Set or a Collection. When using the qualifier
notation for Lists, Vectors or arrays, the multiplicity
’0..1’ is used together with a qualifier. The meaning
of this is that every index is assigned zero or exactly
one element (the list is finite).

Of these multiplicities, all but ’*’ have been encoun-
tered in the Mathaino core package. The star multiplicity
was not used, because the only container type employed
was Vector, which is represented using the aforementioned
qualifier notation.

Inner Classes IDEA recognizes non-anonymous inner
classes by parsing the byte code. These are represented
like conventional classes, using the Java naming conven-
tion for inner class names (as UML does not include this
concept). Since an association to an inner class is implic-
itly bidirectional (based on the way inner classes are re-
alized in Java), this construct can be considered the pure
form of an inverse association. For each inner class, an as-
sociation to its defining class is shown with the role name
’this’, to indicate accessibility of the defining class from
within the inner class.

Class Compartment Details All standard UML class
compartment details like (class name, attributes and meth-
ods) are supported at implementation detail level. For at-
tributes, visibility, identifier, type and an optional multi-
plicity for arrays are shown.

Resolution of method signatures includes identifiers
of parameters, which facilitates understanding of internal
structural relations and metrics analyzes [8]. Thus, the
complete design and implementation level signature infor-
mation is available in the class diagram.

5 Comparative Results Evaluation
and Analysis

Precisely understanding the differences between the UML
models reverse engneering by the CASE tools employed in
this case study is a challenge. The examined tools, and to
our knowledge CASE tools in general, fall short on sup-
porting the comparison of different UML models against
each other. Some CASE tools offer profiling utilities for
measuring a predefined set of metrics, but they differ sig-
nificantly from each other, making it difficult to compare
the results in a uniform manner. Furthermore, none of the
tools is able to deduce the semantically equivalent elements

7

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

between individual UML models and compare their inter-
nal states.

In addition to inspecting the produced UML models and
comparing the results by hand, we also exported them into
TED [4], a proprietary UML CASE tool developed by the
Nokia Research Center, by using an XMI bridge. The re-
sults were compared using a set of UML model operations
on a research prototype, the BMO (Basic Model Opera-
tions) toolkit [9]. A UML model operation produces a new
UML diagram on the basis of existing ones. Set operations
comprise one fundamental category of model operations.
They apply set theoretical operations (i.e. union, difference
or intersection) for two diagrams of the same type, and are
typically functions with signature D x D �! D, D denot-
ing a UML diagram type. These set operations, together
with a few customized scripts, were used for automatically
comparing the UML models under a common workbench.

5.1 Automatic Model Comparison Using
TED

In this particular case study, the BMO toolkit was used to
compare the three models produced by Rational Rose, To-
gether, and IDEA. The models were first analyzed using
a predefined metrics calculation schema, and subsequently
set operations were performed on the models in order to
find the possible interesting commonalities and differences
between them. Even with a relatively small system as
Mathaino, it becomes evident that manual comparison of
the models is tedious at best, especially for larger scale
studies.

Only the IDEA model (as it was saved in XMI) con-
formed to the manually calculated metrics. Both Rose and
Together models contained model elements external to the
core package inspected. Together omits the package struc-
ture, placing every model element under a common pack-
age thus making it impossible to restrict the data only to
that of the Mathaino core. For example, there were 121
classes, 43 associations, and 12 interfaces in the Together
model. Rose generates model elements other than those
covered in this case study, namely stereotypes, comments,
components (reflecting the Java package structure) etc.

The differences in metrics from different tools also
point out the weaknesses of XMI and especially the dif-
ferent XMI export implementations of the tools. There-
fore more interesting than single model metrics are the dif-
ferences and properties that can be instantly spotted. The
BMO tool tries to draw the attention of the user on the po-
tentially interesting properties and evident differences.

Table 2 shows the number of counterpart classes, inter-
faces, operations, attributes, associations, and generaliza-
tions found between different models by BMO. The coun-
terpart elements are decided with a set of heuristic rules

Rose Rose Together
Together IDEA IDEA

Class 50 41 39
Interface 2 2 4

Operation 538 302 448
Attribute 437 212 341

Association 9 16 12
Generalization 6 4 12

Table 2: Common elements found by the CASE tools

based on naming conventions, relationships, and element
environment. A name-based recognition technique works
especially well with models produced by a revenge engi-
neering process due to its requirements on unique identifier
naming imposed by a programming language.

After a counterpart relationship has been generated,
BMO allows the results of the operations to be visualized
in TED. Since the different CASE-tools excel in different
areas of reverse engineering, union operation can be used
for combining these models into a more complete repre-
sentation of the original system. Difference operation can
be used for exploring the model features generated by only
one of the CASE-tools, and intersection shows the minimal
submodel that both the CASE-tools agree on.

The most useful operation in the context of this case
study is the symmetric difference, which can be used to vi-
sually differentiate between the interpretations of different
CASE tools. Symmetric difference shows the parts gener-
ated only by one tools but not by the other. The differences
typically result from different capabilities and interpreta-
tions of the tools.

Figure 1 shows a portion of a TED class diagram de-
scribing the symmetric difference of IDEA and Rose mod-
els, centered on the MathainoMainFrame class. TED is
not able to use visual cues such as colors for differentiating
the sources of different model elements, but with the help
of the textual description produced by BMO, the origin of
the elements can be deduced.

It is immediately evident from the picture how Rose is
able to generate the (unnamed) inner classes, but IDEA
generates multiplicities, association end role names and
a composition relationship. The parallel associations be-
tween MathainoMainFrame and MathainoDesktopHandler
classes, the upper generated by Rose and the lower by
IDEA, show the different capabilities of the tools, and also
reveal the potential problems when combining the results.
The techniques described here help to pinpoint the poten-
tially interesting differences between the models, and in
the context of this case study, the capabilities of the tools

8

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

Figure 1: Comparison of the models generated by Rose
and IDEA.

themselves.

5.2 Results Analysis
We compared the results of the examined tools in two dif-
ferent categories: basic and advanced concepts. Basic con-
cepts refer to the UML core elements like classes and asso-
ciations, and demands that the results are a valid represen-
tation of the underlying software module (i.e. no central el-
ements have been omitted or represented imprecisely). The
second category evaluates the tools’ capability to generate
a more abstract representation rather than a plain imple-
mentation level view. This includes strategies for design
recovery and recognition of facts that are not immediately
visible from the source code.

Basic concepts All of the examined tools succeeded in
recognizing the basic UML features like classes, interfaces
and associations. Only in one case Together failed to rec-
ognize a part of the plain associations. At this level, the
results could be compared easily using metrics like NOC
and NOA. The numbers were generally identical for all
tools and the occurring differences could be explained by
the different approaches or ways to count. For example,
anonymous inner classes and package-external classes are
handled differently by each tool. Similar differences ex-
isted for associations. Concluding, the creation of a cor-
rect implementation-view representation could be handled
by all four tools.

Advanced concepts In the second, advanced compari-
son, it could be seen that the reverse engineering capabil-
ities of the industrial tools do not go far beyond the basic
UML features. More abstract representations and recog-
nition of advanced features are clearly the domain of the

research tools: these managed to recognize all of the fea-
tures from the property suite either completely or at least
to a certain degree, while the industrial tools did not ad-
dress several of them at all (for example, multiplicities, in-
verse associations and container resolution have not been
addressed by the industrial tools).

This leaves the impression that understanding and appli-
cation of the UML in reverse engineering is still at a rather
low level in industry. Our observation is underpinned by
the fact that when comparing different tool versions from
the previous two years, no major advancements could be
found for the reverse engineering modules of the industrial
tools.

The advanced concepts are semantically more challeng-
ing to be inferred than the basic concepts. This means that
they provide better support for the user in understanding
the software: by application of the complex UML features,
a broader syntax is available to the analyst. This allows
more detailed information to be added to the class dia-
grams than is possible in the basic reverse engineering. On
the other hand, it means that interpretations are needed.
Therefore, the generation of the advanced concepts should
be subjected to user acceptance. In a desirable case, the
user involvement is supported either by allowing the user
to configure the interpretations or by a providing facilities
for incremental generation of different concepts (as done,
e.g., in IDEA).

In this study we compared the reverse engineering fa-
cilities of four tools. To estimate the quality of the dia-
grams more objectively, they should also be compared with
a “correct class diagram”, which could be a design model
or a model manually constructed by the experts of the sub-
ject system. This study nonetheless shows that there are
significant differences among the tools and suggests that
UML has not been used in its full potential in reverse engi-
neering so far. This is somewhat surprising, since UML is
de facto industrial standard for the presentation of various
design artifacts in object-oriented software development.
Using UML also in reverse engineering is therefore desir-
able; the familiar notation is easy to understand and using
the same notation as used in software development opens
possiblities for round-trip engineering.

6 Related Work
Various empirical studies on comparisons of reverse engi-
neering, program comprehension, and information extract-
ing tools have been presented [2, 10, 1, 16].

Bellay and Gall presented a study in which they com-
pared four reverse engineering tools by applying them to
a commercial embedded software system, written in C [2].
They aimed at pointing out the differences in capabilities
and identifying their strengths and weaknesses, especially

9

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

considering their usability, extensibility, and applicability
for analyzing embedded software systems. The tools used
in the study vary significantly in terms of notations used.
In fact, some of the tools did not have any graphical rep-
resentation on the information extracted. Similar studies
have been reported by Storey in [17]. In our case study,
in turn, the models used are standard, namely, UML. We
focused on the interpretations between the source code and
the class diagram models, rather than tried to draw conclu-
sions on the overall capabilities of the tools. The tools in
our study are mostly used for software development. The
reverse engineering facilities are provided mainly to sup-
port round-trip engineering. This is natural, since reverse
engineering techniques are and should be used as a part of
the software development process as well. Therefore, our
study aims at supporting the tool users to understand the
interpretations and limitations not only when an unknown
software system is analyzed, but also when a familiar OO
system is developed.

Armstrong and Trudeau compared traditional reverse
engineering tools in their capability and applicability in ar-
chitecture recovery [1]. They considered information ex-
traction, classification, and visualization. Armstrong and
Trudeau found differences in the capabilities of the tools in
extracting information, namely, in parsing C code. This is
in line with the study by Murphy et al. [10], in which three
source code parsers were compared with respect to their
capabilities in call graph extraction. The classification fa-
cilities in the tools are implemented to support construction
of high-level models and at analyzing the constructed mod-
els in general. This is understood to be a manual or semi-
automated process in reverse engineering. The classifica-
tion, as well as the visualization, was supported differently
in the tools analyzed. Generating a class diagram for an
OO subject system can be seen to contain all these three as-
pects: the results of parsing are visualized as a model more
abstract than the information captured in the source code.
It is worth noticing that this process is carried out automati-
cally in the tools used in this case study. Since the mapping
between the code and the class diagram is not straightfor-
ward, hard-wired interpretations have been implemented in
the algorithms used. On the other hand, the class diagram
itself still describes information at a rather low level of
abstraction, decreasing the severity of the interpretations.
Also, since in round-trip engineering the code is often gen-
erated automatically, the same interpretations used for that
can also be used when generating class diagrams from the
code.

7 Summary and Conclusion
Reverse engineering of UML models for the subject object-
oriented software system can be carried out roughly ac-

cording two principles: (1) pulling out as much informa-
tion as possible from the subject system and modeling it
somehow using UML models or (2) aiming at design level
models that are populated with the source code informa-
tion whenever it is convenient. To some extent, the for-
mer resembles the traditional bottom-up reverse engineer-
ing, while the latter has a top-down flavor.

Our motivation in this case study was to find out to what
extent the UML is used or applicable in tool-supported re-
verse engineering. We compared four tools from both in-
dustry and research in terms of their reverse engineering
capabilities. We carried out both manual and automated
comparisons. The manual comparison is needed to under-
stand the interpretations and mappings used to generate a
class diagram. With automatic comparison, in turn, met-
rics data as well as differences and similarities between
models can be quickly and easily found out. Using a stan-
dardized notation such as UML for the representation of
software models makes it possible to successfully exploit
model manipulation operations, such as set operations, for
model analysis and comparison also with reverse engi-
neered models. It is very difficult, if not impossible, to
build such a workbench for empirical evaluations of tradi-
tional reverse engineering tools because of the notational
differences. Even though in this study we focused on class
diagrams, similar model operations can be built, e.g., for
high-level component diagrams. The bottleneck in this ap-
proach is the exchange format: even though XMI 1.1 has
its severe limitations, it is currently the only common ex-
change format supported by the UML-based CASE-tool
vendors.

Our examination shows that although all tools provide
a reliable reverse engineering functionality, only the re-
search prototypes provided algorithms for advanced anal-
yses. The focus in the reverse engineering facilities of the
industrial tools, in turn, seem to be on the UML core fea-
tures. Despite of the constantly ongoing development, the
advanced reverse engineering strategies have not been con-
sidered in these tools.

Concerning the industrial tools, one crucial problem is
the maturity of UML support in general. They do not sup-
port the UML notation in its entirety. For example, To-
gether has only limited support for association classes and
qualifiers, and both Rose and Together do not support n-
ary associations. Although Together is easily extensible
via its OpenAPI and Rose via its Rose Extensibility Inter-
face (REI), the underlying data model contains lots of sim-
plifications that make it hard (and sometimes impossible)
to reflect the full richness of the UML metamodel.

10

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

References
[1] M. Armstrong and C. Trudeau. Evaluating Architec-

tural Extractors. In 5th Working Conference on Re-
verse Engineering, pages 30–39. Hawaii, USA, 1998.

[2] B. Bellay and H. Gall. A comparison of four reverse
engineering tools. In 4th Working Conference on
Reverse Engineering, pages 2–11. The Netherlands,
1997.

[3] Mohammad El-Ramly, Paul Iglinski, Eleni Strou-
lia, Paul Sorenson, and B. Matichuk. Modeling
the System-User Dialog Using Interaction Traces.
In Peter Aiken and Elizabeth Burd, editors, Proc.
8th Working Conference on Reverse Engineering
(WCRE), pages 208–217. IEEE, Los Alamitos, 2001.

[4] Wikman Johan. Evolution of a distributed repository-
based architecture. Technical report, Department of
Software Engineering and Computer Science, Re-
search Report 1998:14, Blekinge Institute of Tech-
nology, Sweden, 1998. Electronic Proceedings of
the First Nordic Software Architecture Workshop
NOSA’98.

[5] Rohit V. Kapoor and Eleni Stroulia. Mathaino:
Simultaneous Legacy Interface Migration to Multi-
ple Platforms. In 9th International Conference on
Human-Computer Interaction, pages (vol. 1)51–55.
Lawrence Erlbaum Associates, 5-10 August 2001,
New Orleans, LA, USA, 2001.

[6] Ralf Kollmann and Martin Gogolla. Application of
UML Associations and Their Adornments in Design
Recovery. In Peter Aiken and Elizabeth Burd, edi-
tors, Proc. 8th Working Conference on Reverse Engi-
neering (WCRE), pages 81–90. IEEE, Los Alamitos,
2001.

[7] Ralf Kollmann and Martin Gogolla. Capturing Dy-
namic Program Behaviour with UML Collaboration
Diagrams. In Pedro Sousa and Jürgen Ebert, editors,
Proc. 5th European Conference on Software Mainte-
nance and Reengineering, pages 58–67. IEEE, Los
Alamitos, 2001.

[8] Ralf Kollmann and Martin Gogolla. Metric-Based
Selective Representation of UML Diagrams. In Ti-
bor Gyimóthy and Fernando Brito e Abreu, editors,
6th European Conference on Software Maintenance
and Reengineering. IEEE, Los Alamitos, 2002. Best
Paper Award.

[9] J. Koskinen, J. Peltonen, P. Selonen, T. Systä, and
K. Koskimies. Towards Tool Assisted UML Develop-
ment Environments. In 7th Symposium on Program-
ming Language and Software Tools, 2001.

[10] G. Murphy, D. Notkin, W. Griswold, and E. Lan. An
empirical study of static call graph extractors. ACM
Trans. Softw. Eng. Methodol., 7(2):158–191, 1998.

[11] OMG, editor. OMG Unified Modeling Language
Specification, Version 1.3, June 1999. Object Man-
agement Group, Inc., Framingham, Mass., Internet:
http://www.omg.org, 1999.

[12] OMG. UML Notation Guide. In OMG Unified Mod-
eling Language Specification, Version 1.3, June 1999
[11], chapter 3.

[13] OMG. UML Semantics. In OMG Unified Modeling
Language Specification, Version 1.3, June 1999 [11],
chapter 2.

[14] OMG. UML Model Interchange. In OMG, edi-
tor, OMG Unified Modeling Language Specification,
Version 1.4, February 2001, chapter 3. Object Man-
agement Group, Inc., Framingham, Mass., Internet:
http://www.omg.org, 2001.

[15] Rational Software Corporation. Rose Enterprise Edi-
tion, 2002. http://www.rational.com.

[16] Susan Sim, Margaret-Anne Storey, and Andreas Win-
ter. A Structured Demonstration of Five Program
Comprehension Tools: Lessons Learnt. In 7th Work-
ing Conference on Reverse Engineering, pages 210–
212. Brisbane, Queensland, Australia, 2000.

[17] Margaret-Anne Storey. A cognitive framework for
describing and evaluating software exploration tools.
Technical report, Simon Fraser University, 1998.
PhD Thesis.

[18] Eleni Stroulia and Rohit V. Kapoor. Reverse Engi-
neering Interaction Plans for Legacy Interface Mi-
gration. In 4th International Conference on Com-
puter Aided Design of User Interfaces, pages 295–
310. Kluwer Academic, May 14-17, 2002, Valenci-
ennes France, 2002.

[19] TogetherSoft Corporation. Together 5, 2001. http:
//www.togethersoft.com.

[20] University of Paderborn. Fujaba, 2002. http://
www.fujaba.de.

11

Proceedings of the Ninth Working Conference on Reverse Engineering (WCRE�02)
1095-1350/02 $17.00 © 2002 IEEE

