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Abstract  This article uses the mathematical software Maple for the auxiliary tool to study the differential problem 
of two types of trigonometric functions. We can obtain the Fourier series expansions of any order derivatives of 
these two types of functions by using binomial theorem and differentiation term by term theorem, and hence greatly 
reduce the difficulty of calculating their higher order derivative values. On the other hand, we propose two examples 
to do calculation practically. The research methods adopted in this study involved finding solutions through manual 
calculations and verifying these solutions by using Maple. 
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1. Introduction 
As information technology advances, whether 

computers can become comparable with human brains to 
perform abstract tasks, such as abstract art similar to the 
paintings of Picasso and musical compositions similar to 
those of Beethoven, is a natural question. Currently, this 
appears unattainable. In addition, whether computers can 
solve abstract and difficult mathematical problems and 
develop abstract mathematical theories such as those of 
mathematicians also appears unfeasible. Nevertheless, in 
seeking for alternatives, we can study what assistance 
mathematical software can provide. This study introduces 
how to conduct mathematical research using the 
mathematical software Maple. The main reasons of using 
Maple in this study are its simple instructions and ease of 
use, which enable beginners to learn the operating 
techniques in a short period. By employing the powerful 
computing capabilities of Maple, difficult problems can be 
easily solved. Even when Maple cannot determine the 
solution, problem-solving hints can be identified and 
inferred from the approximate values calculated and 
solutions to similar problems, as determined by Maple. 
For this reason, Maple can provide insights into scientific 
research. Inquiring through an online support system 
provided by Maple or browsing the Maple website 
(www.maplesoft.com) can facilitate further understanding 
of Maple and might provide unexpected insights. For the 
instructions and operations of Maple, [1-7] can be adopted 
as references. 

In calculus and engineering mathematics curricula, 

evaluating the n  -th order derivative value ( ) ( )nf c  of a 
function ( )f x  at x c= , in general, needs to go through 
two procedures: firstly determining the n  -th order 

derivative ( ) ( )nf x  of ( )f x , and then taking x c=  into 
( ) ( )nf x . These two procedures will make us be faced 

with increasingly complex calculations when calculating 
higher order derivative values of this function (i.e. n  is 
large), and hence to obtain the answers by manual 
calculations is not easy. In this paper, we mainly study the 
differential problem of the following two types of 
trigonometric functions 

 ( ) exp[ cos( )]f x ax b= +λ  (1) 

 ( ) exp[ sin( )]g x ax b= +λ  (2) 

where , ,a bλ  are real numbers. We can obtain the Fourier 
series expansions of any order derivatives of these two 
types of trigonometric functions by using binomial 
theorem and differentiation term by term theorem; these 
are the major results of this study (i.e., Theorems 1 and 2), 
and hence greatly reduce the difficulty of calculating their 
higher order derivative values. For the study of related 
differential problems can refer to [8-24]. In addition, we 
provide two examples to do calculation practically. The 
research methods adopted in this study involved finding 
solutions through manual calculations and verifying these 
solutions by using Maple. This type of research method 
not only allows the discovery of calculation errors, but 
also helps modify the original directions of thinking from 
manual and Maple calculations. Therefore, Maple 
provides insights and guidance regarding problem-solving 
methods. 

2. Main Results 
Firstly, we introduce a notation and two formulas used 

in this study. 
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2.1. Notation 
Suppose ,m k  are non-negative integers, m k≤ . Define 

( ) ( 1) ( 1)
!

k
m

k k k m
m

− ⋅⋅⋅ − +
=  and ( )0 1k = . 

2.2. Euler’s Formula 

cos siniye y i y= + , where 1i + − , y  is any real number. 

2.3. Taylor Series Expansion of Exponential 
Function 

0

1
!

y k

k
e y

k

∞

=
= ∑ , where y  is any real number. 

The followings are two important theorems used in this 
paper, we can refer to [25,26] respectively. 

2.4. Binomial Theorem 
Suppose ,x y  are complex numbers, and k  is any non-

negative integer. Then 

 ( )
0

( )
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+ = ∑  

2.5. Differentiation Term by Term Theorem 
For all non-negative integers k , if the functions 
: ( , )kg a b R→  satisfy the following three conditions： (i) 

there exists a point 0 ( , )x a b∈  such that 0
0

( )k
k

g x
∞

=
∑  is 

convergent, (ii) all functions ( )kg x  are differentiable on 

open interval ( , )a b , (iii) 
0

( )k
k

d g x
dx

∞

=
∑  is uniformly 

convergent on ( , )a b . Then 
0

( )k
k

g x
∞

=
∑  is uniformly 

convergent and differentiable on ( , )a b . Moreover, its 

derivative 
0 0

( ) ( )k k
k k

d dg x g x
dx dx

∞ ∞

= =
=∑ ∑ . 

Before deriving the first major result of this study, we 
need a lemma. 

2.6. Lemma 1 

Suppose ,a b  y are real numbers, and k  is any non-
negative integer. Then the trigonometric function 

 ( )
0

1cos ( ) cos[( 2 )( )]
2
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for all x R∈ . 
Proof 
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Next, we determine the Fourier series expansions of 
any order derivatives of the trigonometric function (1). 

2.7. Theorem 1 
Suppose , ,a bλ  are real numbers, and n  is any positive 

integer. Let the domain of the trigonometric function 

 ( ) exp[ cos( )]f x ax b= +λ  

be ( , )−∞ ∞ . Then the n  -th order derivative of ( )f x , 
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for all x R∈ . 
Proof Because 
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 (5) 

By differentiation term by term theorem, differentiating 
n  -times with respect to x  on both sides of (5), we obtain 
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for all x R∈ . 
To prove the second major result of this study, we also 

need a lemma. 

2.8. Lemma 2 
Let the assumptions be the same as Lemma 1, then 
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22
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for all x R∈ . 
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Proof 
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Finally, we find the Fourier series expansions of any 
order derivatives of the trigonometric function (2). 

2.9. Theorem 2 
If the assumptions are the same as Theorem 1. Let the 

domain of the trigonometric function 

 ( ) exp[ sin( )]g x ax b= +λ  

be ( , )−∞ ∞ . Then the n  -th order derivative of ( )g x ,  
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Also, using differentiation term by term theorem, 
differentiating n  -times with respect to x  on both sides of 
(8), we have 
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for all x R∈ . 

3. Examples 
In the following, for the differential problem of the two 

types of trigonometric functions in this study, we provide 
two examples and use Theorems 1, 2 to determine the 
Fourier series expansions of any order derivatives of these 
functions and evaluate some of their higher order 
derivative values. On the other hand, we employ Maple to 
calculate the approximations of these higher order 

derivative values and their solutions for verifying our 
answers. 

3.1. Example 1 
Suppose the domain of the trigonometric function 

 ( ) exp 3cos 2
4

f x x  = −    

π  (9) 

is ( , )−∞ ∞ . By Theorem 1, we obtain any n  -th order 
derivative of ( )f x , 
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for all x R∈ . 
Therefore, the 13 -th order derivative value of ( )f x  at 

5
4

x = π , 
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Next, we use Maple to verify the correctness of (11). 
>f:=x->exp(3*cos(2*x-Pi/4)); 
>evalf((D@@13)(f)(5*Pi/4),22); 

 122.987948637552443836942 10⋅  
>evalf(-2^13*sum(3^k/(2^k*k!)*sum(k!/(m!*(k-m)!)*(k-
2*m)^13*sin((k-2*m)*Pi/4),m=0..k),k=0..infinity),22); 

 
12

23

2.987948637552443835338 10

8.003065905698558809678 10 I−

⋅

− ⋅
 

The above answer obtained by Maple appears I 
( 1= − ), it is because Maple calculates by using special 
functions built in. The imaginary part is very small, so can 
be ignored. 

3.2. Remark 1 
In Example 1, the first two derivatives of ( )f x  are 

 ( ) 6sin 2 exp 3cos 2
4 4

f x x x    ′ = − − −        

π π  (12) 

 2
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4 4

exp 3cos 2
4
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x x

x

′′

    = − − −        
  −    

π π

π

 (13) 

If we continue to differentiate ( )f x , we will be faced 
with a complex calculation. Thus, Theorem 1 gives us a 
convenient method to evaluate the derivatives of ( )f x , 
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and hence reduces the difficulty of calculating the higher 
order derivative values of ( )f x . 

3.3. Example 2  
If the domain of the trigonometric function 

 4( ) exp 5sin 7
3

g x x  = +    

π  (14) 

is ( , )−∞ ∞ . Using Theorem 2, we can evaluate any n  -th 
order derivative of ( )g x , 
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for all x R∈ . 
Thus, the 10 -th order derivative value of )(xg  at 
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>g:=x->exp(5*sin(7*x+4*Pi/3)); 
>evalf((D@@10)(g)(-Pi/6),28); 

157.01874895030640738741323 10⋅  
>evalf(-7^10*sum(5^k/(2^k*k!)*sum(k!/(m!*(k-m)!)*(k-
2*m)^10*cos((k-2*m)*Pi/3),m=0..k),k=0..infinity),28); 

15

8
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⋅
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The imaginary part of the above answer obtained by 
Maple is very small, so can be ignored. 

3.4. Remark 2 
In Example 2, the first two derivatives of ( )g x  are 

 4 4( ) 35cos 7 exp 5sin 7
3 3

g x x x    ′ = + +        

π π (17) 
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Also, if we continue to differentiate ( )g x , the 
calculation will be complicated. Therefore, Theorem 2 
provide a good method to find any derivatives of ( )g x , 
and reduces the difficulty of calculating its higher order 
derivative values. 

4. Conclusion 

In this study, we provide a new technique to evaluate 
any order derivatives of some trigonometric functions. We 
hope this technique can be applied to solve another 
differential problems. On the other hand, the binomial 
theorem and the differentiation term by term theorem play 
significant roles in the theoretical inferences of this study. 
In fact, the applications of these two theorems are 
extensive, and can be used to easily solve many difficult 
problems; we endeavor to conduct further studies on 
related applications. In addition, Maple also plays a vital 
assistive role in problem-solving. In the future, we will 
extend the research topic to other calculus and engineering 
mathematics problems and solve these problems by using 
Maple. These results will be used as teaching materials for 
Maple on education and research to enhance the 
connotations of calculus and engineering mathematics. 
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