St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

4-2017

A Study on the Security of Password Hashing
Based on GPU Based, Password Cracking using
High-Performance Cloud Computing

Parves Kamal
pkamal@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation

Kamal, Parves, "A Study on the Security of Password Hashing Based on GPU Based, Password Cracking using High-Performance
Cloud Computing" (2017). Culminating Projects in Information Assurance. 25.
https://repository.stcloudstate.edu/msia_etds/25

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more

information, please contact rswexelbaum@stcloudstate.edu.

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/25?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

A Study on the Security of Password Hashing Based On GPU Based, Password Cracking Using

High-Performance Cloud Computing

by

Parves Kamal

A Starred Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfillment of the Requirements
for the Degree, of
Master of Science

in Information Assurance

March,2017

Starred Paper Committee:
Dr, Dennis Guster, Chairperson
Dr. Jim Q. Chen
Dr.Mahbub Hossai

Abstract
In This paper the current security of various password hashing schemes that are in use today
will be investigated through practical proof of concept — GPU based, password hash dump
cracking using the power of cloud computing. The focus of this paper is to show the possible use
of cloud computing in cracking hash dumps and the way to countermeasures them by using

secure hashing algorithm and using complex passwords.

Table of Contents

Pages
LS OF TADIES ...ttt st e 5
LISE Of FIGUIES....ceiuiiiiiiiieiiieeet ettt ettt e et e st e e s abee e s abeeesabee s 6
Chapter 1: INtroOAUCHION.ccoouiiiiiiieiiieeeiee ettt e e eesabee s 7
L1 INErOAUCTION ...ttt ettt et e s 7
1.2 Problem StatemMentcocueeeieiiiiiriiiieeeieeteste ettt 8
1.3 Nature and Significance of the Problemc.ccoooiiiiiiiiiiiiniiiiiiieeees 8
1.4 Objective Of the StUAYeeiiiiiiiiiiiie et 9
1.5 Study Questions and Hypothesescocuiieiiieiiiiiiriieeiieeieeceeeee e 10
1.6 Definition Of TermSc.c.ooiuiiiiiiiiiieeeeteee et 11
1.7 SUMIMATY <.etieiiiiieiiieeeite ettt e et e et e e et ee st eessbbeessbeeesaseeesaseeesnseeenns 11
Chapter 2: Background and Review of Literature...........ccceevveeevieencieeniiieeniieenieeeeenn 12
2.1 INErOAUCTION ..ieiiiiiiiiiieite ettt sttt st sbe e et ebeeenees 12
2.2 Background Related to the Problemccccooviiiiniiiiniiiiniiieeee e, 12
2.3 Literature Related to the Problem ..o 23
2.4 Literature Related to the MethodolOgYccccveeviiieriiiiniiieiieeeeeee e 24
2.5 SUIMIMATY .etiiiiiieeiiee ettt e et e et e e et e e sbeeesteeesataeesaseeessseeessseeensseeesnseesnnseeas 25
Chapter 3: MethOdOLIOZYccoouviiiiiiiiiieeeiee ettt ettt e e et bee e aeeesabee s 26
3.1 INEFOAUCTION ..ottt ettt sttt st e s eas 26
3.2 Design of the StUAYcoooiiiiiiiieiie e e 26
3.3 DAt COIECION.eeiiieiieeiieeiee ettt ettt et sttt st enaaeeas 26

3.4 Tools and TEChNIQUESeeervieeiiieeiiie ettt eee e saee e ae e e e e saaee e 27

3.5 Hardware and Software Requirements............ccoccueevviveeniiieeniiieeniiieeniieesiee e 27

3.6 Installing oclHashcaht and Benchmarking of the performance of oclHashcat on

BothCPU and GPUcocoiiiiiiiecceeeecte et 29

3.7 Testing Environment DIiagramccccceeriiiiiiiiiniieeniieeniieesieeesiee et 65
3.8 WOrdlist SEIECEdcooueiriieiiieiieieee ettt e 65
3.9 Sample Password Hashed Dump Filecccoooiiiiiiiiiniiiiiiiieieeee e 66
Chapter 4: Analyzing ReSUILS.........ooviiiiiiiiiiiiiiieiie et 69
4.1 INEOAUCTION ..einiiiiiiiiiieeiteet ettt ettt ettt et e enees 69
4.2 TSt RESUIL....eiiiiiiiiiiieeeet ettt 69
4.3 Experimental RUN.........ccooiiiiiiiiiiiiiie ettt e 87
4.4 Analyzing RESUILcoccoiiiiiiiiiiiie e s 88
4.5 RecOMMENAALIONooutiiiiiiiiiiiieeiieeieeete ettt ettt st e 89
Chapter 5: CONCIUSIONuiiiiiieiiiee ettt et e s e e s bae e s beeeseseeenasee s 90
5.1 INErOAUCTION ..ttt ettt ettt et eaeees 90
5.2 TIMEIINE ...ttt st ettt ettt e bbb eanees 90
S.3FUUIE WOTK .ottt 91
5.4 CONCIUSION. ...ttt ettt ettt et sat e e sbeeesbeesbeeeanees 91
REEIENCE ...ttt 92

List of Tables
1.Comparison between different hash algorithmsccccooiiiiniiiiniiiiniiie e, 14
2.MD?5 cracking performance comparison using GPUccocciiviiiiniiiiniiiicce e 25
3.Hardware and Software ReqUITEMENtScoovuiiriiiiiniiiiiiiieeiieerite e s 27
4.MDS5 cracking performance With CPU machineccooceeiiiiiiniiiiiieniiieiiccceeee, 70
5.MD?5 cracking performance With GPU machinegccocceeeviiiiiniiiiiniiiiniieiiceceee e 73
6.SHA-256 cracking performance With CPU machineccccccooveuiiiviiiiiniiiiniieeiiieenieene 76
7.SHA-256 cracking performance With GPU machinecccocceeeviiiiniiinniiiiiiceiieeeen, 79
8. Berypt cracking performance With CPU maching............cccoeoieeviieeniiiiiniiieiieeeiee e 82

9.Bcrypt cracking performance With GPU machine..........c.cccoovoiiiniiiiiniiiiiniiiiiieecice e 85

List of Figures
1. Hashing(h) Function in OPETationccccceeerieeeniiienniiieniieeeiteesieeesieeesireeesireessireessineeens 13
2.Example of Some of the weak and strong passwordscceceeeriieiniieinieeinieenniee e 18
3. Theoretical peak GFLOP/sec between CPU’S vs GPU’S........ccciiiiiiiiiieieeeeeee 20
4. CPU ATCRITECTUTEveiiiiriiiiiieeieeiteee ettt ettt ettt et sttt e s ne e 21
S.GPU AICHITECTUIE ...ttt ettt ettt ettt e bt e bt sbe e sateesae e e e enaees 21
6.Cloud Computing Offered solutions and their COMPAriSON............cceeerveeerieerreeernieernaeenns 23
7. Testing ENVITONIMENT ...cccuiiiiiiiiiiiieiiieeeite ettt ettt te et ee et eeesabee st e sabeesaaeesneeesneeas 65

8. PrOJECt TIMEIINEeeeeiiiiiiiiieiie ettt ettt e s e e et e e sbee e sabe e e snbeeeabeesanee 90

Chapter 1: Introduction
1.1 Introduction

The most common means of authentication scheme are password based authentication
system [1]. An employee uses multiple passwordson adaily basis for all the applications and
systems that he/she might be working on for the employer. Businesses spend atremendous
amount of money for not only storing these passwords but also for securing the storage of these
passwords. Especially when organization deals with a huge number of customers;it's very hard
for them to create, maintain and distribute these passwords across the network for authentication,
authorization or accounting purposes. Thus, Passwords based authentication system possesses
many security problems into rather relatively secured existing infrastructures[2].

To overcome the possible security concerns with storing and distributing the password
across the network, the password is often run against the cryptographic hash function to get the
equivalent digest of the password which is stored along with the user’s other credentials in the
database. When users try to login with the password, the input is calculated by the same hash
function to compare with the digest of the same password that has been stored in the databases.

One of the properties of the cryptographic hash function is its irreversible one-way function
which means it’s nearly impossible to get back the password from the digest itself. Then again,
many of the commonly used hashing functions like MD5, SHA-1, etc. have been developed
during the mid-nineties. One of the weaknesses of most widely used hash function MDS is that
the attacker can create two identical digests for two different inputs which in cryptography field
is called Hash collision [3]. In fact, the possibility of an adversary of finding the password from
the hash dump is proportional to the amount of the work he/she puts in and the ability to predict

the password characteristics distribution. Moreover, with the advent of the cloud computing and

8
new powerful Graphics Processing Unit (GPU), the attacker is now well equipped than ever to
decipher the passwords from the hash at their will.

Since last decades there has been significant development going on in the field of Graphics
Processing Unit (GPU). The GPU is very suitable for performing parallel tasks as well as
calculating floating point related problems. Modern GPU based, password cracking is tentimes
faster than Central Processing Unit (CPU) based password cracking [4]. In my paper, I will be
showing how an attacker can leverage existing cloud services to crack passwords from sample

password hash dumps using the high-performanceGPU-based computing resources.

1.2 Problem Statement

Many organizations are still using vulnerable hashing functions like MD5/SHA-1 for
storing their user’s passwords. These hashing functions are inherently weaker and susceptible to
many hashing related attacks. Also, the complexity of passwords is still lenient across many
organizations,hence making it possible for the attacker to perform dictionary based rainbow
attacks against those hashed passwords. Adding salting and choosing a relatively slow hashing
function ensuresthat such exhaustive password cracking techniques in the near future will be still

impractical [5].

1.3 Nature and Significance of the Problem
Due to the recent hacking and public disclosure of private information (User’s passwords)
from several big profile organizations like LinkedIn, E-harmony and Yahoo within last 5 years

raises the serious questions of not only the security of the authentication systems in these high

9
profile organizations but also the security aspects of their password storing techniques in their
databases.

Hence, I am taking this opportunity in my paper to show how effective theGPU based,
password cracking technique is against the hashing techniques and provides insighton why
choosing strong, complex passwords along with slow computers hashing function will keep the

attackers at bay while leveraging GPU processing power of the cloud computing resources.

1.4 Objective of the Study
The objectives of this paper are to show the effectiveness of a GPU based,password
cracking by using cloud computing against latest password hashing techniques. By doing so, this
paper providesa recommendation on how to store passwords more securely, which makes any
possible distributed GPU based, password cracking techniques inefficient. We achieve these
goals in following ways:
e Present the literature review of the current password hashing techniques and
identifying their advantages and disadvantages.
e Provide insight into different password cracking techniques and why GPU
based,password cracking using high-performancecomputing in thecloud is viable.
e Demonstrate the effectiveness of a GPU based, password cracking of hashed dump
on cloud computing.
e Providing comparisons amongst the more cryptographically strong hashing
techniques.
e Come to a conclusion and suggestions on the importance of using salt in hashing as

well as the strong password selection.

10
1.5 Study Questions/Hypotheses
By the end of this paper, we should be able to answer following questions:

How does the GPU affect the performance of exhaustive password cracking techniques in cloud
computing?
To answer the above question, the following sub-questions will help to answer the research
inquiry:

e What are the Password hashing attacks?

e What are the advantages of GPU based, password cracking over CPU based password

cracking?

e How to implement GPU based, cracking in cloud computing?

e Why use computationally slow hash function and salt in hashing?

e The Importance of using non-human readable passwordsrather than human-

memorable passwords.

1.6 Definition of Terms

Acronym | Description

GPU Graphics Processing Unit

CPU Central Processing Unit

MD5 Message Digest Algorithm 5 (1992)

Hash Cryptographic fixed-size value from arbitrary input
Collision Two different input yields to the same output hash value
API Application programming interface

GPGPU General-Purpose Graphics Processing Unit
GFLOPS (Giga Floating Point Operations Per Second)
OpenCL Open Computing Language

CUDA Compute Unified Device Architecture

1.7 Summary

11

This chapter summarizes the research problem statements, objectives,and research

questions. In the next chapter, we will explore the background related to the problem as well as

the literature review.

12
Chapter 2: Background and Review of Literature
2.1 Introduction
This chapter will provide the required theoretical background necessary to understand the
research topics to understand better the research question that we are going to solve. Also, this
chapter will provide the related work that is regarding the GPU based, password cracking and on

password hashing security.

2.2 Background Related to the Problem

This section will provide necessary definitions and concepts related to password hashing
and their attacks, characteristics of strong passwords and their expected cracking time, the
properties of thesecure hash function, performance differences between GPU and CPU-based

password cracking and cloud computing.

2.2.1 What is aHash?

The process of taking an arbitrary length inputand converting it to a fixed-length output
value by integratingthrough a cryptographic hash function is called hashing, and the output value
is called the hash value as shown in the figure below. The property of cryptographic hash
functions is they are aone-wayfunction, and there is no way of deducing the input value by

reverting from the output hash value [6].

13

omnliwg e Gior Deandly Bametams T o o Tolowa
pigdhaey iy stales] where the o of e ol cvale
ke repand fiw b block gt ol il bk cipher ane
mhaie s hej aber s ajgEenimaiely apal il
Vil il A prreral maeled b8 pivweles), ade

Mo lfewm thal s sesleld owrgy 8 ooy thaa
Wiihin 1 ey

o it bl el g madl e silomes wiled s 0 i s -.. - ’J 1 | L}:i!}l-} I :J{}?\'

Fling 0ol Ul ade sowie, Ly imn be iondinroal i 3 |

lsavmrn Rl o Domwid ©0 murmelom s b wis o engl

hasr appeares] o the lite

The prrpertess of these |2 schesass with o
svishfreres of 1le sederbvmg bt il
bl The wamr aggmos b ras e ratemedel o
byl Baiali Pumotdoss | BLUCS) Mewsed o

I_I|--|-| St bl Dt ot

Figure 1.Hashing (h) Function in operation [7].

Because of its irreversible features, hashing is very useful for storing thepassword in the
authentication server. This allows not only protecting customer’s privacy but also allows
theserver to authenticate user’s login information without storing the user’s password. Let’s say
for example the cryptographic hash value of the word ‘parves’ using MDS5 algorithm is:

MD5(parves) = cf7cccd2e366698244ac5891da31bb82

2.2.2 Different Hashing Algorithm:

14

In the following table below the function of a different hashing algorithm that is in use at

largeare shown:

Table 1

Comparison between different hash algorithms|[8].

Algorithm | Word Block Size | OutputSize Rounds | Collision Found
Size

MD-2 32 128 128 18 YES

MD-4 32 512 128 48 YES

MD-5 32 512 128 64 YES

SHA-0 32 512 160 80 YES

SHA-1 40 512 160 80 YES

SHA-2 56/64 512/1024 224/256/384/512 | 64/80 THEORETICAL
SHA-3 64 1152/1088 | 224/256/384/512 | 24 NO

832/576

2.2.3 Characteristics of Secure Hash Function

Any hash function needs to have the following two properties:

e Fixed Output: Hash function always needs to theoutput of a fixed amount of output

irrespective of the input length size. If a hash function h outputs to 64 bits of value, then

an input message of m=22 bits and n=50 bits should always compute to thesame length

of the64-bit hash value .i.e.h(m) — 64 bits’ hash value and h(n)— 64 bits’ hash value.

15
e Easy Computation function: Hash function should be implemented as such that for any
input y, h(y) should be easy to compute [9].
To be qualified as a cryptographically secured hash function, it must meet the following three
characteristics in their function:
¢ Preimage Resistance: For all the hashes of x, it is extremely difficult to find the message
m which is hashed to x.
e Second-preimage Resistance: For any given message X, it’s almost very highly unlikely
to find another message y which has the same hash value like message x, i.e. h(x)#h(y)
where h is any hash function and x # y
¢ Collision Resistance: It should be very difficult to find two different message computes
to the same hash value. In this type of attack, the attacker is free to choose any two

different messages and find the similar hash value. 1.e. h(x) = h(y)

2.2.4 Password Hash Cracking Techniques

Password hash cracking is amethod of attacking dumped hash to find flaws in the
underlying secured hash characteristics that we discussed in theprevious section to find the
message that computer to the same hash value. The attacker, once they get hold of the hash file
by getting the unauthorized access to the network, usually copies the hashed password file and
performs one of the following attacks.

¢ Exhaustive Attack:

This attack involves trying every possible combination of characters within character
sets. Since it looks for every possible combination, the success rate is 100% of finding

the correct combination given the time, and the cost is out of consideration. Also,

16
themostcryptographic system in use today uses very large space of time, making the
exhaustive search impractical to perform against. The exhaustive attack is used in two of
the following ways [10]:

v" Known-Plaintext only attacks: In this attack, only the perpetrator knows plain
text ciphertext both. Then he tries to discover the key that encrypts the
plaintext for example.

v Ciphertext-only attacks: The attacker only knows the ciphertext, and he tries
to findthe corresponding key or plaintext by going through every combination
of the keys.

Password hashing crack technique is only possible in cipher text theonly method as every
hash function is aone-way function.However, with a single digit increase in password
length makes the exhaustive search iteration increase exponentially, making the
exhaustive search attack impractical for the attacker, especially when long and complex

alphabetical characters are chosen [11].

Dictionary Attack

A Dictionary attack is avery effective attack if theuseruses some human-memorable
password for their login credentials and the attacker tries a list of common words and
expressions used in any language for example in English to find the password. Users tend
to use common or simple passwords [12] across many platforms, so that can be easily
recalled and if it’s the case then performing dictionary attacks is highly successful. But
some simple modification to those common words can make a dictionary attack highly

unsuccessful too [13].

17

¢ Rainbow table Attack
Rainbow table Attacks involve looking up the precomputed hash tables and the
corresponding key value to find any matching hash. This type of attack, though, has
limited combination to look up for but when working within its constraints, it takes less

time decrypting hashed password than those two other attacks mentioned earlier [14].

2.2.5 Characteristics of Strong Passwords
We will discuss in the following few sections the characteristics of strong passwords, and

we will define its strength based on the exhaustive brute force attack time it takes to crack those
passwords. We will then introduce the concept of CPU and GPU based, password cracking with
cloud computing to end the chapter.
There are many characteristics that make a password easy to crack using exhaustive attacks.
Some of the characteristics are:

e Passwords are based on common dictionary words

e Passwords are Easily guessable

e Passwords are relatively short in length, making it possible to brute force attack easily

e Passwords have some sorts of thepattern which is easy to deduce. e.g. abc123, XYZ,

46824682 etc.
e Passwords have been repeating characters like ababll or xyl2x. People Use the

passwords with repeating characters so that they can remember.

18
To better understand, let’sshow it more graphical way. The following pictures are some of the
chosen passwords with acombination of characters, numbers, and symbols to check the strength

of the passwords based on the characteristics of the characteristics above of strong passwords.

Test Your Password

Test Your Password Test Your Password

Password:

| abedefgh

Hide:

Complexity: REWAIEES

Complexity: REELS

Test Your Password Test Your Password

Password: |{FEWA]

Hide:
Score: [1ol : :

(00T Very Strong Good

Figure 2. Example of Some of the weak and strong passwords [15].

So as we have seen even if all the passwords above were eight characters long, using memorable
words like awatch or if using characters that come in sequences significantly make the password
strength very low while using random sequences of characters makes passwords relatively
stronger. It’s very hard to get real random numbers, and for humans, we are not well equipped to
remember random numbers. In fact, ahuman can only remember random numbers up to 7+2
characters [16]. Having passwords with arandom sequence of numbers with at leastone capital
letter, number, aSpecial character from large key space makes password very strong as shown

below in the above figure.

19

One of the methods used to check the strength of the password is based on the entropy.
Entropy depends on the length of the passwords and the key space used. Entropy can be
calculated using the formula, log 2 (n) [17],where n represents the number of characters in key

space.

2.2.6 CPU-Based Versus GPU-Based Password Cracking Performance:

The CPU has traditionally been used for general purpose computing. Usually,the CPU has
limits on how many processing cores it can accommodate. To overcome these CPU’s is hyper
threading technology to compensate whereas the GPU has many more cores compared to its
similarly priced CPU counterpart.

GPU also works as Single instruction, but Multiple Data computations or known as (SIMD)
whereas CPU’s work as Single Instruction, Single Data computations or known as (SISD). This
makes GPU largely suited for password cracking. The difference between CPU’S and GPU’Scan
regard performance based on single precision floating point number is clearly shown in the figure

below:

20

Theorefical Peak Performance. Single Precision

ks o SRR R e Y n R e S o e S INTEL Xeon CPUs —dle—
"":Pd chh" P
§ = 4 : NVIDIA GeForce GPUs —JilF—
: AMD Radeon GPUs —{f—
INTEL Xgan Phis e 1
L L

2008 2010 2012 2014 2016
End of Yesar

Figure 3. Theoretical peak GFLOP/Sec between CPU’SvsGPU’S [18]

Part of the reason behind the GPU’S power over CPU is for the recent increase in GPU’S power
in comparison with the CPU’S one. AS we know from Moore’s law CPU’S power doubles once

in 18 months, whereas GPU’S power is doubling four times at the same time [19].

21
Here are the few reasons highlighted behind the GPU’S strength over the CPU:

e (CPU’s havefewer cores compared to GPU’s cores as shown below

Figure 4. CPU Architecture.

' '

Thread Processors || Thread Processors

fi
ZE=E

Figure 5. GPU Architecture.

' '
Ihreirowsors Thread Processors
IRl

22

e GPU’Suseless cache than CPU because of the way GPU’S make use of the pipelines and
the static operations [20].

e (CPU’s need to preserve the backward compatibility features to work with old instruction
sets, whereas the GPU’s are leaving their old instruction sets making it possible to exploit
SIMD features whereas even though the new features SIMDVS is used by the new CPU’s,
it still needs to be backward compatible with old instruction sets. There are a lot of
different GPU architectures, but all these differences are taken care of at the hardware
level, leaving the software developer out of hassle.

e The reason GPU’s havealarge amount of GFLOPS (Giga Floating Point Operations Per
Second) because programming application can exploit the power of GPU’s is easier
because of the introduction of Unified Device Architecture (CUDA) and Open
Computing Language (OpenCL). CUDAIs used for parallel computing, which developer
exploits while writing programs for GPU’s. OpenCL is an open source language
framework, making it possible to write code applicable for any GPU’s architecture.

e GPU’s needs to make use of the cache and the register shown in fig-5 that is on board to

take advantages of its processing power [21].

2.2.7 Cloud Computing

Cloud computing is rapidly provisioned on demand configurable resources that can be shared
with minimal management effort or service overhead [22]. There are two types of cloud — public
and private. Public cloud is a cloud service offered by thecloud. APrivate cloud is exclusively

provisioned for acertain group of users. Because of the flexibility and the cost effectiveness every

23
company is moving their infrastructure to the cloud now. There are many public cloud companies

like AWS, Rackspace, Google Cloud, Microsoft Azure provide.

Properties Amazon EC2 Google AppEngine Microsoft Azure Manjrasoft Aneka
Service Type laaS laaS - PuaS [aa$ - PaaS PaaS
Support for (valee offer) Compute/Storage Compute(web applications) Compute/Storage Compute
Value Added Provider Yes Yes Yes Yes
We W PO (LSRN
User access Interface Comfnm‘n:";'m,‘ ® "‘P’“’;{fﬂ‘z""‘“"d Li0e \zure Web Pora Web AP1s, Custom GUI
Virtualization 0S on Xen Hypervisor Application Container Service Container Service Container
Platform (OS & runtime) ~ Linux, Windows Linux NEToaWisiows - 1/Moa00m Windows, Linox,
MacOS X
Deployment Model Customizable VM Webapps (Python, Java, JRuby) Azure Services Applications (C#, C++, VB,)
If PaaS, -:bxbt) 1o deploy NA No No Yes
on 3 party laS

Figure 6. Cloud Computing Offered solutions and their comparison [23].

Spinning up a virtual machine in the Amazon AWS with Intel Xeon-based G series computing
along with NVidia’s K520 (1536 cores) cost about $0.02 to $2.87 per hour making it very feasible
for someone to run parallel GPU-based, password cracking on the password hash dump. In my

paper I will demonstrate how effective is GPU based, password cracking using cloud platform.

2.3 Literature Related to the Problem

Thompson in his paper has shown how GPU’s can be used for usual computing task other
than graphically intensive work [24] whereas Cook in his paper shown GPU’s are good for
solving cryptography related work too [25]. In the beginning, it was hard to make any application
that could take advantage of GPU’s because of the lack of API’s and supports. Now with the
advent of CUDA, OpenCL platform, APIs for GPU’s become widely available. Using GPU’s

performance on cryptographic computation has been under review by many researchers. Yang

24
and his colleague have shown how GPU’s can outperform high-performance CPUs in symmetric
cryptographic computations [26]. In Asymmetric encryption strength has also been reviewed by
many researchers suing GPU’s [27,28,29]. Bernstein has shown how NVidia GTX 295 can be
used to break ECC cryptosystem by calculating up to 481 million modular multiplications per
second in his paper [30]. Hash functions like MD5 and Blowfish have also been tested with GPU

processing power, outperforming the CPU’s significantly [31,32].

2.4 Literature Related to the Methodology

Graphical Processing Unit or GPU is now lots used for general purpose computing or better
known as GPGPU than rather using it as to drive graphics.
With the advent of CUDA and OpenCL framework researcher are putting the hash security to
thetest by exploiting the power of the GPU to crack them using parallel processing power. R.
Zhang and his colleagues showed the method to crack MDS5 hash using CUDA and reached the
speed of 223 Mbps [33]. Another researcher compared decryption software John, the Ripper
against cracking software based on OpenCL and found 17-times faster speed [34]. In other
research, the authors implemented MDS5 decryption methods using Tianhe-1A using CUDA to
reach calculation speeds up to 18 billion keys per seconds [35]. Oclhashcat happens to be the
multiplatform world’s fastest password cracker which is GPUGPG based open source free hash
cracker with speeds of up to 8511 mc/s and 2722 mc/s for MDS5 and SHA-1 hash respectively.
TheGPU has also been used for better and faster implementation of hashing algorithm as well.
In one study researcher, implemented MDS5 decryption algorithm using GPU cluster and gain

100 times faster performance in comparison to CPU [36]. Moreover, researchers have

25
madeacomparison toaparallel version of MD5 on NVidia’s GPU of which the results are whom
in the following table:

Table 2

MDS is cracking performance comparison using GPU [37].

Platform Language Performance
NVidia Geforce 9600 GT CUDA 223 Mbps
Nvidia GTX295 OpenCL 76.6 Mbps
Nvidia GTX9800+ CUDA 516 Mbps
AMD HD7970(1G) OpenCL 507.3 Gbps
AMD HD7970 (925 M) OpenCL 409.9 Gbps

As shown above,research has been done on cracking MDS5 hashing using GPU’s and relatively
less onan SHA-1 hashing algorithm. Many of the researchers used open source cracker like
Oclhashcat on GPU platforms like NVidia or AMD using CUDA or OpenCL. In our paper, we
will also exploit GPU power that is on offered in the cloud to crack sample password hash dump

using Oclhashcat.

2.5 Summary

In this chapter, we covered all the required definitions and background knowledge related
to the research and we also covered the literature review related to our research problem and
methodology that we will be using. In the following chapter, we will outline our research
methodology in detail and the necessary tools and the techniques as well as our test environment

in detail.

26
Chapter 3: Methodology
3.1 Introduction

In this chapter, we will discuss our methodology used in conducting our research.

3.2 Design of the Study
To answer the research questions proposedin sectionl.4, the following approaches will be
followed:

e Literature review: We try to identify the characteristics of strong hashing algorithm as
well as the passwords with the data gathered from the proof of concept—password hash
cracking in the cloud

e Proof of concept: To show the performance of the GPU on password hash cracking using
cloud we will implement GPU based, hash cracking on cloud and we will compare this
with CPU based cracking.

e Comparison: We will compare the analyzed data to compare the GPU based, and CPU
based, password cracking performance as well as the effect of using secured password
hashing algorithm on the cracking performance. We will also analyze the reason behind

the password hash cracking effectiveness based on password strength.

3.3 Data Collection
The data will be collected once the test is performed and the benchmark report, as well as

the generated passwords, will be the source of the data which will later be analyzed.

3.4 Tools and Techniques

Multi-GPU based OclHashcat on Amazon AWS EC2 on CUDA based NVIDIA Tesla GPU

to crack sample password hash of MD5,SHA-256, and Bcrypt.

3.5 Hardware and Software Environment
The following hardware and software will be used in conducting my research. The setup
was done in AWS (Amazon Web Service) cloud. The exact software and Hardware details are in

the table below. The test will be conducted in cracking the password hash on both GPU and CPU

instances (Machine).

Table 3

Hardware and Software Requirements.

GPU Test Machine

Software

Hardware

TESLA GPU Driver

Ubuntu 16.04 with NVIDIA GRID and

Intel Xeon E5-2670 (Sandy Bridge)

Processors

oclHashcat is a GPGPU-based multi-

hash cracker

P2 instances provide up to 16 NVIDIA
K80 GPUs, 64 vCPUs and 732 GiB of
host memory, with a combined 192 GB of
GPU memory, 40 thousand parallel
processing cores, 70 teraflops of single

precision floating point performance, and

over 23 teraflops of double precision
floating point performance. P2 instances

also offer GPU Direct™ (peer-to-peer
GPU communication) capabilities for up
to 16 GPUs, so that multiple GPUs can

work together within a single host

vCPU - 32 Ram — 488 GPU -8 GB
SSD- 300GB
CPU Test Machine
Software Hardware

Ubuntu 16.04 - - with Updates HVM-

1602

Intel Xeon E5-2666 v3 2.9 GHz

oclHashcat is a CPU-based multi-hash

cracker

High-frequency Intel Xeon E5-2666 v3
(Haswell) processors optimized
specifically for EC2
EBS-optimized by default and at no
additional cost
Ability to control processor C-state and
P-state configuration on the c4.8xlarge

instance type

VCPU-8 RAM - 15GB SSD-30GB

28

29

3.6 Installing oclHashcaht and Benchmarking of the Performance of oclHashcat on Both
CPU and GPU

First, the installation of the ocHashcat multi-GPU based, hash cracker with the following

steps after ssh into our cloud Linux machine on both CPU and GPU test machine.

sudo apt -y update && sudo apt -y upgrade
sudo apt install -y pTzip-full build-essential linux-image-extra-virtual
linux-source

echo options nouveau modeset=0 | sudo tee -a fetc/modprobe.d/nouveau-
kms. conf
gudo update-initramfs -u

to activate latest kernel
sudo reboot

g8zh -i keyfile.pem ubuntul<ip>
sudo apt install linux-headers-"uname -r’

sudo mkdir -p fdata
sudo chown ubuntu fdata
cd fdata

latest driver here: http://www.nvidia.com/object/unix.html

wget http://us.download.nvidia.com/XFree86/Linux-x86_64/375.26/NVIDIA-
Linux-x86 64-375.26.run

chmod 755 HV#*.run

sudo ./HNV#.run

accept license, install, enter, enter

l=zmod | grep nvidia
if not loaded, do extra reboot

optimizations from AWS blog

sudo nvidia-smi -pm 1

gudo nvidia-smi -acp 0O

sudo nvidia-smi --auto-boost-permission=0
sudo nvidia-smi -ac 2505,87

Download and install Hashcat

wget http://hashcat.net/files/hashcat-3.40.7z2
T7za % hashcat-3.40.7=z

Cd hashcat—3.40

-fhashcet&4.bin -b

30

Then the benchmark test was run on the different hashing algorithm and the full benchmark

results are as follows:

GPU Test Machine Benchmark Results:

root@ip-172-31-43-198 hashcat-3.30]# ./hashcat64.bin —b

OpenCL Platform #1: NVIDIA Corporation

Device #1: Tesla K80, 2047/11439 MB allocatable, 13MCU
Device #2: Tesla K80, 2047/11439 MB allocatable, 13MCU
Device #3: Tesla K80, 2047/11439 MB allocatable, 13MCU
Device #4: Tesla K80, 2047/11439 MB allocatable, 13MCU
Device #5: Tesla K80, 2047/11439 MB allocatable, 13MCU
Device #6: Tesla K80, 2047/11439 MB allocatable, 13MCU
Device #7: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #8: Tesla K80, 2047/11439 MB allocatable, 13MCU

Hashtype: MD4

Speed.Dev #1.....: 8466.9 MH/s (51.48ms)
Speed.Dev.#2.....: 8501.4 MH/s (51.27ms)
Speed.Dev.#3.....: 8445.6 MH/s (51.61ms)
Speed.Dev.#4.....: 9079.5 MH/s (48.00ms)
Speed.Dev.#5.....: 8212.8 MH/s (53.07ms)
Speed.Dev .#6.....: 8906.6 MH/s (48.94ms)
Speed.Dev.#7.....: 8260.1 MH/s (52.77ms)

Speed.Dev.#8.....: 9072.7 MH/s (48.04ms)

Speed.Dev .#%*.....: 68945.7 MH/s

Hashtype: MD5
Speed.Dev .#1.....: 4551.7 MH/s (95.80ms)
Speed.Dev.#2.....: 4440.1 MH/s (98.20ms)
Speed.Dev .#3.....: 4427.0 MH/s (49.20ms)
Speed.Dev.#4.....: 4626.7 MH/s (94.24ms)
Speed.Dev.#5.....: 4264.6 MH/s (51.10ms)
Speed.Dev .#6.....: 4521.0 MH/s (96.45ms)
Speed.Dev.#7.....: 4229.8 MH/s (51.53ms)
Speed.Dev.#8.....: 4613.5 MH/s (94.51ms)

Speed.Dev .#%*.....: 35674.4 MH/s

Hashtype: Half MD5
Speed.Dev .#1.....: 3223.9 MH/s (67.60ms)
Speed.Dev.#2.....: 3156.0 MH/s (69.07ms)
Speed.Dev.#3.....: 3109.5 MH/s (70.10ms)
Speed.Dev.#4.....: 3309.7 MH/s (65.83ms)
Speed.Dev.#5.....: 2947.0 MH/s (73.94ms)
Speed.Dev .#6.....: 3307.7 MH/s (65.88ms)
Speed.Dev .#7.....: 3075.6 MH/s (70.88ms)
Speed.Dev.#8.....: 3311.1 MH/s (65.82ms)

Speed.Dev #%*.....: 25440.4 MH/s

Hashtype: SHA1
Speed.Dev .#1.....: 1993.0 MH/s (54.46ms)
Speed.Dev.#2.....: 1940.6 MH/s (55.91ms)
Speed.Dev.#3.....: 1972.2 MH/s (55.03ms)
Speed.Dev.#4.....: 2045.6 MH/s (53.03ms)
Speed.Dev .#5.....: 1937.4 MH/s (56.02ms)
Speed.Dev .#6.....: 1999.5 MH/s (54.26ms)
Speed.Dev.#7.....: 1872.4 MH/s (57.97ms)
Speed.Dev.#8.....: 2024.6 MH/s (53.61ms)

Speed.Dev.#%*.....: 15785.3 MH/s

Hashtype: SHA256
Speed.Dev.#1.....: 815.1 MH/s (66.79ms)
Speed.Dev.#2.....: 815.5 MH/s (66.76ms)
Speed.Dev.#3.....: 811.9 MH/s (67.05ms)
Speed.Dev.#4.....: 874.6 MH/s (93.39ms)
Speed.Dev.#5.....: 810.0 MH/s (67.27ms)
Speed.Dev .#6.....: 836.2 MH/s (65.17ms)
Speed.Dev.#7...... 797.3 MH/s (68.34ms)
Speed.Dev.#8.....: 847.4 MH/s (64.30ms)

Speed.Dev.#*.....: 6608.0 MH/s

Hashtype: SHA384
Speed.Dev .#1.....: 174.6 MH/s (78.05ms)
Speed.Dev.#2.....: 174.8 MH/s (77.93ms)
Speed.Dev.#3.....: 175.5 MH/s (77.60ms)
Speed.Dev.#4.....: 175.8 MH/s (77.48ms)
Speed.Dev.#5.....: 175.3 MH/s (76.83ms)
Speed.Dev .#6.....: 175.1 MH/s (77.82ms)
Speed.Dev.#7...... 174.5 MH/s (78.07ms)
Speed.Dev.#8.....: 175.0 MH/s (77.83ms)

Speed.Dev.#*.....: 1400.6 MH/s

Hashtype: SHAS512
Speed.Dev.#1...... 177.5 MH/s (76.75ms)
Speed.Dev.#2.....: 177.8 MH/s (76.64ms)
Speed.Dev.#3.....: 177.9 MH/s (76.60ms)
Speed.Dev.#4.....: 178.9 MH/s (76.15ms)
Speed.Dev.#5.....: 177.5 MH/s (76.77ms)
Speed.Dev .#6.....: 178.1 MH/s (76.49ms)
Speed.Dev.#7...... 177.7 MH/s (76.68ms)
Speed.Dev.#8.....: 178.1 MH/s (76.51ms)

Speed.Dev.#*.....: 1423.4 MH/s

33

Hashtype: SHA-3(Keccak)
Speed.Dev .#1.....:. 184.6 MH/s (73.79ms)
Speed.Dev.#2.....: 175.5 MH/s (77.65ms)
Speed.Dev.#3.....: 184.5 MH/s (73.84ms)
Speed.Dev.#4.....: 186.9 MH/s (72.90ms)
Speed.Dev.#5.....: 180.1 MH/s (75.66ms)
Speed.Dev .#6.....: 190.8 MH/s (71.40ms)
Speed.Dev.#7...... 182.7 MH/s (74.57ms)
Speed.Dev.#8.....: 183.4 MH/s (74.27ms)

Speed.Dev.#*.....: 1468.5 MH/s

Hashtype: SipHash

Speed.Dev.#1.....: 8380.1 MH/s (52.01ms)
Speed.Dev.#2.....: 8436.0 MH/s (51.64ms)
Speed.Dev.#3.....: 8236.4 MH/s (52.91ms)
Speed.Dev.#4.....: 8848.4 MH/s (49.26ms)
Speed.Dev.#5.....: 8010.7 MH/s (54.41ms)
Speed.Dev .#6.....: 8694.2 MH/s (50.13ms)
Speed.Dev.#7.....: 8078.2 MH/s (53.95ms)

Speed.Dev.#8.....: 8825.6 MH/s (49.39ms)

Speed.Dev.#*.....: 67509.6 MH/s

34

Hash type: RipeMD160
Speed.Dev .#1.....: 1218.0 MH/s (89.15ms)
Speed.Dev.#2.....: 1196.2 MH/s (90.77ms)
Speed.Dev .#3.....: 1200.0 MH/s (90.49ms)
Speed.Dev.#4.....: 1236.2 MH/s (87.81ms)
Speed.Dev.#5.....: 1177.3 MH/s (92.22ms)
Speed.Dev .#6.....: 1233.4 MH/s (88.38ms)
Speed.Dev.#7.....: 1120.3 MH/s (48.63ms)
Speed.Dev.#8.....: 1253.8 MH/s (86.94ms)

Speed.Dev.#*.....: 9635.2 MH/s

Hashtype: Whirlpool
Speed.Dev.#1.....: 78468.3 kH/s (85.80ms)
Speed.Dev.#2.....: 78975.2 kH/s (85.24ms)
Speed.Dev.#3.....: 78928.0 kH/s (85.30ms)
Speed.Dev.#4.....: 78865.1 kH/s (85.34ms)
Speed.Dev.#5.....: 78963.1 kH/s (85.25ms)
Speed.Dev .#6.....: 78982.6 kH/s (85.23ms)
Speed.Dev.#7.....: 78080.8 kH/s (86.23ms)
Speed.Dev.#8.....: 79145.9 kH/s (85.07ms)

Speed.Dev.#*...... 630.4 MH/s

Hashtype: GOST R 34.11-94
Speed.Dev .#1.....: 66313.6 kH/s (101.54ms)
Speed.Dev.#2.....: 66579.7 kH/s (101.12ms)
Speed.Dev .#3.....: 66764.5 kH/s (100.85ms)
Speed.Dev.#4.....: 66243.8 kH/s (101.65ms)
Speed.Dev .#5.....: 66301.9 kH/s (101.55ms)
Speed.Dev .#6.....: 67160.6 kH/s (100.25ms)
Speed.Dev.#7.....: 65520.9 kH/s (102.76ms)
Speed.Dev.#8.....: 67115.1 kH/s (100.32ms)

Speed.Dev.#*.....: 532.0 MH/s

Hash type: GOST R 34.11-2012 (Streebog) 256-bit
Speed.Dev.#1.....: 19925.1 kH/s (170.97ms)
Speed.Dev.#2.....: 19592.7 kH/s (173.87ms)
Speed.Dev.#3.....: 20090.6 kH/s (169.56ms)
Speed.Dev.#4.....: 20300.8 kH/s (167.79ms)
Speed.Dev.#5.....: 19341.0 kH/s (176.13ms)
Speed.Dev.#6.....: 19972.5 kH/s (170.55ms)
Speed.Dev.#7.....: 19413.8 kH/s (175.47ms)
Speed.Dev #8.....: 20344.7 kH/s (167.44ms)

Speed.Dev.#*...... 159.0 MH/s

Hash type: GOST R 34.11-2012 (Streebog) 512-bit
Speed.Dev.#1.....: 19861.1 kH/s (171.55ms)
Speed.Dev.#2.....: 19686.2 kH/s (173.07ms)
Speed.Dev .#3.....: 20028.9 kH/s (170.09ms)
Speed.Dev.#4.....: 20083.5 kH/s (169.62ms)
Speed.Dev .#5.....: 19398.3 kH/s (175.65ms)
Speed.Dev .#6.....: 20046.2 kH/s (169.97ms)
Speed.Dev.#7.....: 19641.2 kH/s (173.46ms)
Speed.Dev .#8.....: 20436.0 kH/s (166.72ms)

Speed.Dev.#*...... 159.2 MH/s

Hash type: DES (PT = $salt, key = $pass)
Speed.Dev #1.....: 3699.9 MH/s (58.77ms)
Speed.Dev.#2.....: 3647.5 MH/s (59.63ms)
Speed.Dev.#3.....: 3679.8 MH/s (59.09ms)
Speed.Dev.#4.....: 3694.4 MH/s (58.86ms)
Speed.Dev.#5.....: 3607.1 MH/s (60.31ms)
Speed.Dev .#6.....: 3822.5 MH/s (56.91ms)
Speed.Dev.#7.....: 3789.0 MH/s (57.43ms)
Speed.Dev.#8.....: 3779.2 MH/s (57.57ms)

Speed.Dev.#*.....: 29719.3 MH/s

Hash type: 3DES (PT = $salt, key = $pass)
Speed.Dev .#1.....: 250.1 MH/s (54.41ms)
Speed.Dev.#2.....: 256.2 MH/s (53.14ms)
Speed.Dev.#3.....: 259.0 MH/s (52.54ms)
Speed.Dev.#4.....: 256.1 MH/s (53.14ms)
Speed.Dev.#5.....: 258.5 MH/s (52.66ms)
Speed.Dev .#6.....: 250.6 MH/s (54.31ms)
Speed.Dev.#7...... 246.5 MH/s (55.23ms)
Speed.Dev.#8.....: 256.0 MH/s (53.17ms)

Speed.Dev.#*.....: 2033.1 MH/s

Hash type: phpass, MD5(Wordpress), MD5(phpBB3), MD5(Joomla)

Speed.Dev.#1.....: 1379.7 kH/s (76.42ms)
Speed.Dev.#2.....: 1366.3 kH/s (77.23ms)
Speed.Dev.#3.....: 1315.0 kH/s (80.29ms)
Speed.Dev.#4.....: 1419.0 kH/s (74.39ms)
Speed.Dev.#5.....: 1284.7 kH/s (82.18ms)
Speed.Dev.#6.....: 1413.9 kH/s (74.65ms)
Speed.Dev.#7.....: 1362.7 kH/s (77.46ms)
Speed.Dev.#8.....: 1417.3 kH/s (74.47ms)

Speed.Dev.#*.....: 10958.5 kH/s

38

Hashtype: script
Speed.Dev .#1.....: 202.1 kH/s (32.43ms)
Speed.Dev.#2.....: 202.3 kH/s (32.40ms)
Speed.Dev.#3.....: 199.7 kH/s (32.84ms)
Speed.Dev.#4.....: 197.2 kH/s (33.26ms)
Speed.Dev.#5.....: 182.5 kH/s (35.94ms)
Speed.Dev .#6.....: 150.7 kH/s (43.59ms)
Speed.Dev.#7...... 141.1 kH/s (46.55ms)
Speed.Dev.#8.....: 151.1 kH/s (43.46ms)

Speed.Dev.#*.....: 1426.6 kH/s

Hashtype: PBKDF2-HMAC-MD5

Speed.Dev.#1.....: 1427.7 kH/s (60.61ms)
Speed.Dev.#2.....: 1413.8 kH/s (61.20ms)
Speed.Dev.#3.....: 1430.8 kH/s (60.40ms)
Speed.Dev.#4.....: 1484.7 kH/s (58.24ms)
Speed.Dev.#5.....: 1374.1 kH/s (62.99ms)
Speed.Dev.#6.....: 1486.3 kH/s (58.11ms)
Speed.Dev.#7.....: 1405.9 kH/s (61.54ms)

Speed.Dev #8.....: 1484.0 kH/s (58.21ms)

Speed.Dev.#*.....: 11507.3 kH/s

39

Hashtype: PBKDF2-HMAC-SHA1
Speed.Dev #1...... 777.6 kH/s (58.92ms)
Speed.Dev.#2.....: 752.4 kH/s (60.93ms)
Speed.Dev.#3.....: 767.1 kH/s (59.72ms)
Speed.Dev.#4.....: 790.7 kH/s (57.87ms)
Speed.Dev.#5.....: 751.3 kH/s (61.01ms)
Speed.Dev .#6.....: 775.4 kH/s (59.10ms)
Speed.Dev.#7...... 727.7 kH/s (63.03ms)
Speed.Dev.#8.....: 793.6 kH/s (57.72ms)

Speed.Dev.#*.....: 6135.9 kH/s

Hash type: PBKDF2-HMAC-SHA256
Speed.Dev.#1.....: 292.4 kH/s (84.88ms)
Speed.Dev.#2.....: 286.2 kH/s (86.75ms)
Speed.Dev.#3.....: 290.1 kH/s (85.55ms)
Speed.Dev.#4.....: 298.2 kH/s (83.25ms)
Speed.Dev.#5.....: 283.1 kH/s (87.69ms)
Speed.Dev .#6.....: 295.3 kH/s (84.06ms)
Speed.Dev.#7.....: 289.0 kH/s (85.92ms)
Speed.Dev.#8.....: 298.1 kH/s (83.25ms)

Speed.Dev.#*.....: 2332.3 kH/s

40

Hashtype: PBKDF2-HMAC-SHAS512

Speed.Dev.#1...... 94553 H/s (67.10ms)
Speed.Dev.#2...... 93350 H/s (67.97ms)
Speed.Dev.#3...... 94379 H/s (67.23ms)
Speed.Dev.#4...... 95693 H/s (66.30ms)
Speed.Dev.#5.....:. 89283 H/s (71.92ms)
Speed.Dev .#6...... 96060 H/s (66.05ms)
Speed.Dev.#7...... 94247 H/s (67.32ms)
Speed.Dev.#8...... 95611 H/s (66.36ms)

Speed.Dev.#*.....: 753.2 kH/s

Hashtype: Skype

Speed.Dev .#1.....: 2840.6 MH/s (76.74ms)
Speed.Dev.#2.....: 2912.7 MH/s (74.81ms)
Speed.Dev.#3.....: 2904.7 MH/s (75.03ms)
Speed.Dev.#4.....: 3074.1 MH/s (70.90ms)
Speed.Dev.#5.....: 2846.7 MH/s (76.58ms)
Speed.Dev .#6.....: 2991.6 MH/s (72.84ms)
Speed.Dev.#7.....: 2973.5 MH/s (73.30ms)
Speed.Dev.#8.....: 3109.2 MH/s (70.11ms)

Speed.Dev.#*.....: 23653.1 MH/s

41

Hash type: WPA/WPA2
Speed.Dev.#1...... 91985 H/s (70.54ms)
Speed.Dev.#2...... 90301 H/s (71.86ms)
Speed.Dev.#3...... 92049 H/s (70.49ms)
Speed.Dev.#4...... 95516 H/s (67.93ms)
Speed.Dev.#5.....:. 88909 H/s (72.98ms)
Speed.Dev .#6...... 93344 H/s (69.51ms)
Speed.Dev.#7...... 91694 H/s (70.77ms)
Speed.Dev.#8...... 94990 H/s (68.31ms)

Speed.Dev.#*.....: 738.8 kH/s

Hashtype: IKE-PSK MD5
Speed.Dev.#1...... 316.6 MH/s (86.08ms)
Speed.Dev.#2.....: 314.5 MH/s (86.64ms)
Speed.Dev.#3.....: 317.5 MH/s (85.82ms)
Speed.Dev.#4.....: 317.8 MH/s (85.74ms)
Speed.Dev.#5.....: 306.6 MH/s (88.87ms)
Speed.Dev.#6.....: 318.1 MH/s (85.64ms)
Speed.Dev.#7...... 317.9 MH/s (85.71ms)
Speed.Dev.#8.....: 317.0 MH/s (85.97ms)

Speed.Dev.#*.....: 2525.9 MH/s

42

Hashtype: IKE-PSK SHA1
Speed.Dev .#1.....:. 165.1 MH/s (82.48ms)
Speed.Dev.#2.....: 162.8 MH/s (83.67ms)
Speed.Dev.#3.....: 163.9 MH/s (83.11ms)
Speed.Dev.#4.....:. 167.4 MH/s (81.36ms)
Speed.Dev.#5.....: 161.0 MH/s (84.62ms)
Speed.Dev .#6.....: 168.1 MH/s (81.04ms)
Speed.Dev.#7...... 167.6 MH/s (81.27ms)
Speed.Dev.#8.....: 168.6 MH/s (80.82ms)

Speed.Dev.#*.....: 1324.6 MH/s

Hash type: NetNTLMv1-VANILLA / NetNTLMv1+ESS
Speed.Dev .#1.....: 4720.0 MH/s (92.37ms)
Speed.Dev.#2.....: 4697.4 MH/s (92.82ms)
Speed.Dev.#3.....: 4530.3 MH/s (96.24ms)
Speed.Dev.#4.....: 4710.7 MH/s (92.56ms)
Speed.Dev.#5.....: 4456.6 MH/s (97.81ms)

Speed.Dev .#6.....: 4737.6 MH/s (92.02ms)
Speed.Dev.#7...... 4407.3 MH/s (98.93ms)
Speed.Dev.#8.....: 4714.3 MH/s (92.49ms)

Speed.Dev.#*.....: 36974.2 MH/s

Hash type: NetNTLMv?2
Speed.Dev .#1.....: 295.5 MH/s (92.24ms)
Speed.Dev.#2.....: 291.7 MH/s (93.42ms)
Speed.Dev.#3.....: 287.9 MH/s (94.67ms)
Speed.Dev.#4.....: 294.8 MH/s (92.42ms)
Speed.Dev.#5.....: 293.9 MH/s (92.72ms)
Speed.Dev .#6.....: 294.3 MH/s (92.60ms)
Speed.Dev.#7...... 294.7 MH/s (92.46ms)
Speed.Dev.#8.....: 294.6 MH/s (92.50ms)

Speed.Dev.#*.....: 2347.3 MH/s

Hash type: IPMI2 RAKP HMAC-SHAI
Speed.Dev.#1.....: 346.0 MH/s (78.76ms)
Speed.Dev.#2.....: 349.4 MH/s (77.99ms)
Speed.Dev.#3.....: 354.6 MH/s (76.83ms)
Speed.Dev.#4.....: 362.8 MH/s (75.09ms)
Speed.Dev.#5.....: 326.6 MH/s (83.42ms)
Speed.Dev .#6.....: 365.4 MH/s (74.57ms)
Speed.Dev.#7.....:. 335.4 MH/s (81.25ms)
Speed.Dev.#8.....: 359.4 MH/s (75.82ms)

Speed.Dev.#*.....: 2799.6 MH/s

44

Hash type: Kerberos 5 AS-REQ Pre-Authtype 23
Speed.Dev .#1.....: 47808.6 kH/s (142.52ms)
Speed.Dev.#2.....: 47191.6 kH/s (144.39ms)
Speed.Dev .#3.....: 47967.8 kH/s (142.05ms)
Speed.Dev.#4.....: 47687.9 kH/s (142.88ms)
Speed.Dev .#5.....: 48071.0 kH/s (141.74ms)
Speed.Dev .#6.....: 47765.8 kH/s (142.63ms)
Speed.Dev.#7.....: 47612.6 kH/s (143.11ms)
Speed.Dev .#8.....: 47767.8 kH/s (142.65ms)

Speed.Dev.#*.....: 381.9 MH/s

Hash type: Kerberos 5 TGS-REP type 23
Speed.Dev .#1.....: 46763.9 kH/s (72.84ms)
Speed.Dev.#2.....: 46724.8 kH/s (72.90ms)
Speed.Dev.#3.....: 46731.8 kH/s (72.88ms)
Speed.Dev.#4.....: 47354.2 kH/s (143.89ms)
Speed.Dev.#5.....: 47632.9 kH/s (143.05ms)
Speed.Dev .#6.....: 47401.7 kH/s (143.75ms)
Speed.Dev.#7.....: 47301.7 kH/s (144.06ms)
Speed.Dev.#8.....: 46954.6 kH/s (72.54ms)

Speed.Dev.#*...... 376.9 MH/s

Hash type: DNSSEC (NSEC3)
Speed.Dev .#1...... 714.1 MH/s (76.24ms)
Speed.Dev.#2.....: 742.3 MH/s (73.41ms)
Speed.Dev.#3.....: 773.0 MH/s (70.50ms)
Speed.Dev.#4.....: 781.6 MH/s (69.65ms)
Speed.Dev.#5.....: 736.5 MH/s (73.99ms)
Speed.Dev .#6.....: 764.6 MH/s (71.27ms)
Speed.Dev.#7...... 747.8 MH/s (72.87ms)
Speed.Dev.#8.....: 776.6 MH/s (70.16ms)

Speed.Dev.#*.....: 6036.6 MH/s

Hash type: PostgreSQL Challenge-Response Authentication (MDS5)
Speed.Dev .#1.....: 1430.2 MH/s (75.90ms)
Speed.Dev.#2.....: 1395.0 MH/s (77.80ms)
Speed.Dev.#3.....: 1353.3 MH/s (80.22ms)
Speed.Dev.#4.....: 1487.0 MH/s (73.00ms)
Speed.Dev.#5.....: 1321.7 MH/s (82.15ms)
Speed.Dev .#6.....: 1506.1 MH/s (72.07ms)
Speed.Dev.#7.....: 1323.9 MH/s (82.01ms)

Speed.Dev.#8.....: 1461.1 MH/s (74.30ms)

Speed.Dev.#*.....: 11278.5 MH/s

46

Hash type: MySQL Challenge-Response Authentication (SHAT)

Speed.Dev .#1.....: 518.0 MH/s (52.52ms)
Speed.Dev.#2.....: 503.8 MH/s (54.01ms)
Speed.Dev.#3.....: 512.9 MH/s (53.06ms)
Speed.Dev.#4.....: 528.4 MH/s (51.50ms)
Speed.Dev.#5.....: 508.2 MH/s (53.55ms)
Speed.Dev .#6.....: 533.2 MH/s (76.66ms)
Speed.Dev.#7.....:. 502.3 MH/s (54.18ms)
Speed.Dev.#8.....: 540.8 MH/s (75.58ms)

Speed.Dev.#*.....: 4147.6 MH/s

Hash type: SIP digest authentication (MDS5)
Speed.Dev.#1...... 511.8 MH/s (53.17ms)
Speed.Dev.#2.....: 509.6 MH/s (53.40ms)
Speed.Dev.#3.....: 510.8 MH/s (53.27ms)
Speed.Dev.#4.....: 514.5 MH/s (52.87ms)
Speed.Dev.#5.....: 509.3 MH/s (53.44ms)
Speed.Dev.#6.....: 515.8 MH/s (52.76ms)
Speed.Dev.#7.....: 508.3 MH/s (53.55ms)
Speed.Dev.#8.....: 511.9 MH/s (53.17ms)

Speed.Dev.#*.....: 4091.9 MH/s

47

Hash type: PostgreSQL
Speed.Dev .#1.....: 4405.2 MH/s (49.47ms)
Speed.Dev.#2.....: 4414.2 MH/s (49.37ms)
Speed.Dev .#3.....: 4267.3 MH/s (51.06ms)
Speed.Dev.#4.....: 4575.1 MH/s (95.31ms)
Speed.Dev .#5.....: 4146.7 MH/s (52.56ms)
Speed.Dev .#6.....: 4615.7 MH/s (94.47ms)
Speed.Dev.#7.....: 4160.1 MH/s (52.39ms)
Speed.Dev.#8.....: 4584.1 MH/s (95.12ms)

Speed.Dev #%*.....: 35168.4 MH/s

Hash type: MSSQL(2000)
Speed.Dev .#1.....: 1734.2 MH/s (62.58ms)
Speed.Dev.#2.....: 1819.9 MH/s (59.64ms)
Speed.Dev.#3.....: 1769.9 MH/s (61.32ms)
Speed.Dev.#4.....: 1871.3 MH/s (58.00ms)
Speed.Dev.#5.....: 1736.4 MH/s (62.52ms)
Speed.Dev .#6.....: 1874.3 MH/s (57.91ms)
Speed.Dev.#7.....: 1754.6 MH/s (61.85ms)
Speed.Dev.#8.....: 1895.5 MH/s (57.25ms)

Speed.Dev.#*.....: 14456.2 MH/s

Hash type: MSSQL/(2005)

Speed.Dev .#1.....: 1832.0 MH/s (59.25ms)
Speed.Dev.#2.....: 1822.2 MH/s (59.57ms)
Speed.Dev.#3.....: 1824.8 MH/s (59.49ms)
Speed.Dev.#4.....: 1841.1 MH/s (58.96ms)
Speed.Dev .#5.....: 1696.2 MH/s (64.00ms)
Speed.Dev .#6.....: 1879.5 MH/s (57.75ms)
Speed.Dev.#7.....: 1749.0 MH/s (62.07ms)

Speed.Dev.#8.....: 1920.5 MH/s (56.52ms)

Speed.Dev #%*.....: 14565.2 MH/s

Hash type: MSSQL(2012)
Speed.Dev.#1.....: 180.1 MH/s (74.78ms)
Speed.Dev.#2.....: 180.1 MH/s (75.66ms)
Speed.Dev.#3.....: 180.7 MH/s (75.41ms)
Speed.Dev.#4.....: 181.1 MH/s (74.34ms)
Speed.Dev.#5.....: 180.7 MH/s (74.50ms)
Speed.Dev.#6.....: 180.3 MH/s (75.55ms)
Speed.Dev.#7.....:. 180.2 MH/s (75.60ms)
Speed.Dev.#8.....: 180.3 MH/s (75.58ms)

Speed.Dev.#*.....: 1443.5 MH/s

49

Hash type: MySQL323

Speed.Dev .#1.....: 18603.4 MH/s (93.75ms)
Speed.Dev.#2.....: 19034.4 MH/s (91.63ms)
Speed.Dev.#3.....: 19019.5 MH/s (91.71ms)
Speed.Dev.#4.....: 19411.8 MH/s (89.85ms)
Speed.Dev.#5.....: 19523.0 MH/s (89.34ms)
Speed.Dev .#6.....: 19824.0 MH/s (87.98ms)
Speed.Dev.#7.....: 18995.3 MH/s (91.82ms)

Speed.Dev .#8.....: 19696.5 MH/s (88.54ms)

Speed.Dev.#*...... 154.1 GH/s

Hash type: MySQLA4.1/MySQLS5
Speed.Dev.#1...... 871.1 MH/s (62.55ms)
Speed.Dev.#2.....: 863.1 MH/s (63.14ms)
Speed.Dev.#3.....: 892.0 MH/s (61.07ms)
Speed.Dev.#4.....: 921.5 MH/s (59.10ms)
Speed.Dev.#5.....: 834.7 MH/s (65.28ms)
Speed.Dev .#6.....: 894.4 MH/s (60.91ms)
Speed.Dev.#7...... 815.6 MH/s (66.81ms)
Speed.Dev.#8.....: 905.8 MH/s (60.15ms)

Speed.Dev.#*.....: 6998.2 MH/s

50

Hash type: mdSaprl, MDS5(APR), Apache MD5
Speed.Dev.#1.....: 2497.0 kH/s (84.13ms)
Speed.Dev.#2.....: 2533.6 kH/s (82.91ms)
Speed.Dev.#3.....: 2510.8 kH/s (83.65ms)
Speed.Dev.#4.....: 2672.9 kH/s (78.54ms)
Speed.Dev.#5.....: 2418.1 kH/s (86.89ms)
Speed.Dev.#6.....: 2667.8 kH/s (78.70ms)
Speed.Dev.#7.....: 2491.5 kH/s (84.30ms)
Speed.Dev.#8.....: 2681.7 kH/s (78.29ms)

Speed.Dev.#%*.....: 20473.3 kH/s

Hash type: SHA-1(Base64), NSS LDAP, Netscape LDAP SHA
Speed.Dev.#1.....: 1911.3 MH/s (56.79ms)
Speed.Dev.#2.....: 1973.7 MH/s (54.99ms)
Speed.Dev.#3.....: 1907.3 MH/s (56.89ms)
Speed.Dev.#4.....: 2015.0 MH/s (53.86ms)
Speed.Dev.#5.....: 1884.5 MH/s (57.60ms)
Speed.Dev .#6.....: 2009.2 MH/s (54.01ms)
Speed.Dev.#7.....: 1853.6 MH/s (58.54ms)
Speed.Dev.#8.....: 2017.0 MH/s (53.81ms)

Speed.Dev.#*.....: 15571.6 MH/s

Hash type: SSHA-1(Base64), nsldaps, Netscape LDAP SSHA
Speed.Dev #1.....: 1961.5 MH/s (55.34ms)
Speed.Dev.#2.....: 1940.2 MH/s (55.95ms)
Speed.Dev.#3.....: 1892.6 MH/s (57.34ms)
Speed.Dev.#4.....: 2031.0 MH/s (53.44ms)

Speed.Dev .#5.....: 1883.5 MH/s (57.63ms)
Speed.Dev .#6.....: 2011.3 MH/s (53.96ms)
Speed.Dev.#7.....: 1863.8 MH/s (58.23ms)
Speed.Dev.#8.....: 2029.2 MH/s (53.48ms)

Speed.Dev.#*.....: 15613.0 MH/s

Hash type: SSHA-512(Base64), LDAP {SSHAS512}
Speed.Dev.#1...... 177.3 MH/s (76.82ms)
Speed.Dev.#2.....: 177.6 MH/s (76.70ms)
Speed.Dev.#3.....: 178.4 MH/s (76.33ms)
Speed.Dev.#4.....: 178.7 MH/s (76.25ms)
Speed.Dev.#5.....: 177.4 MH/s (76.83ms)
Speed.Dev .#6.....: 178.2 MH/s (76.45ms)
Speed.Dev.#7...... 177.4 MH/s (76.80ms)
Speed.Dev.#8.....: 177.9 MH/s (76.56ms)

Speed.Dev.#*.....: 1423.0 MH/s

Hash type: LM
Speed.Dev #1.....: 3758.6 MH/s (57.87ms)
Speed.Dev.#2.....: 3751.9 MH/s (58.01ms)
Speed.Dev .#3.....: 3803.6 MH/s (57.19ms)
Speed.Dev.#4.....: 3772.9 MH/s (57.65ms)
Speed.Dev .#5.....: 3763.3 MH/s (57.82ms)
Speed.Dev .#6.....: 3796.4 MH/s (57.30ms)
Speed.Dev.#7.....: 3761.3 MH/s (57.83ms)
Speed.Dev.#8.....: 3775.4 MH/s (57.65ms)

Speed.Dev.#*.....: 30183.4 MH/s

Hash type: NTLM
Speed.Dev .#1.....: 8089.8 MH/s (53.88ms)
Speed.Dev.#2.....: 8196.5 MH/s (53.18ms)
Speed.Dev.#3.....: 8123.2 MH/s (53.66ms)
Speed.Dev.#4.....: 8549.1 MH/s (50.99ms)
Speed.Dev.#5.....: 7940.4 MH/s (54.90ms)
Speed.Dev .#6.....: 8424.6 MH/s (51.74ms)
Speed.Dev.#7.....: 7883.6 MH/s (55.29ms)
Speed.Dev.#8.....: 8519.3 MH/s (51.16ms)

Speed.Dev.#*.....: 65726.4 MH/s

Hash type: MS-AzureSync PBKDF2-HMAC-SHA256
Speed.Dev .#1.....: 2724.5 kH/s (74.28ms)
Speed.Dev.#2.....: 2810.0 kH/s (71.90ms)
Speed.Dev.#3.....: 2750.2 kH/s (73.44ms)
Speed.Dev.#4.....: 2882.1 kH/s (69.83ms)
Speed.Dev.#5.....: 2704.5 kH/s (74.85ms)
Speed.Dev.#6.....: 2882.5 kH/s (69.99ms)
Speed.Dev.#7.....: 2669.8 kH/s (75.84ms)
Speed.Dev.#8.....: 2869.0 kH/s (70.31ms)

Speed.Dev.#%*.....: 22292.8 kH/s

Hash type: descrypt, DES(Unix), Traditional DES
Speed.Dev.#1...... 176.1 MH/s (77.25ms)
Speed.Dev.#2.....: 175.5 MH/s (77.50ms)
Speed.Dev.#3.....: 176.1 MH/s (77.24ms)
Speed.Dev.#4.....: 175.9 MH/s (77.27ms)
Speed.Dev.#5.....: 175.3 MH/s (77.59ms)
Speed.Dev .#6.....: 176.8 MH/s (76.91ms)
Speed.Dev.#7...... 175.0 MH/s (77.71ms)
Speed.Dev.#8.....: 175.8 MH/s (77.34ms)

Speed.Dev.#*.....: 1406.5 MH/s

Hash type: BSDiCrypt, Extended DES
Speed.Dev.#1...... 519.8 kH/s (67.84ms)
Speed.Dev.#2.....: 524.3 kH/s (67.25ms)
Speed.Dev.#3.....: 524.9 kH/s (67.17ms)
Speed.Dev.#4.....: 522.2 kH/s (67.52ms)
Speed.Dev.#5.....: 516.6 kH/s (68.26ms)
Speed.Dev .#6.....: 525.7 kH/s (67.07ms)
Speed.Dev.#7.....: 503.2 kH/s (70.09ms)
Speed.Dev.#8.....: 524.2 kH/s (67.27ms)

Speed.Dev.#*.....: 4161.0 kH/s

Hash type: mdScrypt, MD5(Unix), FreeBSD MDS5, Cisco-IOS MD5
Speed.Dev.#1.....: 2660.3 kH/s (59.16ms)
Speed.Dev.#2.....: 2578.8 kH/s (61.05ms)
Speed.Dev.#3.....: 2601.5 kH/s (60.52ms)
Speed.Dev.#4.....: 2650.6 kH/s (59.39ms)
Speed.Dev.#5.....: 2469.2 kH/s (63.78ms)
Speed.Dev.#6.....: 2608.1 kH/s (60.35ms)
Speed.Dev.#7.....: 2453.8 kH/s (64.19ms)
Speed.Dev.#8.....: 2624.1 kH/s (60.00ms)

Speed.Dev.#*.....: 20646.5 kH/s

Hash type: berypt, Blowfish(OpenBSD)

Speed.Dev.#1...... 1796 H/s (26.05ms)
Speed.Dev.#2...... 1789 H/s (26.16ms)
Speed.Dev.#3...... 1817 H/s (25.75ms)
Speed.Dev.#4...... 1794 H/s (26.08ms)
Speed.Dev.#5...... 1814 H/s (25.79ms)
Speed.Dev.#6...... 1815 H/s (25.79ms)
Speed.Dev.#7...... 1802 H/s (25.97ms)
Speed.Dev.#8...... 1812 H/s (25.83ms)

Speed.Dev.#*...... 14439 H/s

Hash type: sha256crypt, SHA256(Unix)
Speed.Dev.#1.....: 106.0 kH/s (50.66ms)
Speed.Dev.#2.....: 105.3 kH/s (51.00ms)
Speed.Dev.#3.....: 105.5 kH/s (50.86ms)
Speed.Dev.#4.....: 108.5 kH/s (49.48ms)
Speed.Dev.#5.....: 102.5 kH/s (52.35ms)
Speed.Dev.#6.....: 108.0 kH/s (49.73ms)
Speed.Dev.#7...... 103.4 kH/s (51.89ms)
Speed.Dev.#8.....: 109.1 kH/s (49.22ms)

Speed.Dev.#*.....: 848.3 kH/s

56

Hash type: sha512crypt, SHAS512(Unix)
Speed.Dev.#1...... 35327 H/s (76.44ms)
Speed.Dev.#2.....: 33959 H/s (79.48ms)
Speed.Dev.#3.....:. 34833 H/s (77.47ms)
Speed.Dev.#4...... 35590 H/s (75.89ms)
Speed.Dev.#5.....: 33576 H/s (80.39ms)
Speed.Dev .#6.....:. 34901 H/s (77.33ms)
Speed.Dev.#7...... 34829 H/s (77.48ms)
Speed.Dev.#8.....:. 35363 H/s (76.38ms)
Speed.Dev.#*.....: 278.4 kH/s
Speed.Dev.#7...... 689.5 MH/s (79.05ms)
Speed.Dev.#8.....: 743.6 MH/s (73.29ms)

Speed.Dev.#*.....: 5727.3 MH/s

CPU Test Machine Benchmark Results:

root@ip-172-31-43-196 hashcat-3.30]# ./hashcat64.bin -b

hashcat (v3.30) starting in benchmark mode...

OpenCL Platform #1: Intel(R) Corporation

58

Device #1:Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz, 2047/14622 MB allocatable,

SMCU .

Hash type: MD4

Speed.Dev.#1...... 391.4 MH/s (21.37ms)

Hash type: MD5

Speed.Dev.#1.....: 219.2 MH/s (38.22ms)

Hash type: Half MD5

Speed.Dev.#1.....: 143.6 MH/s (58.35ms)

Hash type: SHA1

Speed.Dev.#1...... 120.4 MH/s (69.60ms)

Hash type: SHA256

Speed.Dev.#1.....: 48370.0 kH/s (86.66ms)

Hash type: SHA384

Speed.Dev .#1.....: 12959.8 kH/s (80.85ms)

Hash type: SHAS512

Speed.Dev .#1.....: 12833.2 kH/s (81.65ms)

Hash type: SHA-3(Keccak)

Speed.Dev.#1.....: 11684.9 kH/s (89.68ms)

Hash type: SipHash

Speed.Dev .#1.....: 244.8 MH/s (34.21ms)

Hash type: RipeMD160

Speed.Dev.#1.....: 57361.1 kH/s (73.06ms)

Hash type: Whirlpool

Speed.Dev.#1.....: 3201.5 kH/s (81.50ms)

Hash type: GOST R 34.11-94

Speed.Dev.#1.....: 3857.5 kH/s (67.63ms)

Hash type: GOST R 34.11-2012 (Streebog) 256-bit

Speed.Dev.#1.....: 1378.2 kH/s (95.05ms)

59

Hash type: GOST R 34.11-2012 (Streebog) 512-bit

Speed.Dev .#1.....: 1378.1 kH/s (94.96ms)

Hash type: DES (PT = $salt, key = $pass)

Speed.Dev .#1.....: 25573.2 kH/s (81.79ms)

Hash type: 3DES (PT = $salt, key = $pass)

Speed.Dev.#1.....: 6376.6 kH/s (82.14ms)

Hash type: phpass, MD5(Wordpress), MD5(phpBB3), MD5(Joomla)

Speed.Dev.#1...... 74729 H/s (54.44ms)

Hash type: scrypt

Speed.Dev .#1.....: 0 H/s (2.43ms)

Hash type: PBKDF2-HMAC-MD5

Speed.Dev.#1...... 75724 H/s (53.31ms)

Hash type: PBKDF2-HMAC-SHAI1

Speed.Dev.#1...... 45658 H/s (88.66ms)

Hash type: PBKDF2-HMAC-SHA256

Speed.Dev.#1...... 17934 H/s (37.64ms)

60

Hash type: PBKDF2-HMAC-SHAS512

Speed.Dev.#1...... 6482 H/s (78.62ms)

Hash type: Skype

Speed.Dev .#1.....: 154.2 MH/s (54.36ms)

Hash type: WPA/WPA2

Speed.Dev.#1...... 5624 H/s (90.53ms)

Hash type: IKE-PSK MD5

Speed.Dev .#1.....: 18647.3 kH/s (56.17ms)

Hash type: IKE-PSK SHA1

Speed.Dev.#1.....: 11367.2 kH/s (92.18ms)

Hash type: NetNTLMv1-VANILLA / NetNTLMvI1+ESS

Speed.Dev.#1.....: 238.0 MH/s (35.19ms)

Hash type: NetNTLMv?2

Speed.Dev.#1.....: 17148.7 kH/s (61.09ms)

Hash type: IPMI2 RAKP HMAC-SHAI

Speed.Dev.#1.....: 22893.4 kH/s (91.55ms)

61

Hash type: Kerberos 5 AS-REQ Pre-Authetype 23

Speed.Dev.#1.....: 3234.9 kH/s (80.00ms)

Hash type: Kerberos 5 TGS-REP etype 23

Speed.Dev .#1.....: 3306.6 kH/s (78.26ms)

Hash type: DNSSEC (NSEC3)

Speed.Dev .#1.....: 43621.6 kH/s (96.09ms)

Hash type: SHA-1(Base64), nsldap, Netscape LDAP SHA

Speed.Dev.#1...... 120.2 MH/s (69.75ms)

Hash type: SSHA-1(Base64), nsldaps, Netscape LDAP SSHA

Speed.Dev.#1.....: 120.3 MH/s (69.70ms)

Hash type: SSHA-512(Base64), LDAP {SSHA512}

Speed.Dev.#1.....: 12853.2 kH/s (81.52ms)

Hash type: LM

Speed.Dev.#1.....: 25799.0 kH/s (81.07ms)

Hash type: NTLM

Speed.Dev.#1...... 402.1 MH/s (20.81ms)

62

63
Hash type: Domain Cached Credentials (DCC), MS-Cache

Speed.Dev .#1.....: 125.0 MH/s (67.04ms)

Hash type: Domain Cached Credentials 2 (DCC2), MS-Cache 2

Speed.Dev.#1...... 4526 H/s (90.33ms)

Hash type: MS-AzureSync PBKDF2-HMAC-SHA256

Speed.Dev.#1...... 50307 H/s (52.63ms)

Hash type: descrypt, DES(Unix), Traditional DES

Speed.Dev .#1.....: 1055.6 kH/s (496.44ms)

Hash type: BSDiCrypt, Extended DES

Speed.Dev.#1...... 15896 H/s (85.55ms)

Hash type: mdScrypt, MD5(Unix), FreeBSD MDS5, Cisco-IOS MD5

Speed.Dev.#1...... 35248 H/s (57.66ms)

Hash type: berypt, Blowfish(OpenBSD)

Speed.Dev.#1...... 2448 H/s (51.08ms)

Hash type: sha256crypt, SHA256(Unix)

Speed.Dev.#1...... 1805 H/s (56.40ms)

Hash type: sha512crypt, SHA512(Unix)
Speed.Dev.#1...... 1702 H/s (59.90ms)

Speed.Dev .#1.....: 0 H/s (39.28ms)

Hash rate denominations
1 kH/s is 1,000 (one thousand) hashes per second
1 MH/s is 1,000,000 (one million) hashes per second.
1 GH/s is 1,000,000,000 (one billion) hashes per second.
1 TH/s is 1,000,000,000,000 (one trillion) hashes per second.

1 PH/s is 1,000,000,000,000,000 (one quadrillion) hashes per second.

1 EH/s is 1,000,000,000,000,000,000 (one quintillion) hashes per second.

Conversions
1 MH/s = 1,000 kH/s
1 GH/s = 1,000 MH/s = 1,000,000 kH/s

1 TH/s = 1,000 GH/s = 1,000,000 MH/s = 1,000,000,000 kH/s

64

65
3.7 Testing Environment Diagram

The testing Environment of this research is shown below:

N
EBS .
wolurne —r
AWS iy o
L SOCUNTY gloup)
\ v,

Figure 7. Testing Environment

3.8 Wordlist Selected
For the test, different filters and combination of uppercase letters, lowercase letters,digits,
special characters will be used. The test will be done using thehybrid attack at first before

applying brute force attacks where every combination of the characters will be tried.

66
3.9 Sample Password Hashed Dump File
In order to conduct the test some common password upto 8 characters in length characters’
length and will hash it with MD5 and SHA1 as well as more cryptographically strong hashing
algorithm berypt. The following sample password hash has been selected
Sample password list:
Password
HELLOO
MYSECRET
test1234
password!
You9can!
75,<>

Mysecret

TheMDS5 and SHA1 hash of the generated password from the above is generated by the following

code:

import hashlib

s='password"

sb=s.encode ("ut£fE8")

#MDS generator

print (hashlib.md5(sk) .herdigest(})}
S5fd4dec3biaaTeideldB327dekbEE2c£00
#5HAZ56 generator

print (hashlib.s=shaZi6(=sb) . hexdigest(})

Sbaabledcib83£3f0682250b6ctf8331bTeea8£dE

MD?5 Hash:

dc647eb65e6711e155375218212b3964

16454bd041c46012e31778eb94b8111a

95815228812d2303ae045cffc43a02cd

16d7a4fca7442dda3ad93c¢9a726597e4

49124c0c152b237543121019443d176f

b64b0e1165a77bd90a1673469f1af0el

7185ad7f0851780a2db24edc8347b12a

06c219e5bc8378f3a8a3{83b4b7e4649

SHA256 Hash:

e7cf3ef4f17¢3999a9412c61612e8a888e5b1026878e4e19398b23bd38ec221a

2d32d2db26a9a8e8b3a69a5739a17981a5a064a5¢3037a8d3891ab3e41{57246

3fcdbc4a0ed38df8d4bd234e2c8ad3b2623fa5265f31763d1e91a848471a8a9%b

937e8d5fbb48bd4949536cd65b8d35¢426b80d2f830c5¢c308e2cdec422ae2244

c075349b9b6f6b3e41b34e4e71ac22a685102b0b2246c5f84d67cSeed3ad391b

4824033be89e919a06ac33255b06761f706edc1ac8fc37b86574892ab7¢c3248d

9070906£306d5d34¢301b9f4cda9t71c2a19543ccea44b6b08c18b3d76941936

652c¢7dc687d98c9889304ed2e408c74b611e86a40caa51c4b43£1dd5913¢5¢d0

67

68
We also generateabcrypt hash of the following password with the following code.
Sample Password:
HELLO
1!Su
Pass
pass

1234

/<

import bcrypt

password = b"Pass"

Hash a password for the first time, with a certain number of rounds
hashed = bcrypt.hashpw(password, bcrypt.gensalt(14))

print (hashed)

b'$2b$14$4tWHOXSyYtuVD8Cbz jMUbeNgfMKGKiECODTkQ4Zcf11wI6nJADTXW'

Here the berypt hash of sample password “Pass” was created with 14 round (2*14=16384) of

generation via gensalt() function. For the sake of our test, we will be keeping it to minimal, less

than 10.

The Resulting generated berypt hash of the above sample password was:
$2y$10$vHvVY3cA252u/68KesxmOg. WIjkWOHQcFqXc.KRSV4aLn/pIC1D5ZC
$2y$10$eVaCxfaaMDXKSS5LTuluX206k3/1UpGE83luvxfoGdkMO6HAMV WirvW
$2y$10$K8nQaEFpiZkSdkjKIXfjveud4pTKD/lvpOU2Cu/8INh2vPDUgS29%
$2y$10$wacXMOHGg/26pzRGVIEE40OM g4jGIHjhptHKMdowmdr4zpTyuOtriC

$2y$10$FwaS9uiu7mkCL.d9fCYIL.PsF8qY 511ZdrbJOgBBcHdDLhours3gxPLq

$2y$10$kjGTFQVsc7eisl YriwOibul GZilrUodOunnpYOrT9eeSTY GBJRiui

69
Chapter 4: Analyzing Results
4.1 Introduction
In this section, we will analyze the result performed in the previous test scenario and all
the test results are included in the appendix section at the end of this paper. We end this section

with recommendations based on analyzing the test result.

4.2 Test Results
We ran the CPU crack and GPU cracking on the sample MD5, SHA-256, and Berypt hash

dump. We applied thedifferent filter as follows:

u= uppercase letters only — total 26 characters

= lowercase letter only — total 26 characters

ul= uppercase and lowercase — total 52 characters

d= digits only — total 10 digits

s= special characters only — total 33 characters

Is/us= lowercase/uppercase with special characters — total 59 characters

usld= lowercase, uppercase, special character, and digits- total 95 characters
We also conducted an experimental run where we applied fixed characters in certain positions to
observe any improvements in timing. All our CPU/GPU/Experimental test results are shown

below in the following tables.

70

Table 4

MD)5 crackingperformance With CPU machine

(Teyog)punoy Ul] Ul g] Uurwgsinoy] urw)gsinoyg — SInoy[sAepg UIwgyg SInoyj

g

(ps[ng)
juBOGNO X

(ng)
LIIDISAN

(s8)
<L)

(I8)

19I09SAW

(Img)
pIlomssedq

(s1L)
jIomssed

(P1L)
PETISN

(n9)
OTTdH

11

urre |

ure |

2987

urwg [sInoy |

urwg] sInoy|

urwg | sInoy|

urug

[n PI ST s

S/HINCT WM NO SAN

(porewnso)

sAep9yg

ps[n

71

In the Table -4 as the result is as follows:

Using uppercase only character (u) it takes 2sec for 6-character long password, HELLO
to crack where 8-character long password ‘MYSECRET’ takes 12 min and it finishes
checking all the combination of 8 characters roughly at thesame time too.
Using lowercase only character (1) it takes 12 min to crack 8-character long password
‘mysecret’ as well as finishes checking all the combination of 8 characters roughly at
thesame time too.
Using acombination of uppercase and lowercase character (ul) it takes 1 hour 12 min to
finish cracking 8 char long ‘Password’ as well as finishes checking all the combination
of 8 characters roughly in thesame time too.
Using lowercase and digits (I1d) it takes 3 min to crack 7 char long ‘tes1234’ password
while it takes 2hours 30 min to finish checking all the combination ofthe 8 char field.
Using lowercase and aspecialcharacter(ls) it takes it takes 1hours 13 min to find the 7-
char password ‘Passwor!” while it will take approximately 5days and 1hours to finish
checking all the combination.
The way we estimated 8 char long password cracking time with lowercase and special
characters are as follows:

v’ Total characters: lowercase (26) and special characters (33) =33+26=59

v' Total combination possible 598=1.4683044e+14

v" MD5 CPU cracking speed= 312MHS = 312000000H/s

72
v" Cracking time in days=
1.4683044e+14/312000000=470610.376937s/3600=130.725104705hours/24
=5days lhours
Using the special characters only it takes 1hours 12 min to finish cracking 8 char long
password “./?!”;<>’ while it takes 1hours25min to finish checking all the special
character combination of the8char field.
At last we try all the lowercase, uppercase, special characters and digits(usld) for all the
8 filed of the password and though we could not find out 8 char long password
“You9can!” we did find to estimate how long it will take to look up all the (USLD)
combination of each 8-char filed with our CPU machine with thefollowing calculation:
v" Total characters: lowercase (26) and special characters (33), uppercase (26)
and digits (10) =33+26+26+10=95
v' Total combination possible [95] 8= 6.6342043e+15
v" MD5 CPU cracking speed= 312MHS = 312000000H/s
v" Cracking time in days= 6.6342043e+15/ 312000000H/s

=21263475.3618s/3600=5906.52093384hours/24=246days

73

Table 5

MDS5 cracking performance With GPU machine

(xeyog)punoy
[Imq

(Ps[ng)
juBOGNO X

(ng)
LHIDHISAN

(s8)

<L)

(I8)
10103SAW

(Ing)
piomssed

(S1L)
j1omssed

(P1L)
PeCIsal

(n9)
OT1dH

191

998 ¢ 29s()¢

2980

29801

298]

unuzp o ung
unug|
J9s7
n Pl

SINOY J9S{ZUIW |

298/,

uruy

N S

S/HILITIZUWMNID SAN

(porewnso)
sAepy(1eydy)sioy |

sInoy|

sIoy|

sImoy |

uroe

295 O

ps[n

74

In the Table -5 as the result is as follows:

Using uppercase only character (u) it takes 1sec from 6-character long password, HELLO
to crack where 8-character long password ‘MYSECRET”’ takes 10 Sec and it finishes
checking all the combination of 8 characters roughly in 30 secs.

Using lowercase only character (1) its takes 10 secs to crack 8-character long password
‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in 30
secs.

Using acombination of uppercase and lowercase character (ul) it takes 12 min to finish
cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8
characters roughly in thesame time too.

Using lowercase and digits (1d) it takes 2secs to crack 7 char long ‘tes1234’ password
while it takes 2 mins to finish checking all the combination of the 8 character field.
Using lowercase and aspecialcharacter(ls) it takes it takes 2 min to find the 7-char
password ‘Passwor!” while it will take approximately 2hours to finish checking all the
combination.

Using the special characters only it takes 7sec to finish cracking 8 char long password
©/2;<>" while it takes 1min 28 sec to finish checking all the special character
combination of the8char field.

At last, we try all the lowercase, uppercase, special characters and digits(usld) for all the
8 field of the password and for the 8-char long password (.
/77;<>MYSECRET,You9can!) . We could not finish the all the combination of 8 chars

but we estimated it will take around 4 days to finish checking all the possible combination

75
of 8 -char password using our GPU machine. The way we estimated the cracking time as
follows:

v’ Total characters: lowercase (26) and special characters (33), uppercase (26)
and digits (10) =33+26+26+10=95

v' Total combination possible [95] ~8=6.6342043e+15

v" MDS5 GPU cracking speed= 21117MHS = 21117000000H/s

v" Cracking time in days= 6.6342043e+15/21117000000H/s

=314164.14798s/3600=87.2678188833hours/24=4days

76

Table 6

SHA-256 cracking performance With CPU machine

(Teyog)punoy
1ng

(psing)

juBdENO X

(ng)
LIADHISAN

(s8)

<L)

(I8)

12I03sAW

(Img)
pIlomssedq

(s1L)
jIomssed

(P1L)
Y€1

(n9)
OTTdH

1)1

uruge uruge
urog
uruge
295G
n [

sInoy
0C skep.

sIoyg

=Ny

n

surugg
sInoyg

urwe |

PI

(reyoL)
suru)g sinoyg
sinoy/,
urOg
urg|
ST S

S/HAYS688 WM [1dD 9ST-VHS

(porewnso)
(1eyog)sAepeog
(reyo/)sKepe

skepg

sAp6

SuIw 6 4|

ps[n

77

In the Table -6 as the result is as follows:

Using uppercase only character (u) it takes 15sec for 6-character long password HELLO
to crack where 8-character long password ‘MYSECRET’ takes 20 mins and it finishes
checking all the combination of 8 characters roughly in 38mins.
Using lowercase only character (1) it takes 26 min to crack 8-character long password
‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in
38mins.
Using a combination of uppercase and lowercase character (ul) it takes 3 hours to finish
cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8
characterswill take estimated 7days 20 hours to finish.
The way we estimated the cracking time as follows:

v’ Total characters: lowercase (26) , uppercase (26) =26+26=52

v" Total combination possible [52] ~8=5.3459729¢+13

v" SHA-256 CPU cracking speed,88954KH/s=88954000h/s
v" Cracking time in days=
5.3459729e+13/88954000=600981.7268645/3600=166.939368573hours/24=
7days.
Using lowercase and digits (1d) it takes 15 min to crack 7 char long ‘tes1234’ password
while it takes 9hours 25 min to finish checking all the combination ofthe 8 char field.
Using lowercase and specialcharacter(ls) it takes it takes 15 min to find the 7-char

password ‘Passwor!” while it will take 7hours 50 min to check 7 charsfield.

78

Using the special characters only it takes 20 min to finish cracking 8 char long passwords

./21’;<>" while it takes 9hours to finish checking all the special character combination

of8char field.

At last we try all the lowercase, uppercase, special characters and digits(usld) for all the

8 field of the password and though we could not find out 8 char long password ‘You9can!’

we did find to estimate how long it will take to look up all the (USLD) combination of

each 7 char and 8-char filed with our CPU machine with following calculation

Time Estimation for 7-char password

v

Total characters: lowercase (26) and special characters (33), uppercase (26)
and digits (10) =33+26+26+10=95

Total combination possible [95] A7=6.983373e+13

SHA-256 CPU cracking speed, 88954KH/s=88954000h/s

Cracking time in days= 6. 983373e+13/ 88954000h

/s=785054.405753s/3600=218.070668265/24=9days

Time Estimation for 8-char password

v

Total characters: lowercase (26) and special characters (33), uppercase (26)
and digits (10) =33+26+26+10=95

Total combination possible [95] ~8=6.6342043e+15

SHA-256 CPU cracking speed,88954KH/s=88954000h/s

Cracking time in days= 6.6342043e+15/ 88954000h /s =74580168.5466

s/3600=20716.7134852 hours/24=863days

79

Table 7

SHA-256 cracking performance With GPU machine

(egogpunoy
[ImAg

(psing)
juedENo X

(ng)

urw |
LHIOHSAIN

(s8)
<L)

(I8)

10I09SAW

(Ing)
pIiomssed

(S1L)
jTomssed

(P1L)
PETISN

(n9)
OTTdH

1)1 n

0959 uruI |

uru |

urw/ G sInoyg

urw |

=N

n

urw(] sIinoyg urug
uruy
29877
uru |
urug
urw |
PI ST S

S/HINSTESUMM DD 95C-VHS

(1e108)
smoy() [sAepy|
(Teysz)
urw()G sInoyg

sInoyg

sInoyg

uruy

ps[n

80

In the Table -7 as the result is as follows:

Using uppercase only character (u) to crack 8-character long password ‘MYSECRET’
takes 1 min and it finishes checking all the combination of 8 characters roughly in Imin
6secs.

Using lowercase only character (1) it takes 1 min to crack 8-character long password
‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in
Imin 6secs.

Using a combination of uppercase and lowercase character (ul) it takes 1 min to finish
cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8
characters roughly in 2hours 87min.

Using lowercase and digits (Id) it takes 1min to crack 7 char long ‘tes1234’ password and
1 min 22sec for 8-char password ‘mysecret’, while it takes 10 min to finish checking all
the combination ofthe 8 char field.

Using lowercase and specialcharacter(ls) it takes it takes 8 min to find the 7-char
password ‘Passwor!” while it will take approximately 8hours to finish checking all the
combination.

Using the special characters only it takes 2 min to finish cracking 8 char long password
©/21’;<>" while it takes 5min to finish checking all the special character combination
of8char field.

At last we try all the lowercase, uppercase, special characters and digits(usld). It took
around 3 hours to finish checking 7 char length password while for all the 8 field of the

password and for the 8-char long password (. /?!”;<>MYSECRET,You9can!).Though

81

we could not finish 8 char password, but we estimated it will take around 10days and 10

hours to finish checking all the combination of the 8char field. The estimated time is

calculated as follows:

v

v

Time Estimation for 8-char password
Total characters: lowercase (26) and special characters (33), uppercase (26)
and digits (10) =33+26+26+10=95

Total combination possible [95] 8= 6.6342043e+15

SHA-256 GPU cracking speed, 5325MH/s=5325000000h/s
Cracking time in days= 6.6342043e+15/5325000000h/s=

1245859.96486/3600=346.0722hours/24=14days

82

Table 8

Bcerypt cracking performance With CPU machine

(parewins9)
sInoyg Jeyo SUIMISS SInoY § Jeyody | urw SInoy {7 Ieyod (paetnse)
punoy [[nJd 48 ey sInoygg Ieydy 148 78Oy | TG 1y Ty smoy() sAep (] Jeyot
urw g Ieydg sInoyg Ieyog | Ieydy urwgg Ieyog
urwyg SuIw { SINOYG| Jeyo¢
sInoyg Jeyog
(n$)OTTAH *
(PIsny)nSi | *
(Sp)>eff SInoyg
(PYIVETT ute
(Iy)ssed UIQ¢ simoyg
(Iny)ssed *
RUIG| n [[p B ps[n

S/H06
NdO-1dAg

83

In the Table -8 as the result is as follows:

Using uppercase only character (u) it takes 21min to go through all combinations of 3
char length, whereas it takes 8hours to finish 4 char long.
Using uppercase and lowercase (ul) it takes 2 hours 21 min to finish 3 char length
passwords. We could not finish cracking 4 char length passwords ‘Pass’ as we
estimated it will take 3dys 17hours to finish checking all the combination. The
estimation is calculated as follows:
Time Estimation for 4-char password

v' Total characters: lowercase (26), uppercase (26) =52

v' Total combination possible [52] ~4=7311616

v Berypt CPU machine cracking speed=90h/s
v" Cracking time in days=
7311616/90=81240.1777778s/3600=2031.004h1/24=22hours 50 mins

Using lowercase only character (1) its takes 3hours 20 min to crack 4-character long
password ‘Pass’ and to finish all the combination of 4 chars it takes 8hour where for 3
chars it takes 2hour.
Using only digits(d) it takes 9min to crack 4 char password 1234’ as well as roughly
going through all the combination of 4-char field.
Using only special characters(s) it takes 36 mins to finish checking all the combination
of 3 char length password whereas it found 4 char length password *,/?<(* in 3 hours

while taking 4 hours to go through all the combination of the 4 char length password.

84

At last we try all the lowercase, uppercase, special characters and digits(usld). It takes
15hours 4 min to finish going through all the combination of the 3-char length. We
could not finish checking for our 4 char length password ‘1!Su’ as we estimated it will
take 10 days 10hours to check all the possible combinations using following formulas

v Time Estimation for 4-char password

v" Total characters: lowercase (26), uppercase (26), Special characters(33),

digits(10) =95

v' Total combination possible [95] 4= 81450625

v" Berypt CPU machine cracking speed=90h/s

v" Cracking time in

days=81450625/90=905006.944444/3600s=251.390817901hr =10days

85

Table 9

Bcerypt cracking performance With GPU machine

simoyg |
sioyj| Jeydy suru ()¢ Aep T Ieyod 4
uruI (O | sInoyy Ieyo f urur (g uru ()t
punoy [[n | SInoyg Jeyd ¢ | Ul ¢g Jeyd¢ | SInoyJ Jeyoy | urw ()] Jeyog| sinoyg Jeydy, | sinoyg Jey)d ¢
(n$)OTTAH | uru Oz mnoy|

(p1Sny)NS;

urw (O InoyJ

(SP)>iff

(PY)YETI urwg

(Iy)ssed smoy|

(Iny)ssed ur ¢

RULE n n [p s pIsn
S/HOCS

Ndo-dAng

86

In the Table -9 as the result is as follows:

Using uppercase only character (u) it takes1hour to go through all combinations of4 char
length, whereas it takes 2hours to finish 5 char length passwords. It found our 5-char
length password ‘HELLO’ in 1 hour 20 mins.
Using uppercase and lowercase (ul) it takes 35 mins to crack 4 char length password
‘Pass’ .To go through all the combination of 3 char length passwords it takes 23 mins
while to 4 char length passwords it takes 4 hours 30 mins only.
Using lowercase only character (1) it takes lhour to crack 4-character long password
‘Pass’ and to finish all the combination of 4 chars it takes 1hour 20 mins only.
Using only digits(d) it takes 6min to crack 4 char password ‘1234°. It finished checking
all the combination of 5 char length passwords in about 10 mins.
Using only special characters(s) it took 1 hour 20 mins to crack 4 char password ‘1!Su’
and going through all the combination in roughly about 2 hours.
At last we try all the lowercase, uppercase, special characters and digits(usld). It takes
2hours 40 mins to finish going through all the combination of the 3-char length. We could
not finish checking for our 4 char length password ‘1!Su’ as we estimated it will take 1
day 19hours to check all the possible combinations using following formulas

v Time Estimation for 4-char password

v' Total characters: lowercase (26), uppercase (26), Special characters(33),

digits(10) =95
v' Total combination possible [95] 4= 81450625

v Berypt CPU machine cracking speed=520h/s

87
v" Cracking time in days=81450625/520=156635.817308

/3600s=43.5099492521 hr =1day 19hours.

4.3 Experimental Run

MD5 GPU with 1% character set as uppercase (U) and last character set as special
characters(s) while all other character is combination of lowercase (1), uppercase (u),
special character(s), digits (d) takes only 2mins to finish whole 8-character set.

MDS5 GPU with last character fixed as special characters(s) and trying all other
combination (lowercase (1), uppercase (u), special character(s), digits (d)) in first 7
character takes only 8hours to finish.

MD5 GPU trying all first 7 char as lowercase(l) and special character(s) whole last
character fixed as special character(s) makes the cracking time of 8-character set to only
Imin

SHA-256 GPU machine cracking 8 characters with combination of lowercase (1),
uppercase (u), special character(s), digits (d) in 2" to 7™ character while making the st
character fixed for special characters(s) and 8" character fixed for uppercase (u) brings
the cracking time to only 6mins while just making the 1* character fixed for uppercase(s)

letters makes the cracking time around 10hours.

4.4 Analyzing Result

Using CPU instances with the combination of characters like uppercase, lowercase,
special characters and digits a password length of 8 using MDS5 hash takes 246 days to

decrypt while using GPU it takes only 3 days.

88

e Similarly,the same password length using more secured SHA-256 hashing algorithm
takes 863 days for our CPU machine to crack where with our GPU its only 10 days.

e Using more secured and computationally intensive Berypt hashing algorithm a password
length of 4 characters only with a combination of characters like uppercase, lowercase,
special characters and digits it takes our CPU instances 84 days to crack whereas with
our GPU only 12 days.

e GPU instancing took only 5 min to crack SHA-256 password length of 8 with special
characters only, whereas it took almost 3hours to crack password length of 4 with Berypt
hashing algorithm

4.5 Recommendation
e Use password random generator to make a strong Radom password. One such sample
random password generator script is given below:
Alphanumeric Password Generator Script
import random
import string
str = []
chars = string.ascii letters + string.punctuation + string.digits
num = int(input('How long do you want the string to be? "))
for k in range(l, numtl):
str.append (random.choice (chars))
str = "".join(str)

print (str)

89

e Never reuse the same password for different accounts.

e Asasecurity administrator or developer try to use a modern hashing algorithm like Berypt
which is slow in computing using GPU or CPU.

e Never store password without hashing.

e Always add salt to the hashed password for added security.

e Password length should be at least 10 characters in length and use combination of
characters like uppercase, lowercase, special characters and digits and never use
dictionary words.

e Avoid using words from dictionary which can be easily brute-force by dictionary attack.

Chapter 5: Conclusion
5.1 Introduction
In the last section of our paper, we provide the timeline of our project as well as future

work direction and closing remarks of our paper.

5.2 Timeline

Here is the timeline of my tasks that will be undertakenthoursough my research:

0 Task Task Nama Duration Start {016 October 2016 Woverbes 016 | Decerber 2006 | danuary 3007 Februa
d Mode 1902478 4w 1a 192009 3w fialieize ze 3 (e 1almizaee| 2 (7 hizlirizalar g |G |
T o m Research statement 1 day? Man 8/26/16 9/2
and Define problem 1
I o« m Identifying Research 3 days fdon 9/26/16 =
problem and
Objectives
1 & m Literature Review 7 days Tue 9/27/16 e
4 o = MMethodology 7 days Thu 1048/16 __J-
[] Project requirement 5 days tan 10/17/16 ® 10721
Idertification l
E = Setingt Upserveron 7 days fdan 10/24/16 -
cloud and
canfiguration
7 = Pazsword cracking on 7 days ‘Wed 11/2/16 -
Password hash dump
with GPU
B = Pazzword cracking on 7 days Fri 11/11/16
Pazsword hash dump
with CPU
] = Exporting Result for 1 day Tue 11/22/16 11/22
Comparision
i} = Password cracking on 7 days Wed 11/23/16 r
salt based hashing l
il =y Exporting data for 1day Fri 12/2/16 - 12/2
COMparson l
12 = fnalyzing Data 21 days? Mon 12/5/16
13 = Evaluating possible 21 days Tue 1/3/17 +|. /3
solutions and provide
recommendation
Task nactive “:I“‘ﬁnﬁl Exteenal Tasks
Split m Marwal Tazk [1 Bternal Mistone
. [EECTEY * Duratian-only Crendline +
Project: Star paper Gannt chart
DBl‘L‘ 58‘ ‘J.l'Ed.-"Iﬁ ‘laﬁﬂ'ﬂl', ' . Maiwiad Sumimaey “ﬂll:p T — FI’-\QI"PS: —
Fraject Summany F T sfanual Summary =1 Manual Pragress e ——
Irsctive Tadk Star-orly C
Iiactive Milestane Flidgh-anly J
Fage 1

5.3 Future Work

Figure 8. Project Timeline

90

In the future, we plan to test whether adding salt (random number) with MD5 and SHA-

256 increase the cracking time it takes with GPU or not. Also we didn’t test the effect of fixed

certain character types in the password field with Berypt hashing algorithm like we did in section

3.11 with SHA-256 and MDS5 hash. So, we would like to give it a try with Bcrypt and compare

results with SHA-256 and MD5.

5.4 Conclusion

91

In the end the aim of our paper was to compare the effectiveness of a GPU based, password
cracking over the CPU as well the weakness in contemporary password hashing algorithm used
(SHA-256, MD5) in today and why we should use a modern hashing algorithm like Berypt over
SHA-256 and MDS5 and why should use more complex passwords. We also came into conclusion
that using salt with a hashed password add more computational cost to crack even with Highly
capable GPU. We also presented a test bed scenario where a normal user can leverage the power

of cloud computing to crack relatively complex password relatively easily.

10.

92
REFERENCES

Lawrence O’Gorman, "Comparing Passwords, Tokens, and Biometrics for User
Authentication," Proceedings of the IEEE, vol. 91, no. 12, pp. 2021 - 2040, 2003.

Anne Adams, Martina Angela Sasse, and Peter Lunt, "Making Passwords Secure and
Usable," Proceedings of HCI on People and Computers, vol. XII, pp. 1 - 19, 1997.

MDS5 Message Digest Algorithm Hash Collision Weakness. (2016). Securityfocus.com.
Retrieved 24 September 2016, from http://www.securityfocus.com/bid/11849/discuss

Qiu, W., Gong, Z., Guo, Y., Liu, B., Tang, X., & Yuan, Y. (2016). GPU-Based High-
Performance Password Recovery Technique for Hash Functions. ResearchGate. Retrieved
24 September 2016, from

https://www.researchgate.net/publication/292761539 GPUBased_High Performance Pa
ssword_Recovery_Technique for Hash_Functions

About Secure Password Hashing « Stack Exchange Security Blog. (2016).
Security.blogoverflow.com. Retrieved 24 September 2016, from
http://security.blogoverflow.com/2013/09/about-secure-password-hashing/

Fritz Bauspiess , Frank Damm, Requirements for Cryptographic hash functions,
Computers, and Security, v.11 n.5, p.427-437, Sept. 1992 [doi>10.1016/0167-
4048(92)90007-E]

Anon, (2016). Computing.dcu.ie. Retrieved 25 September 2016, from
http://www.computing.dcu.ie/~hamilton/teaching/CA642/notes/Hash.pdf

Robin Thomas Jose, and C.G Thomas 2320-9798 (Print): A Comparative Study on
Different Hashing Algorithms 3.7 (2015): n.7 p-1-6 International Journal of Innovative
Research in Computer and Communication Engineering, 7 Aug. 2015. Web. 24 Sept. 2016.

A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, fifth edition, October 1996.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC, 1997. [cited at p. 8, 14, 15]

http://www.securityfocus.com/bid/11849/discuss
https://www.researchgate.net/publication/292761539_GPUBased_High_Performance_Password_Recovery_Technique_for_Hash_Functions
https://www.researchgate.net/publication/292761539_GPUBased_High_Performance_Password_Recovery_Technique_for_Hash_Functions
http://security.blogoverflow.com/2013/09/about-secure-password-hashing/
http://www.computing.dcu.ie/~hamilton/teaching/CA642/notes/Hash.pdf

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

93

D. Reid and C. Knipping, Proof in mathematics education: Research, learning and
teaching.2010

D. Florencio and C. Herley, “A large-scale study of web password habits,” 2007.

R. Shirey, “RFC2828 Internet security glossary.” Retrieved 25 September 2016,
Fromhttps://tools.ietf.org/html/rfc2828

Hellman, M. 1980. A cryptanalytic time-memory tradeoff. IEEE Trans. Inf. Theor. 26,
401—406

Password Strength Checker. (2016). Passwordmeter.com. Retrieved 26 September 2016,
from http://www.passwordmeter.com/

Cognitive Disabilities and the Web: Where Accessibility and Usability Meet. (2016).
Ncdae.org. Retrieved 26 September 2016, from
http://ncdae.org/resources/articles/cognitive/

Yulong Yang, JanneLindqvist, and Antti Oulasvirta. 2014. Text Entry Method Affects
Password Security. Computing Research Repository (2014).
http://arxiv.org/abs/1403.1910

Karl Rupp. Retrieved September 25, 2016,”CPU, GPU and MIC Hardware Characteristics
over Time,” from https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-

characteristics-over-time/

Y. Liu E. Wu. Emerging technology about GP-GPU. In Circuits and Systems- Asia Pacific
Conference, pages 618{622. IEEE, Dec 2008

D. Geer. Taking the graphics processor beyond graphics. Computer, 38:14{16, Sep 2005.
T. R. Halfhill, “Parallel Processing with CUDA,”Microprocessor Report, January 28, 2008

P. Mell and T. Grance, The NIST Definition of Cloud Computing (Special Publication
800-145), 2011.

C. Vecchiola, S. Pandey and R. Buyya, "High-Performance Cloud Computing: A View of
Scientific Applications."

https://tools.ietf.org/html/rfc2828
http://www.passwordmeter.com/
http://ncdae.org/resources/articles/cognitive/
http://arxiv.org/abs/1403.1910
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

94

. C.J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures for general-

purpose computing: A framework and analysis. In Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, pages 306{317. IEEE
Computer Society Press, 2002. [cited at p. 2]

D. L. Cook, J. loannidis, A. D. Keromytis, and J. Luck. CryptoGraphics: Secret key
cryptography using graphics cards. Topics in Cryptology { CT-RSA 2005, pages 334{350,
2005. [cited at p. 2]

J. Yang and J. Goodman. Symmetric key cryptography on modern graphics hardware.
Advances in Cryptology { ASIACRYPT 2007, pages 249{264, 2008. [cited at p. 2,35]

A. D1 Biagio, A. Barenghi, G. Agosta, and G. Pelosi. The design of a parallel AES for
graphics hardware using the CUDA framework. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1{8. IEEE, 2009. [cited at p.
3]

S. A. Manavski. CUDA compatible GPU as an efficient hardware accelerator forAES
cryptography. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE
International Conference on, pages 65{68. IEEE, 2008. [cited at p. 3, 85]

O. Harrison and J. Waldron. AES encryption implementation and analysis on commodity
graphics processing units. Cryptographic Hardware and Embedded SystemsCHES 2007,
pages 209{226, 2007. [cited at p. 3, 85]

D. Bernstein, H. C. Chen, C. M. Cheng, T. Lange, R. Niederhagen, P. Schwabe, and B. Y.
Yang. ECC2K-130 on NVIDIA GPUs. Progress in Cryptology-INDOCRYPT 2010, pages
328{346, 2010. [cited at p. 3, 85]

G. Hu, J. Ma, and B. Huang. High Thoursoughput Implementation of MDS5 Algorithm on
GPU. In Ubiquitous Information Technologies & Applications, 2009. ICUT’09.
Proceedings of the 4th International Conference on, pages 1{5. IEEE, 2010. [cited at p. 3]

R. Mukherjee, M. S. Rehman, K. Kothapalli, PJ Narayanan, and K. Srinathan. Presenting
new Speed records and constant time encryption on the GPU. [cited at p. 3]

R. Zhang and X. Wang, “MDS5 crack method based on compute unified device
architecture,” Computer Science, Vol. 38, 2011, pp. 302-305

95

34.J. Weng, Q. Wu, and C. Yang, “OpenCL-based MD5 decryption algorithm,” Computer
Engineering, Vol. 37, 2011, pp. 119-121

35. F. Wang, C. Yang, Q. Wu, and Z. Shi, “Constant memory optimizations in MD5crypt
cracking algorithm on a GPU-accelerated supercomputer using CUDA,” in Proceedings of
the 7th International Conference on Computer Science and Education,2012, pp. 638-642.

36.. D. H. Nguyen, T. T. Nguyen, T. N. Duong, and P. H. Pham, “Cryptanalysis of MD5 on
GPU Cluster,” in Proceedings of International Conference on Information Security and
Artificial Intelligence, Vol. 2, 2010, pp. 910-914

37..R. C. Detomini, R. S. Lobato, R. Spolon, and M. A. Cavenaghi, “Using GPU to exploit
parallelism on cryptography,” in Proceedings of the 6th Iberian Conference on Information
Systems and Technologies, 2011, pp. 1-6

96

el . i 84| 2jEAL - 15aM- A
GLECTIETLL sdl ®ieMid gz-1sam-sn silisliss i
sl endwos 7-1sem-sn g -£e-| -7 | -dI ajeAl 3d| 2nse
[BLBUL B ¥ 6LEEleTii-d SNa d dl 13 SR
- 5dI9AdI abepgzd edf) sougjsuy)
PESEL /2T dl2Nand 7AdI Buuuny 81e}s 8ouUBySU|
W03 sMeU0ZBWE BindWod Z-SaM-SN'pE-5E /726208 (FAdl) SNA 2land GpaSHe|6RSIZREaCH] (I B3UBISU| S0BLIBIU| IOMIEN
slied Aay
sbel | Buuowuow | syoRyD smEls :a:ﬂ_:umma. i ————
Sd1 Jise3
EEE W02 sMmeuozewe 3ndwoo z-)sam-sn'pg-6¢ |- £2-75-392 ‘SNA AMAnd (ndD) spaape|685IzPeage-1 | :aoueisu)
sdnoigy Aundag
< § -
slousdeus
S3WNIoA
s¥sel apung
i :
= SIY
=] g
2
SISOH pajedipag
[=¥
A SEOUBISU| PAINPALIS
SOUEISU| PanIasaY
sisanbay 10ds
* BOT9EC T TG TMSNQOT-9ETPCTGT® o_/ o SPRRZT @ Bupuns @ qz-1same-sn sbiepzpa 7esag/ez0apssse- ndd saouejsu|
- PESELITTS emsnprgpl-iregeee BUON TSYRPRERL @ Buun @ gz-isamesn sbiepxgzd gposye|GRSIZPERL ndd M@ =
. sdlondl =« dIdnand padl « (padi) SN 219nd SMEI§ ULB[Y - SYIBY) SME)S « S)EI§ SOUBISU| » auoz Mujiqejieay . adA] adumsu] -] sauesu] awey sywry
suoday
ziogoll (¢]] 42seas 10 58 2 5 ER o] sbel.
SIETS
e & © 4 -

~ SUORIY | 103uuo) EERIN-HIRIEIT] -5 pleoqyseq zo3

A0ddns uoBRIQ A Auol Y] A sdnoigaunosay A SBJIASS n

LA >

¥ 253Boog-SW oIS o ¢ 3josuo) Juawsbeusyy 733 i

x @
9]

|
II>
=
»

GPU rsistence Jisp. Volatile Uncorr. ECC
Fan Mo > | GPU-Ut1l Compute M.

pope:pe:18.a
630M1B / 11439M1iB

poee:ee:19.a
630M1B / 11439M1iB

0000:00:1A.0 Off
636MiB / 11430MiB

0000:00:18.0 Off
630MiB / 11439MiB

poee:ee:1Cc.a
630M1B / 11439MiB

poee:ee:10.a off
630M1B / 11439M1iB

poea:ee:1E.8 off
630M1B / 11439M1iB

GPU Memory

hcatfd.bin 630M1BE
cat6d.bin 63@M1E
cat64.bin £3GM1E
catfd.bin 630M1B
cat6d.bin 63GM1E
cat6d.bin 63@M1E
catfd.bin 636M1B
catfd.bin 630M1B

98

: unnlnq

Hazh.fype
Hash.Target hd hE
ime Stdrted):45 2017 (12 mins, 48 secs)
2017 (3 days, 14 hours)
17 171 [8]
77 -2 Undefined, -3 Undefined, -4 Undefined

Speed.Dev.#1 : JETT 2
Gpeed.Dev.#2
Gpeed . Dev.#3.....:
Gpeed . Dev.#d

Gpeed.Dev.45. ...
Speed.Dev.#6

Gpeed . Dev. #e.....:

Speed.Dev. #
Recovered

Restore.Point....: JDDﬂﬂli’TﬂJﬂ

Candidates.#l....: c1#"-|ma -»

Candidates.#2....: Rg%j.cm >

Candidates.#3....: .b2

Candidates.#

Candidates. : k3 -

Candidates.#6....:]HE hd

Candidates.#7....: 06Q]§"$

Candidates.#8 B'N,&ge -> ux

HilMon . Dev,#1 : : T7c Uts % Core: 745MHz Mem:2505MHz Lanes:16
HilMon . Dev,#2 : : B8c Utz : 797MHz Mem 7 :
HilMaon.Dev.#3.....: 82 | + 758MHz Mem

HilMon . Dev, #4 : : Bb | + T71MHz Mem

HiMon . Dev.#5.....: + 83] + T71MHz Mem

HilMon . Dev. #6 : : B5C Ut + T71MHz Mem
HilMaon.Dev.#7.....: : 20 | : 758MHz Mem 7

HiMon . Dev.#8 : : 65 Utll 108% Core: 797MHz Mem:2565MHz

: hashcat
Punnlng

a5 .Tdrget : has hE
1me.Started : Tue Mar 14 10:54:13 2017 (18 mln,
1me.Es thdTEd Tue Mar 14 11:49:18 2017 (36 mins,
: 117 :lql?] [7]
? -2 Undefined, -3 Undefined, -4 Undefined

Speed.Dev.#]
Speed.Dev. #2
Speed.Dev.#S.....:
Speed.Dev.#d
Gpeed.Dev.#5. ...
Speed.Dev.#6
Gpeed.Dev.#7.....
Speed.Dev.#8
Speed.Dey. #*
Recovered

vt U28n0=y -
s UIE™LHw > §
.: :RIBO0,1
: 0%%d,u = K S
: Temp: 77c Ut Core: 745MHz Mem:2505MHz un%:'
: Temp: 68c Ut : T97MHz Men: ;i 5:16
HilMon .Dev.#3.....: Temp: 8lc Ut Core: 758MHz Mem:23
HilMon . Dev . #4 : Temp: 66c Ut Core: 771MHz Mem:25
HilMon .Dev.#5.....: Temp: 82 Ut : TT1MHz Men:
HilMon .Dev.#6.....: Temp: 65¢ Ut : T71MHz Men:
HiMon.Dev.#7.....: : BC Core: 758MHz Men: . 5
HiMon . Dev.#8 : : B5¢ Ut1l:100% Core: 797MHz Mem:2585MHz Lanes:16

[status [plause [rlesume [b]ypass [clheckpoint [gluit ==]

+ hasheat
.+ Bxhaustad
...t WS
Hash. Target...... hashes
Tine.Started. ... Tue Mar 14
Tne Estinated...: Tue Mar 14
Input Mask....... 707 1 Y
Input, Charset....: -1 7L, -2 Undefined, -3 Undgfuned, -4 Undefined
Input Queue. ... 9/ n,n [09, 08%)
Speed. Dev.41.....0 3074 15 (5.80m)
Recovered........: 1/8 [12.50%) Dugests, /1 (2,068 Salts
Progress.......... 2088278645762 UnnZJ'DJ“ 6 (180,664
Regected.: /208827064576 (8,088
Restore Paint..... llnn 176/11881376 (169..0%)

Candidates 41..... izgupuy -+ ¥qgqz000
Mon.Dev £1...... /A

07:54:26 2
08:85:23 20
1]

154:26 2017 (18 mns, 57 secs)
0 017

nn ,1]
fin

3
5:3 2017 (8 secs)
1

2
231
|
:

Started: Tue Mar 14 07:53:39 2017
Stopped: Tue Mar 14 08:5:25 2817
rootﬁlp 170-31-41-28:~hasheat-3.48¢ 1s

benchnark pid examled.cnd exampledg.hash examnlesd.sh hasheatid.exe hashcat.hctune kernels

charsets examp]e 0.hsh examledg.sh examle.dict hasheat6d.on hasheat.log mesks

cracked bt sxamled.sh exanlesod. cod ext’e hashcated.exe hasheat potfile Opencl

focs examp]eJUU ond examplest9 hash hashcatd2.bon hasheat hestat hashes rules
rootfap-172-30-41-28:hashcat -3, 464 cat cracked. tat

B6c219e50cB378 3aba3 030407edodd:mysecret

rootlp-172-31-41-28:hashcat-3.48¢ |

100

101

 hashcat
: Running
» D3
.. hashesl
: Tue Mar 14 11:06:32 2617 (1 man, 5 secs)

..t Fr1 Mar 17 81:13:55 2017 (2 days, 14 hours)
o NN 7]
.t -1 77127d, -2 Undefined, -3 Undefined, -4 Undefined
: 7/8 (87.56%)
: 312.3 M/s (6.62ms)
1/8 (12.56%) DiQEﬁtﬁ 8/1 (0.00%) Salts
372969375 (0.03%)
9.60%)
store. : 5 (9.63%)
Candidates #1....: ~37P312 -» GEAZH00
WMon.Dev.#1.....: N/A

[s]tatus [plause [rlesume [blypass [c]heckpoint [qluit =» s

 hashcat
: Running
» M5
..+ hashesl
* Tue Mar 14 11:66:32 2617 (5 mins, 51 secs)
.+ Fr1 Mar 17 81:17:44 2017 (2 days, 14 hours)
cd 111171217171 (7]
-1 2571707, -2 Undefined, -3 Undefined, -4 Undefined
1 7/8 (87.50%)
: 311.9 MH/s (6.63ms)
/8 (12.58%) Digests, 8/1 (9.88%) Salts
: 1uq55310”1595593331295@9315 (9.16%)
] 68160 (0.00%)
estore.Point....: 126 0625 (0. 16%)
Candidates #1....: N#4.n00 -»)'1 8da
WMon.Dev.#1.....: N/A

[s]tatus [plause [rlesume [blypass [clheckpoint [gluit =]

102

103

[s]tatus [plause [rlesume [blypass [clheckpoint [gluit == s

Session
Status...........: Running
Hash.Type........: SHA256
Hash.Target......: hashes
Time.Started.....: Wed Mar 15 83:03:09 2817 (2 mins, 39 secs)
Time.Estimated...: Wed Mar 15 10:47:51 2017 (7 hours, 42 mins)
Input.Mask.......: ?71717171717171 [7]
Input.Charset....: -1 ?1?s, -2 Undefined, -3 Undefined, -4 Undefined
: 7/8 (87.50%)
Speed.Dev.#1.....: 89254.9 kH/s (11.65ms)
Recovered........: 0/8 (0.00%) Digests, 6/1 (0.00%) Salts
: 14192809934/2488651484819 (0.57%)
Rejected.........: 8/14192809984 (0.00%)
] : 67584/12117361 (0.56%)
: a i zwa -» [rfchga

[s]tatus [plause

Sess1on
Status...........: Running
Hash.Type........: SHA256
Hash.Target......: hashes
Time.5tarted.....: Wed Mar 15 83:83:09 2817 (6 mins, 23 secs)
Time.Estimated...: Wed Mar 15 1@:47:57 2817 (7 hours, 38 mins)
Input.Mask.......: 71717171717171 [7]
Input.Charset....: -1 ?1?s, -2 Undefined, -3 Undefined, -4 Undefined
: 7/8 (87.56%)

Speed.Dev.#1.....: 89235.5 kH/s (11.58ms)
Recovered........: 6/8 (9.00%) Digests, 6/1 (0.00%) Salts
Progress.........: 34171623424/2488651484819 (1.37%)
Rejected.........: 0/34171623424 (0.00%)
Restore.Point : 165888/12117361 (1.37%)

' s =nl+"be > xvlwwes

[s]tatus [plause [r]esume [b]ypass [clheckpoint [qluit == |}

104

: hashcat
.+ Exhausted
ash.Type........: SHA236
ash.Target......: hashes
1me.5tarted.....: Thu Mar 16 06:59:06 2617 (4 mins, 43 secs)
1me.Estimated...: Thu Mar 16 07:03:49 2617 (8 secs)
: 7171717171717171 (8]
175, -2 Undefined, -3 Undefined, -4 Undefined
1 /8 (100.008)
vt 655.1 MH/s (19.26ms)
Dev #z.....: 609.2 MH/s (7.59ms)
Dev.#3.....0 669.1 MH/s (10.04ns)
Dev #.....0 642.3 M/s (10.49ms)
Dev . # © 651.2 MH/s (19.33ms)
Dev.db...... 62,9 MH/s (10.81ns)
'peed Dev.#7.....: 676.2 /s (9.94ms)
oeed.Dev.# 617.5 MH/s (10.92ns)
0 v 5143.4 MH/s
l;ﬂ [12 ‘Cl%] IlgEHtH CI [CI CICI%] SaHH

\9]ected..: U 14Ub40nu1 41 (. UU%)
estore.Point....: 3 ;?,.f 1303 (97,30%)
Candidates.#1....: °

Whon.Dev.#1.....: Temp: 71c Util: o% Core: 562MHz
Whon.Dev.#2.....: Temp: 58c Util: @% Core:

Won.Dev.#3.....: Temp: 76c Util: % Core: 614MHz ; Lanes:16

WMon.Dev.#4.....: Temp: S5dc Util: 0% Core: 562MHz 7 Lanes:16

Whon. Dev. : Temp: 72c Util: % Core: 562MHz
['
Day
Dey

ion. o . B2c Util: s Core: 758MHz 7 Lanes: 16
WMon.Dev.#7.....: Temp: 73c Ut;l: ; Core: 562MHz 7 Lanes:16
WMon.Dev.#3.....: Temp: 55¢ Util: 0% Core: 562MHz

105

sltatus [plause [rlesume [blypass [clheckpoint [qluit =>s

1me.Estimated...:
nput . Mask :

nput.Queue......:
peed.Dev.#1
peed.Dev.#2
peed.Dev.#3.....:
peed. Dev.#4
peed.Dev.#5.....:
peed.Dev.#6
peed.Dev.#7.....:
peed.Dev.#B
peed. Dev.#*
Recovered

: YidaHkY -» vuGkS)
...» NYTaahq -» gwmQknS
...t ¥H1aP16 -= fNCQbTg
: -> TWMQOHh
ZDCQFfC
: ovlaztE -» Ibk(ZAc
..+ yLtaDKQ -» XShQruk
: YapaInS -» vohQKEW
: Temp: 73c : 758MHz Mem:2505MHz
fMon . Dev. #2 : Temp: 65 : : 797MHz Mem:
WMon.Dev.#3.....: Temp: 78c Util: : 738MHz Mem:2
WMon.Dev.#4.....: Temp: Bdc Util: : 784MHz Mem
fMon.Dev.#5.....: Temp: 79 Ut1l: : T71MHz Mem
fMon. Dev.#6.....: Temp: 64c Ut1l: : 784MHz Mem:
WMon.Dev.#7.....: Temp: 77c Util: : T71MHz Mem:2
WMon.Dev.#8.....: Temp: 63c Util: 9% Core: 797MHz Men:

106

. hashcat
Status...........: : Running
Hash.Type........: SHA256
Hash.Target......: hashes
Time.Started.....: Wed Mar 15 03:10:27 2017 (57 secs)
Time.Estimated...: Wed Mar 15 03:18:27 2017 (7 mins, 3 secs)
Input.Mask.......: 71717171717171 [7]
Input.Charset....: -1 75?1, -2 Undefined, -3 Undefined, -4 Undefined
Input.Quete......: 7/8 (87.50%)
Speed.Dev.#1 : 639.9 MH/s (84.80ms)
Speed.Dev.#2 : 643.6 MH/s (84.36ms)
Speed.Dev.#3.....: 658.7 MH/s (82.39ms)
Speed.Dev.#4 : 631.3 MH/s (85.85ms)
Speed.Dev.#5.....: 665.4 MH/s (81.55ms)
Speed.Dev.#6 : 638.1 MH/s (24,94ms)
Speed.Dev.#7 : 657.0 MH/s ;’.“qu]
Speed.Dev.#8.....: 632.9 f: 5.78ms)
Speed.Dev.#* : 5166.9
Recovered........: : 0/8 (0. DD%] Digests, 0/1 (0.00%) Salts
: 209729158144/2488651484819 (12.04%)
Rejected.........: : 0/299729158144 (0.00%)
' : 0/12117361 (0.00%)
: egganan -> xbgnwhi
p{"f'cc -+ nagylxu
L /81-)gm -= At ~Ho
h#'p gl -> yswv '\t
,1@xbgn -> 'n@.+]
q‘ kuky -> =xusbh
. sugtkol -> drxs(”%
..t u,wopth -= (guerly
: Temp: 81c Ut1l:100% Core: 745MHz Mem:2585MHz Lanes:
Dev.#2 : Temp: 67c Util: 99% Core: 745MHz Mem:2505MHz Lanes:
Dev.#3.....: Temp: 84c Ut1l:100% Core: 758MHz Mem:2505MHz Lanes:
Dev.#4 : Temp: 708¢c Util: 99% Core: 745MHz Mem:2585MHz Lanes:
Dev.#5.....: Temp: 81c Util: 99% Core: 771MHz Mem:2505MHz Lanes:
Dev.#6 : Temp: 67c Ut1l:100% Core: 732MHz Mem:2505MHz Lanes:
Dev.#7 : Temp: 82c Ut1l:180% Core: z Mem:2505MHz Lanes:
Dev.#3.....: Temp: 67c Ut1l:100% Core: 732MHz Mem:2505MHz Lanes:

107

: hashcat

: Running

: berypt, Blowf1sh(0pen8sD)

.+ hash-bcrypt

: Fr1 Mar 17 11:41:20 2017 (21 mins, 24 secs)
Time.Estimated...: Sat Mar 18 03:25:06 2017 (15 hours, 22 mins)
Input.Mask.......: 717171 [3]
Input.Charset....: -1 ?s7u?1?d, -2 Undefined, -3 Undefined, -4 Undefined
Input.Queve......: 3/5 (60.00%)
Speed.Dev.#1.....: 91 H/s (10.94ns)
Recovered........: 0/6 (0.00%) Digests, 8/6 (0.00%) Salts
Progress.......... 116736/5144250 (2.27%)
Rejected.........: 87116736 (6.00%)
Restore.Point....: 8/9625 (0.06%)
Candidates.#1....: ,ar > ,-b
HiMon.Dev . #1.....: N/A

[s]tatus [plause [rlesume [b]ypass [clheckpoint [glut == s

Sess10n........... hashcat
Status...........: Running

: berypt, Blowf1sh(0pen8sD)

.+ hash-bcrypt

: Fr1 Mar 17 11:41:20 2017 (21 mins, 24 secs)
Time.Estimated...: Sat Mar 18 £3:26:55 2017 (15 hours, 24 mins)
Input.Mask.......: 717171 [3]
Input.Charset....: -1 ?s7u?17d, -2 Undefined, -3 Undefined, -4 Undefined
Input.Queve......: 3/5 (60.08%)
Speed.Dev.#1..... 91 H/s (16.96ms)
Recovered........: 0/6 (0.00%) Digests, 8/6 (0.00%) Salts
Progress.......... 116736/5144250 (2.27%)
Rejected.........: 87116736 (6.00%)
Restore.Point....: 0/9625 (0.06%)
Candidates.#1....: ,ar -» ,-b
HWMon. Dev.#1.....:

: hashcat

Gtatus...........: : Running

ash.Type........: bcrypt, Blowfish(0penBsp)

ash.Target......: hash-bcrypt

1me.Started.....: Thu Mar 16 12:39:49 2017 (5 mins, 31 secs)
me.Estimated...: Thu Mar 16 15:17:65 2017 (2 hours, 31 mins)
|nput.Mask.......: nnmn 3]
Tnput.Charset....: -1 717u?s?d, -2 Undefined, -3 Undefined, -4 Undefined
Tnput.Queve......: 3/5 (66.00%)

Speed . Dev, #.... 86 H/s (37.24ns)

Speed Dev. #2.....: 66 H/s (49.16ms)

Speed Dev.#3..... 66 H/s (49.15ms)

Gpeed Dev . #4. 66 H/s (48.98ms)

Speed Dev. #5. ... 64 H/s (25. lzma]

Speed.Dev. #6..... 66 H/s (48.89ms

Speed.Dev.#7.....: 66 H/s (43.89ms

Speed.Dev. #8... .. 66 H/s (48.87ms

Gpeed Dev #*. ... 545 H/s

ecovered........: 8/6 (0.00%) Digests, 8/6 (9.00%) Salts
'ragress.........: 179296/5144250 (3.40%)

ejected......... : 0/179296 (0.00%)

estore.Point....: 0/9025 (0.00%)

randidates #1....: Bar =B 1

Candidates . #2....: W16 -= WIg

Candidates . #3....: W!S -> Wied

Z : Wd3 - WOK

‘ : : E:h -= Eb6

Candidates. #u....: Wac - WBO

Candidates #7....: WCT -» W[’

Candidates . #8....: W/5 -» Wia

WMon.Dev.#1.....: Temp: 79c Util: 99% Core: 875MHz Mem:2505MHz Lanes:
WMon.Dev.#2.....: Temp: 58c Util: 99% Core: 875MHz Mem:2505MHz Lanes:
WMon.Dev.#3.....: Temp: 73c Ut1l:100% Core: 875MHz Mem:2505MHz Lanes:
WMon.Dev.#4.....: Temp: 56c Ut1l:100% Core: 875MHz Mem:2 Z Lanes:
WMon.Dev.#5.....: Temp: 77c Util: 99% Core: 875MHz Mem:2505MHz Lanes:
WMon.Dev.#6.....: Temp: 58c Ut1l:100% Core: 875MHz Mem:2505MHz Lanes:
WMon.Dev.#7.....: Temp: 81c Ut1l:100% Core: 875MHz Mem:2505MHz Lanes:
WMon.Dev.#8.....: Temp: 59c Ut1l:100% Core: 875MHz Mem:2505MHz Lanes:

108

109
[s]tatus [plause [r]esume [b]ypass [c]heckpoint [qluit == s

: hashcat

Status...........: : Running
Hash. Tupe : berypt, Blowf1sh(0pengsD)
Hash.Target......: : hash-bcrypt
Time.Started.....: Fri Mar 17 10:33:22 2017 (11 secs)
Time.Estimated...: Wed Mar 29 17:41:10 2017 (12 days, 7 hours)

SRULY [4]

1 ?u?1?a?d 2 Undefined, -3 Undefined, -4 Undefined

'.-.JZH]H]
57 H;H [4n 71ns)
57 Hj‘." [4r_1 r_umEi]

57 H/s (48.1ns)
460 H;s |

[U.UU%]
/857375 (0.00%)
arl -» mxtt

| ri

C voo MBCk -= mBOR

HWMon.Dev.#l.....: mp: 64c Ut1l:108% Core: 875MHz Mem:2585MHz Lanes:
HifMon . Dev.#2.....: Temp: 53c Ut1l:100% Core: 875MHz Mem: z :
HiMon.Dev.#3.....: Temp: 77c Ut1l:108% Core: 875MHz Mem:?2
HifMon.Dev.#4.....: Temp: 61c Ut1l: 99% Core: 875MHz Mem:2
HiMon.Dev . #5.....: Temp: 76c Util: ¢ B75MHz Mem:25685MHz Lanes:
HMon.Dev.#6.....: Temp: 56c Ut1l:160% Core: 875MHz Mem:2585MHz Lanes:
HifMon.Dev.#7.....: Temp: 77c Ut11:108% Core: 875MHz Mem:2585MHz Lanes:
HMon.Dev.#8.....: Temp: 58c Ut11:100% Core: 875MHz Mem:2585MHz Lanes:

110

INFO: approaching final keyspace, workload adjusted

Status...........: Exhausted

Hash.Type........: bcrypt, Blowfish(OpenBSD)
Hash.Target......: hash-bcrypt

Time.Started.....: Wed Mar 15 88:27:80 2617 (31 mins, 46 secs)
Time,Estimated...: Wed Mar 15 03:58:46 2017 (@ secs)
Input.Mask.......: 71717171 [4]

Input.Charset....: -1 7u, -2 Undefined, -3 Undefined, -4 Undefined
Input.Queue......: 4/8 (50.00%)

Speed.Dev.#1.....: 1287 H/s (8.02ms)

Recovered........: 0/6 (0.00%) Digests, 0/6 (0.00%) Salts
Progress.........: 2741856/2741856 (100.00%)
Rejected.........: 0/2741856 (0.00%)

Restore.Point....: 17576/17576 (100.60%)

Candidates.#1....: XDJQ -» XXQO

HWMon.Dev.#1.....: N/A

[s]tatus [plause [rlesume [blypass [clheckpoint [gluit == s

Status...........: Running

Hash.Type........: bcrypt, Blowfish(OpenBSD)

Hash.Target......: hash-bcrypt

Time.Started.....: Wed Mar 15 08:58:46 2017 (6 mins, 24 secs)
Time.Estimated...: Wed Mar 15 22:44:26 2617 (13 hours, 39 mins)
Input.Mask.......: 7171717171 [5]

Input.Charset....: -1 ?u, -2 Undefined, -3 Undefined, -4 Undefined
Input.Queue......: 5/8 (62.50%)

Speed.Dev.#1.....: 1439 H/s (10.94ns)

Recovered........: 8/6 (0.00%) Digests, 0/6 (0.00%) Salts
Progress.........: 553472/71288256 (0.78%)

Rejected.........: 3472 (0.00%)

Restore.Point....: 3328/456976 (0.73%)

Candidates.#1....: CAENA -= CFEST

HWMon.Dev.#1.....: N/A

[s]tatus [plause [r]esume [blypass [clheckpoint [qluit = |]

[s]tatus [plause [rlesume [blypass [clheckpoint [gluit == s

: hashcat
Status.......o.uut : Running
Hash.Type........: bcrypt, Blowfish(OpenBSD)
Hash.Target......: hash-bcrypt
Time.Started.....: Wed Mar 15 10:40:07 2017 (18 mins, 7 secs)
Time. Ewtlmated : Sat Mar 13 14:49:43 2017 (3 days, 3 hours)

.. 7171717171 (5]

Input. Ihar~et -l ?u?l, -2 Undefined, -3 Undefined, -4 Undefined
Input.Queue.. 2.50%
bpeed Dev.41..

Speed. Dev.#7.....:

Recovered.: U,u s Digests, 8/6 (0.60%) Salts
Progress.........; 96 1224192 (0.46%)
Rejected.........: 1328 (0.00%)

Restore.Point....: 23712/7311616 (0.32%)

Cand1dates. #1.... C

r11:100% Core: 87

: B8c

HuMon . Dev, #; D égc

HHMon.Deu.._.....: mp: 56C '_:100% Core: 875MHz Mem:: 7 Lanes:16

[sltatus [plause [rlesume [blypass [clheckpoint [gluit == ||

111

vevnt 3/5 (60.00%)
71 H/s (7.82ms)
Digests, 6/6 (0.00%) Salts
843648 (97.53%)
8 (0.00%)

: hashcat
: Exhausted
: berypt, Blowfish(OpenBSD)
: hash-bcrypt
: Fri Mar 17 12:09:04 2017 (2 hours, 36 mins)
: Frl Mar 17 14:44:51 2017 (9 secs)
: 717171 [3]
..t -1 2?1, -2 Undefined, -3 Undefined, -4 Undefined
: 3;“ (66.00%)
72 H/s (7.81ms)
00%) Digests, 0/6 (0.00%) Salts
/843648 (100.00%)

3 (100.00%)
‘andidates.#1....: Xc! '
WhMon.Dev.#1.....:

s|tatus [plause [rlesume [blypass [clheckpoint [qluit == s

: hashcat
tatus.l : Running
ash.Type........: bcrypt, Blowfish(0penBsD)
ash.Target...... : hash-bcrypt
ime.Started.....: : Fri Mar 17 14:44:54 2017 (17 mins, 37 secs)
ime Estimated...: Tue Mar 21 03:20:07 2017 (3 days, 17 hours)
- L1 (4]
vernt -1 20?1, -2 Undefined, -3 Undefined, -4 Undefined
: 4{5 (80.00%)
91 H/s [10 °4m~)
) s, 2/6 (33.33%) Salts
969 (9.29%)
(6.00%)
5 608 (0.18%)
‘andidates.#1....: JVan -= JJJA
WMon.Dev.#1.....: N/A

112

	St. Cloud State University
	theRepository at St. Cloud State
	4-2017

	A Study on the Security of Password Hashing Based on GPU Based, Password Cracking using High-Performance Cloud Computing
	Parves Kamal
	Recommended Citation

	tmp.1495138739.pdf.mDrC4

