A STUDY ON THE FORCED VIBRATION
OF A TIMOSHENKO BEAM

Bucur Zainea

SUMMARY

By using Galerkin's variational method we build up an approximate solution
for a system of two differential equations with linear partial derivatives of
the second order. This system of differential equations corresponds to the
physical model, known in the literature as the Timoshenko Beam. The results
obtained can be finally applied to two particular cases representing respectively:
the case of a beam with a rectangular section, with a constant height and a basis
with a linear variation:

the case of a beam with a constant basis and a height with cubic variation.
INTRODUCTION

We are taking into consideration a heterogenous elastic straight beam pos-
sessing variable geometrical and mechanical characteristics all along the beam.
We are considering the small, cross—cut non-damping forced oscillations.
The mathematical model chosen to be subjected to analysis consists in a system
of two linear equations with partial derivatives of second order, correéponding,
to the physical model known in the literature under the name of Timoshenko Beam.
This model is more exaét than the classical one usually employed in the engineer-
ing calculations, that is the Euler-Bernoulli model.. The difference between them
consists in the fact that while for the Euler-Bernoulli model only the deforma-

tions given by the bending moment or by the translation inertia are taken into
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account, in the Timoshenko model the transverse shear and the rotational inertia
are also taken into consideration. As a result the Timoshenko model reflects
more exactly the physical reality. It is well-known that (ref. 1) the differ-
ences between the two theories become significant in the case of (relati;ely)
short beams and this cannot be neglected any longer.

Although the literature referring to the dynamics of the Timoshenko Beam
is abundant enough, the matter of the non-damping beam has been insufficiently
treated.

In the present paper we try to determine the approximate solutions of the
phenomenon by means of the Galerkin variational method. We are of the opinion
that the above mentioned method is most suitable in solving the subject consid-
ered. The choosing of the system of coordinates required by the Galerkin method

assures the convergence of the obtained solutions.

SYMBOLS

§(x-1) Dirac function
1

B(p,g) Euler's Beta function: B(p,g) =;4: xp-l(l—x)g—ldx
K coefficient of the form of the section
G cross-cut modulus of elasticity
p density of material
E 1oﬁgitudinal modulus of elasticity (Young)
A(x) area of cross—-cut section
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I(x)
W(x,t)
IP(X"‘-)

(£(x),g(x))

V{x)
U(x)

Oy A

c‘:[ 0,1]

moment of inertia of cross-cut section
cross-cut displacement

rotation angle

1
scalar product: (f,g) =J/. f(x)g(x)dx
0

length of beam

time-independent cross—cut displacement
time~independent rotation angle
cross-secfional area parameters

moment of inertia parameter

class of functions defined on 0 to 1

THE DIFFERENTTAL EQUATIONS OF THE PHENOMENON

The differential equations for the phenomenon are as follows: (ref. 2)
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Solutions for the differential equations are determined as follows:
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for boundary conditions
Wesky = Wk koo ; Pty = ) =o ®

and f£(x,t) is a perturbance force, a mobile, but concentrated force for a unit

magnitude:
voast
Py = Sty

By considering equation (2) the system of equation (1) becomes two differ-

ential equations of the fourth order for V(x) and U(x) as follows:
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The differential equations (4) and (5) for the following two cases are as

follows:
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THE APPROXIMATE SOLUTION

We shall integrate the differential equations (6), (7, (8), and (9) by

means of the Galerkin method.

In the case of boundary conditions of equation (3) we shall consider l=unit

which is always possible by

f}:zX: 0svel = o0ex <)

Using the Galerkin method, we shall determine an approximate solution for

equation (6) as follows:
=
U, = %_Tb(' N A (10)

We choose ¢k(x) of the form (ref. 3)

. W oo -\
&ie\iﬁi\ = Y_ (}wf{j\ S Wy = Vi A
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The system of coordinate functions ¢k(x) has to satisfy the boundary

conditions of equation (3) which become equivalent with the following

conditions:

Uy= Ul =¢

The approximate solution (10) becomes:
i C A
W -
U,W(x\ = %ﬁ(f&/Q‘x\ (11)

The Oy constants are determined out of the following algebraic system:

RN

> (L -\' D =1 (12)
- K \'EK,\QS Q%’\QS y V=420 w

where L 1is the 1eft part of equation (6), and g 1is the right part of the

same equation, that is: %

>
L (qux m,,‘\_k q%ﬂﬁ.q,ﬁ)\ <i'x + Q%;“L—r 0\“\ dx
(o, oyl oy ‘0’35\ =+ ey ‘%\ I

-+ Q Qa,pl{-Q:,\“bk Gt Qo )
z( 3!%‘9\4
\_}Q‘L <:A%cﬁ\f(13;xﬁ.(l%£\:¥<1¥;\ 34 4 4‘ QSM61<¥(1€\ +

4“(‘0553\*\’3;,{3\% \osﬁd"‘%g C\Af: 4+ QQ“;\%‘QA %ﬁ.‘f A
| g

+ QQam'\ PO Ty ) SO N

677



QO‘QD\%'QQ{X-\ Qu\ 'g (O 3 &Q\;‘&‘\' Q-'(\\g Q\’K\
Q Rty = \“3 Lo ()= \‘é& I

The s"ystem of equation (11) is a non-damped algebraic system of n equa-
tions with n indeterminates. This system is compatible because the determi-
nant formed with the coefficients of the undeterminants is a Gramm determinant
of a linear independent system of functions. For the calculation of the scalar
product (chk,cb j) and (g,¢ j), we have kept in view the following points:

We have used the Euler's Beta function

A
RN
bﬁrw\\?—'- S'X_ (\*“‘Q O\‘L
s
We have used the following formula (ref. 4) in calculating the scalar

product:

1f \.Q c QZO \:‘D)q then

\ n) ) "
Stad G~ (St jew) = €

For equation (7) with the boundary conditions of equation (3) which mean

V(o)=V(l)=o we are going to give an approximate solution of the following form:

\/ X = 2_. ‘RN QﬂL\

) =Myl (13)
K=l '

678



where the constant Bk is drawn from the following algebraic system:

YT
%:; kU—“&,‘Q&\@QS)\QQ Y=l e

where L 1is the left side of equation (7) and g is the right side of the

same equation.

Analogous to equation (8) we build up an approximate solution of the follow-

ing form:

o BAIS K. oK
U . x= D e SRS\ y W = "R}
" k=)

where the Yi constants are determined from the following algebraic system:

b %K&L\QK)\Q\\%(%)\Q&\ y \&a \‘2.).-)”‘( .

W=l

where L is the left side of equation (8) and g the right side of the same

equation.

Finally, for equation (9) we build up a solution of the following form:
rd i
\/ 'S -

where the 6k constants are determined from the following algebraic system:

AT
2 ) = ) 5 1, e

where L and g are the left side and right side of equation (9).
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As a conclusion to case 1 the approximate solutions built up by the Galerkin

method are the following:

. ot T W Ko -\
*)MK‘\,’L\ - Q %:‘D(K’k Q\_'x\ W ) w0 et Z %\(’1 Q—x\

and, for case 2 the approximate solutions are the following
Y1) = LGS \.Qut 1N \L_
N\)KQ L) = Q Z \%@& (- 1\ \K/u K)=g g X (\«x\

PECULIAR CASES

In the following lines we shall use the obtained solution for two particular

cases, which will be also an indirect checking of the accuracy of the obtained

results.

We build up the first two approximations wl; wz and respectively Wl;

W2 for the following situations:

ACO= )\QDQJ’\*\ Y —X(\‘) = Xw Q\)r‘x:;\) (14)
R o) ':l\ b(\-&\\\ ) Xb\\ = 30 QM &m\b (15)

They represent respectively the case of a beam with a rectangular section, hav-
ing a constant height and a base with a linear variation, and the case of a
beam with a constant base and a height with a cubic variation and this because,

from an applicative point of view the beam sections are in many cases considered
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rectangular. Case (a) The equation (6), if we consider (14) is reduced to the

following equation

e [0 g2 (r £V a3 SN
= G CEER SCx- T)

The first and second approximations are respectively:

vk

“\)x =W (e N\‘w‘- %’( NCRTE Q'"ﬂ <

If we compare wl with wz for a rectangular beam made of steel we come
to the conclusion that the two approximations are comparable: wl = wz for

certain A values and for certain x wvalues

x | 0,252 0,541 | 0,528 | 0,573 | 0,525

This conclusion results from the following calculation:

_ (o) 4 x‘(’r—%w\ +Q§- \

QL\Q,\Q\ - Qoo (%l:;}c 1\\( \O—QM—};A—%@E‘Q;; & x+b« \

The «,,%, constants are determined from the following algebraic system:.
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where

(5% ~6>~§+\%x-’>\§+ Gt (gye)= BN - Qg
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and for the steel in S.I. units

G=2%3.2%\c 5—- L E=2L0 % \0 —«;_ S P Py

W=
| R ) Q= %\o%& N=ad 1._0‘?3’

D
G
Equation (7) then becomes:
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here

The first and second approximations are
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Because w :W Y_\*‘r Qi?\'%\ -*ij?\‘1‘?3\33(- X the conclusion

is made that the two approximations are comparable for certain A values and

for certain x wvalues such as

X 0,675 0,515 0,585 0,525 0,567

CONCLUSIONS TO THESE PECULIAR CASES

For equations (8) and (9) we come to the same result, that is: the first
two approximate solutions are equal for the given values of A for the same
value of x :0,5: 0 £ x £ 1 that is, the approximate solutions are comparable

among themselves in the wicinity of where the concentrated perturbance force is

1

applied: when x=1¢ = 2
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