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Abstract

There is a certain belief among data science researchers and enthusiasts alike that clustering
can be used to improve classification quality. Insofar as this belief is fairly uncontroversial,
itis also very general and therefore produces a lot of confusion around the subject. There are
many ways of using clustering in classification and it obviously cannot always improve the
quality of predictions, so a question arises, in which scenarios exactly does it help? Since we
were unable to find a rigorous study addressing this question, in this paper, we try to shed
some light on the concept of using clustering for classification. To do so, we first put forward
a framework for incorporating clustering as a method of feature extraction for classification.
The framework is generic w.r.t. similarity measures, clustering algorithms, classifiers, and
datasets and serves as a platform to answer ten essential questions regarding the studied
subject. Each answer is formulated based on a separate experiment on 16 publicly available
datasets, followed by an appropriate statistical analysis. After performing the experiments
and analyzing the results separately, we discuss them from a global perspective and form
general conclusions regarding using clustering as feature extraction for classification.

Keywords Clustering - Feature extraction - Classification

1 Introduction

There seems to exist a certain belief among the data science community members, which
says that data clustering can be used to improve the quality of classification [15,32,33]. The
main idea of this theory is very straightforward: (1) cluster the training examples, (2) encode
the clusters as new features, (3) train the model and use it for prediction. The intuition behind
this approach is also quite appealing and can be summarized as follows. In classification, we
assume that classes in the dataset reflect its structure (which is an assumption necessary for
any classifier to be able to learn) all the while knowing that this reflection may not be perfect.
In clustering, the goal is to discover the underlying structure of the data (by partitioning).
Clearly, on some level these two methods can be considered as two sides of the same coin.
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It is therefore tempting to check whether discovering this inherent, “true” structure of the
dataset using clustering could aid the process of classification. If the two structures (i.e., the
one revealed by clustering and the one implied by classes) map perfectly to one another, this
means that the dataset is trivial to classify. If not, then the attributes conveying this “hidden”
structure of the data can lead to better generalization of the classification model.

This simple idea seems so attractive that it even crops up in popular science outside
academia, e.g., in the form of blog posts written by data science practitioners [15]. However,
we were unable to find any serious study that would consider this hypothesis in a methodical
manner or even formalize this concept, even though many questions come to mind when
considering generating clustering features for the purpose of classification.

How should this process exactly work?

— How to encode clusters as features?

— Does it really improve the classification quality and if so, under what conditions?
— Do clustering-generated features work well with all classifiers?

— What impact does the clustering algorithm have on the quality of predictions?

These are only some of the unanswered questions surrounding this idea which we aim to
address in this study.

In this paper, we examine the idea of using data clustering as a way of extracting new
features for the purpose of classification. To achieve this goal, we propose a framework which
works by augmenting the dataset with new features encoding the clusters. The framework is
generic w.r.t. similarity measures, clustering algorithms, classifiers, and datasets, and requires
only that a similarity measure between data points exists. The proposed framework is then
used to verify various hypotheses regarding the discussed process. We experiment with several
cluster representations, clustering algorithms, classifiers, and distance measures, to see what
impact each of these components has on classification quality. Delving deeper into clustering,
we discuss two possible clustering scenarios: global, i.e., clustering regardless of classes,
and local, i.e., clustering separately in each class. We also discuss the issue of overfitting
by performing a sensitivity test with respect to the number of clusters. Furthermore, we
examine how the discriminative power of each cluster impacts the classification performance.
We dedicate a separate set of experiments to analyze the impact of various isolated dataset
characteristics on the quality of predictions. Naturally, we also check how new features
compare against the original ones in terms of their predictive capabilities. Finally, we test the
discussed scenario in a semi-supervised setting to observe if it benefits from the additional
information. All experiments are carried out on 16 publicly available datasets with appropriate
statistical tests to firmly verify our findings.

In conclusion, the main contributions of this paper can be summarized as follows.

1. We define, both formally and conceptually, a framework for using data clustering as a
feature extraction method.

2. We carry out an empirical study on using clustering-generated features for classification
in which we consider the following issues:

(a) which cluster representation works best,

(b) what influence does the clustering algorithm have on classification quality,
(c) what is the impact of using global/local clustering,

(d) sensitivity w.r.t. the number of clusters,

(e) does cluster purity w.r.t. class influence classification quality,

(f) what is the impact of distance measures on the process,

(g) how well does the process work in a semi-supervised setting,
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(h) can the obtained features replace the original ones or should they be used together,
(i) does the described methodology work with every classifier,
(j) what is the impact of various dataset characteristics on the discussed process.

3. We perform various statistical tests and discuss the results in detail to form general con-
clusions regarding using clustering in classification problems.

The remainder of this paper is organized as follows. Section 2 gives the background of
related work. In Sect.3, we describe and define the framework on which our study is built.
Section 4 explains the experimental setup. In Sect.5, we experimentally evaluate each of
the described issues and provide answers to the stated questions. In Sect. 6, we discuss our
findings along with the broad view of using clustering-generated features in classification
tasks. Finally, in Sect. 7, we conclude the paper and draw lines of future research.

2 Related work

As one of the key ingredients to a successfully trained classifier, feature engineering has
been extensively studied over the recent decades [6,30]. Although vast literature on this topic
is available, the direct inspiration for the research conducted in this paper comes from a
study on pattern-based classification by Cheng et al. [4,5]. The authors propose the follow-
ing classification framework: (a) mine discriminative patterns, (b) represent the data in the
feature space of these patterns, (c) build a classifier on the new representation. Based on this
framework, the authors then show that discriminative patterns are good candidates for new
features, especially when dealing with complex decision boundaries, and that there is high
correlation between a pattern’s discriminative power and its frequency. The link between this
study and ours is that, similarly to patterns, clusters also represent global information, i.e.,
information available only through analyzing the dataset as a whole. So the initial question
which sparked our research was whether the global information obtained through clustering
can improve classification just as the global information obtained through frequent patterns.

The idea of using clustering in classification is not new. In fact, over the years it has
been studied in 3 main contexts related to our work: prototype-based, semi-supervised, and
feature extraction. Prototype-based classifiers can use it to select the prototypes according
to which the predictions will be made. Hastie et al. [13] show how clusters can be used
both directly for predictions and as an initializing step for more advanced methods. In both
scenarios, they propose to cluster the training dataset separately for each class using the k-
means algorithm. Then, in the first scenario, they propose to use the cluster centers together
with their corresponding classes as the prototypes. When new examples arrive, they are
assigned to the class indicated by the nearest prototype. In the second scenario, the authors
propose to use the cluster centers as initial prototypes for the LVQ method proposed by
Kohonen [16].

In the semi-supervised context, an approach has been proposed by Gan et al. [12] which
aims at mapping the hidden structure of the data. This is achieved by clustering both train-
ing and test sets using the fuzzy c-means algorithm—a semi-supervised method. First, the
combined training and test datasets are clustered, and a classifier is trained using only the
training data. The clustering produces a membership degree for each unlabeled example to
each of the classes. The unlabeled examples which have high certainty of belonging to a
given class are then classified by the trained classifier. Subsequently, the most confidently
predicted examples, together with their predicted labels, are added to the training set and the
classifier is re-trained. This process is repeated until all unlabeled examples are labeled. This
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approach is very similar in its goal to our proposal, as both aim at mapping the underlying
structure of the dataset; however, our method is fully unsupervised, while the proposal of
Gan et al. is semi-supervised. Moreover, our method encodes the information in new features,
while the authors’ approach encodes this information directly into a trained classifier.

The feature extraction context, which is the one most closely related to this study, can be
further divided into two sub-categories: feature clustering and data clustering. The feature
clustering approach is extensively used, e.g., to facilitate face recognition [7] or improve
classification of proteins by clustering the amino acids which they are composed of [2]. This
approach is similar to ours in a sense that it also relies on clustering and also generates features
based on the representatives of the obtained clusters. However, it relies on manipulating the
feature space, while our approach aims at mapping the structure hidden in the examples
themselves. The data clustering approach relies on clustering of the training examples and
encoding the clusters as new features, which is the exact approach we explore in this research.
Alapati et al. [1] do this by adding a single new feature encoding the cluster to which each
example belongs, while Srinivasa et al. [28] do this by selecting top k numerical features
generated using fuzzy c-means algorithm. However, the scope of these studies is very limited
and the former [1] contains a serious factual error, since the new feature is treated as a
numerical attribute even though it contains categorical values.

Several other scenarios involving clustering with classification have been considered, e.g.,
clustering for relabeling of training examples [26], clustering for data partitioning in ensemble
classification [3], clustering to generate weights for training examples [18], or clustering to
address the problem of class imbalance [8,14]. However, the only common factor between
these methods and the one studied in this paper is the sole fact of using clustering together
with classification, while all other details are different.

Despite the fact that the concept of using clustering together with classification is clearly
not new, to the best of our knowledge, a rigorous study exploring its properties and soundly
answering the major questions related to it has never been attempted. Filling this gap is the
aim of this paper.

3 A framework for feature extraction using data clustering

The study conducted in this paper lies on the intersection between clustering, feature extrac-
tion, and classification, and its goal is to check whether using data clustering can enhance
the quality of classification. In order to achieve this task and meaningfully answer the ques-
tions stated in Sect. 1, we put forward a generic framework which will allow us to alter the
components of the process to test various hypotheses. In this section, we will describe this
framework in detail, first, conceptually, and later, formally.

3.1 Conceptual description

The first step of the framework is to cluster the whole training dataset (without the class
attribute) using a chosen clustering algorithm. We assume that the number of clusters is
either determined by the algorithm automatically or provided explicitly as a parameter. For
each resulting cluster, a representative is selected, e.g., a centroid. These representatives
together with the original data points are then used to compute new features using a selected
distance measure, one new feature per each cluster. Both old and new features constitute an
augmented dataset which is then used to train a classifier, while the set of representatives is
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Fig. 1 Workflow illustrating the proposed procedure: (1) training examples are grouped into k clusters; (2a)
new features based on cluster representatives are created and added to the existing features in the training
examples; (2b) cluster representatives are saved for later; (3) the classifier undergoes training using the new
training set; (4) a classification model is produced; (5) a new example arrives for classification; (6) distances
to each cluster representative are computed and encoded as new features; (7) the modified example is passed
to the classification model; (8) the model makes a prediction

stored for transforming new, unlabeled examples into the new feature space. When a new
unlabeled example arrives, its distance from each cluster representative is evaluated and used
to compute the values of new features. Afterward, the unlabeled example is in the same
feature space as the training examples, so the trained classifier can be used without any
modifications. The whole process is summarized in Fig. 1.

3.2 Formal description

Let us now formalize the framework according to the conceptual description from previous
section.

3.2.1 Preliminaries

Given a dataset of training examples X = {x1,x2, ...,Xn} and their corresponding classes
(labels) Y = {y1, y2, ..., Yn}, the task of a classifier is to predict the class y of each unla-
beled example X (example, for which the class is unknown). Every example x; is a vector
(xi1, Xi2, . . ., Xim) of the same length m, where each position j holds a value a given example
has for a particular feature (attribute) F; € F.

The aim of feature extraction is to create a new set of features 7’ based on the original
feature set . Because feature extraction is applied on the training dataset, it has to produce a
mapping function capable of transforming any future examples x to the same feature space.
This is due to the fact that after the classifier has been trained, the training examples should
not be changed (or else it would require a retraining of the classifier). In other words, new,
unlabeled examples should not require the recalculation of the features in the training data.
Although this constraint seems subtle, it has important consequences for our proposal since
it is based on clustering.
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Given a dataset X', the aim of clustering is to identify groups (clusters) of examples, so that
the examples within a particular cluster are more similar to one another than to the examples
from other clusters. It is common for clustering algorithms to produce a representative for
each cluster of equal dimensionality as the examples (e.g., centroid), which summarizes the
cluster’s characteristics.

3.2.2 Framework definition

Given the above, the process examined in this paper is defined as follows. Given a dataset of
training examples X = {x1, x2, ..., x,} with features ¥ = {Fy, F», ..., F,;} and a distance
measure & (x;, Xj) in the feature space, the examples are grouped together into k clusters using
any clustering algorithm. If the algorithm does not produce cluster representatives, they are
selected in post-processing as centroids (i.e., examples with the smallest average distance to
all other examples in a given cluster). The number of clusters k can be either user-defined

or computed by the algorithm. Then, k new features Fj.y, Fji2, ..., Fjix, one for each
cluster representative ¢; € C, [ = 1..k, are added to the training dataset, so that each training
example x; = (x;1, ..., Xj;») becomes x,f = (Xils s Xims Xim+1s - - - » Xim+k)> Where Xjp4;

is calculated based on the distance § between example x; and cluster representative ¢j, [ =
1..k. The transformed set of training examples X" is then passed to the classifier for training.
Afterward, each new unlabeled example X has to be transformed into the same feature space
as the training examples prior to being classified. This is done using the previously obtained
cluster representatives, analogously to how training examples were transformed, so X =
{X1,..., %) becomes X' = {X1, ..., Xm, Xmats - .- » Xmrk ), Where £,,4; is calculated based
ondX,q),l =1..k.

3.3 Example

The idea of putting forward a framework is to establish a flexible platform allowing to easily
swap its parts to test various hypotheses. Given the above description and the illustration in
Fig. 1, it is clear which parts of the process are generic, namely: the clustering algorithm, the
distance measure, the encoding of new features, and the classifier. To better illustrate how all
of these parts come together, let us analyze a sample instantiation of the framework.

Consider a training dataset shown in Fig.2a. The first step of the framework involves
clustering of the training examples. For this purpose we will use the k-means algorithm
with the Euclidean distance and the number of clusters k = 2. The result of this step is
illustrated in Fig. 2b. In the second step, we encode the obtained clusters as new features.
In this example, each new feature encodes the distance from a given training example to
the cluster representative of a cluster corresponding with the feature. To keep the example
clear we remove the original features and represent each example only in the new feature
space. The result of this step is visualized in Fig. 2c. Afterward, a classifier can be trained on
the transformed training dataset. For this purpose let us use simple logistic regression. The
trained model is visualized in Fig. 2d. After training, we are ready to predict new examples.
Let us consider an unlabeled example X = (—1, 0.5). The example is presented in the original
feature space together with cluster representatives in Fig. 2e. To use the trained model from
Fig. 2d, first, we need to transform the new example into the new feature space by calculating
its distance from each cluster representative and encoding this information into new features.
This step is illustrated in Fig. 2f. Afterward, we can make a prediction which in this case is
y=0.
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Fig. 2 Instantiated workflow of the proposed framework

The above-described example instantiates the proposed framework in the following way:
clusters are encoded as a distance from each example to each centroid; clustering is performed
using the k-means algorithm; Euclidean metric is used as a distance measure; and logistic
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regression is used as a classifier. However, it is clear that each of these components could
be easily swapped for a different one independently from other components, allowing us to
experiment with various options in isolation from other factors.

4 Experimental setup

To test the hypothesis put forward in this study, i.e., whether clustering improves the quality
of classification, we methodically answer the questions stated in the introduction:

Which cluster representation works best? (Sect.5.1)

What influence does the clustering algorithm have on classification quality? (Sect.5.2)
What is the impact of using global/local clustering? (Sect.5.3)

How sensitive is this method w.r.t. the number of clusters? (Sect.5.4)

Does cluster purity w.r.t. class influence classification quality? (Sect.5.5)

What is the impact of distance measures on the process? (Sect.5.6)

Does the additional information stemming from semi-supervised learning help? (Sect. 5.7)
Can the obtained features replace the original ones or should they be used together?
(Sect.5.8)

Does the described methodology work with any classifier? (Sect.5.9)

10. Which dataset characteristics influence the described process and to what extent?
(Sect.5.10)

P NN R WD

©

Each answer is formulated based on a dedicated experiment, followed by appropriate statis-
tical tests (described in Sect.4.5) and a discussion. All experiments are carried out using a
common procedure described in Sect. 4.4 on 16 datasets described in Sect. 4.6. After address-
ing all of the stated questions, we summarize our findings and discuss the broad view of using
clustering in classification in Sect. 6.

4.1 Clustering

In the majority of our experiments, we use one of two clustering algorithms: k-means [21] or
affinity propagation [10]. The choice of these methods was dictated by two main reasons. The
first reason follows directly from the requirements of our methodology, i.e., the algorithms
have to produce cluster representatives. The second reason is that we wanted to test different
approaches to determining the number of clusters. Affinity propagation detects the number
of clusters automatically, whereas k-means requires this parameter to be given as an input.
This way, one version makes the process conveniently parameterless, while the second one
allows us to experiment with the number of clusters and check how this value influences the
proposed method. The use of any other clustering algorithm will be reported directly in the
description of a given experiment (see Sect.5.2).

4.2 Classification

The main hypothesis of this study, i.e., does adding clustering-generated features improve the
quality of classification, is tested on 8 different classifiers, namely: penalized multinomial
regression, penalized discriminant analysis, Bayesian generalized linear model, decision
trees, k-nearest neighbors, SVM with linear and RBF kernel, and random forest. The main
idea behind selecting these classifiers was to test a diverse, representative group of methods
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which would cover a wide spectrum of possible options. This way, we can test whether
clustering works in general or only with some particular families of classifiers. However,
multiple classifiers are not needed when experimenting with the properties of the discussed
process, since in such cases we are no longer comparing our results against the baseline,
but rather comparing different versions of the same approach against each other. The results
should therefore be general and independent of the classifier being used. That is why, in
the majority of the experiments we rely on the SVM classifier with a linear kernel for its
overall good performance and robustness, leaving all 8 classifiers only for testing the main
hypothesis (see Sect.5.9).

4.3 Distance measure

Another required component of our method is the distance measure §(x;, x;) between the
examples. For this purpose, in the majority of our experiments we rely on the Euclidean
distance. However, since the distance measure is yet another component of the proposed
framework with a potential impact on the whole process, we isolate it in a separate experiment,
in which we compare the Euclidean distance against the Mahalanobis distance (see Sect.5.6).

4.4 Experimental procedure

The experimental procedure used to assess the validity of our hypotheses is defined as follows.
Each dataset is divided into a training set and a holdout test set, each containing 50% of the
data. The samples are stratified to ensure equal proportions of classes in each set. Each
classifier is tuned and trained on the training set using fivefold cross-validation repeated 2
times and later tested on the holdout set with predictions evaluated using accuracy defined
as:

# correct predictions

accuracy = T .
# all predictions

The procedure covers both the baseline and our hypothesized approaches. When testing our
approaches, we first cluster the training set and generate new features in training and test
sets based on the cluster representatives according to the framework described in Sect. 3.
Afterward, the augmented sets undergo the same train—test—evaluate procedure as the base-
line. The whole procedure, summarized in Fig. 3, is repeated 10 times for two main reasons.
The first one is obvious, as it allows us to average the results over random train/test splits
to achieve a more reliable score for each approach. The second reason stems from the fact
that some clustering algorithms (like k-means which we heavily rely on) are randomized and
can therefore produce unstable results for the same data. Given the above, the results could
in fact be averaged in another way, namely by additionally repeating the described process
for each train/test split. This double-averaging scheme would address each randomization
separately (train/test split and clustering). However, our preliminary experiments showed
that the employed averaging scheme does not influence the results, so we decided to use the
simpler single-averaging.

4.5 Statistical tests

After gathering the results, we perform a series of statistical tests which allow us to draw
firm conclusions about our findings. To compare two approaches on each dataset, we use
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Fig.3 The experimental procedure

the 7-test [29], and to compare multiple approaches on each dataset we rely on the ANOVA
statistical test [9], and if it indicates significant differences between the classifiers, we follow
it by a pairwise 7-test [29] to assess the hierarchy among them. In every case, we also make
sure the assumptions for the ANOVA test [9] are satisfied, namely we check if the values are
normally distributed using Shapiro and Wilk test [27] and if the variances across groups are
homogeneous using Levene test [19]. To compare two classifiers across all datasets, we use
Wilcoxon signed ranks test [34], and to compare multiple classifiers across all datasets, we
use the Friedman test [11], and if it reveals significant differences between the results, we
follow it with a post hoc Nemenyi test [23] to establish a hierarchy between the classifiers.
In all tests, we assume the significance level o = 0.05.

4.6 Datasets

We used 16 numeric datasets with various numbers of classes, examples, and attributes.
All of the datasets are publicly available through the UCI machine learning repository [20].
Table 1 presents the main characteristics of each dataset. The datasets were chosen so that
they display a wide range of properties: the size varies between 150 and 20,000 examples;
the number of features varies between 5 and 102; the number of classes varies between 2 and
48. Since in most of our experiments we used the number of clusters determined by affinity
propagation, we include the average number of clusters into the dataset characteristics table.
We report the average because the analyzed process was repeated several times and for each
repeat, clustering was performed on a different train/test data split; therefore, the outcomes
were slightly different. All experiments were written in the R programming language [25]
using the caret package [17] to unify the experimental procedure across different classi-
fiers and datasets. The code used during the experiments along with the raw experimental
results and the detailed results of statistical tests are publicly available at: https://github.com/
MaciejPiernik/clustering- generated-features.

5 Experiments
5.1 Cluster representation

Before beginning to assess how various clustering algorithms, distance measures, classifiers,
etc., influence the discussed process, first, we need to decide on the one component which
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Table 1 Dataset characteristics

Dataset #Instances #Attributes #Classes Agyv. #Clusters
Breast-cancer-wisconsin 699 10 2 25
Ecoli 336 8 8 13
Glass 214 10 6 16
Image-segmentation 2310 20 7 56
Tonosphere 351 35 2 29
Iris 150 5 3 6
Optdigits 5620 65 10 178
Pendigits 10,992 17 10 136
Pima-indians-diabetes 768 9 2 35
Sonar.all 208 61 2 16
Spectrometer 531 102 48 29
Statlog-satimage 6435 37 6 73
Statlog-vehicle 846 19 4 27
Vowel-context 990 11 11 45
Wine 178 14 3 10
Yeast 1484 9 10 58

has not yet been completely defined, namely cluster representation, in other words, how to
encode the discovered clusters as new features. So far, we have only stated that this encoding is
done based on the distances between the examples and cluster representatives. This, however,
can be done in many different ways. In this experiment, we are going to test 5 methods of
encoding clusters as features, which we refer to as: binary, binary distance, distance, inverse
distance squared, and probability.

Binary representation

According to our framework, each feature corresponds to a certain cluster, so the most
straightforward encoding is a one in which each feature encodes whether a given example x;
belongs to a cluster with a given representative ¢; or not:

1 x; belongs to the cluster represented by ¢;
Xim+l = .
e 0 otherwise.

Binary distance representation

Since not all examples are in the same distance from the centers of their clusters, a natural
extension of the binary representation is encoding the distance from a given example x; to a
given cluster center ¢; if the example belongs to this cluster, and 0 otherwise:

8(x;j,c1) x;i belongs to the cluster represented by ¢;
Xim+l = .
imt 0 otherwise.
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Distance representation

Since for each example we can evaluate its distance from all cluster representatives, a further
extension of the binary distance representation is to let go of the cluster membership altogether
and simply encode each cluster as a distance from its representative ¢; to each example x;:

Xim+1 = 8(xi, cr).
Inverse distance squared representation

When assessing the importance of objects, a common approach is to use the inverse square
of distance (e.g., in knn classifier). Although measuring the importance of examples is not
our direct goal, it is tempting to check what would be the effect of using this method in
our problem. Therefore, the fourth examined way of encoding a cluster is to record the
squared in\;erse of the distance between its representative ¢; from each example X;: Xjm41 =
1/8(xi,cr)”.

Probability representation

Some clustering algorithms, e.g., expectation-maximization or fuzzy clustering methods,
estimate a cluster membership probability for each example. Although based on distance,
these estimates represent something different and are therefore interesting to include in the
analysis, especially since they can be naturally used as new features without any additional
processing. For any given example x; and cluster representative ¢;, each new feature is

encoded as: Xjm4+1 = 1/ Zle (%)2, where k is the number of clusters.

The results of this experiment are presented in Fig.4. The distance representation stands
out as a clear winner, although the probability representation is not far behind, in one case
(ionosphere) even prevailing over distance. However, at individual level, not all results are sig-
nificant. The ANOVA test was unable to distinguish between the results of each approach for
breast-cancer-wisconsin dataset. Moreover, the further pairwise 7-test was also inconclusive
for ecoli, iris, and image-segmentation dataset. For glass, pima-indians-diabetes, pendigits,
spectrometer, and statlog-vehicle, the distance representation was significantly better than all
other representations, while on the remaining datasets, it was only rivaled by the probability
representation (with one exception of statlog-satimage, where it was also indistinguishable
from the inverse distance squared representation).

Analyzing the results collectively, the superiority of the distance and probability repre-
sentations is confirmed. The Friedman test and the post hoc Nemenyi test, results of which
are illustrated in Fig. 5, reveal that the measured accuracies were not produced by chance and
that, indeed, the distance and probability representations are both significantly better than
the other representations. Although distance was also on average better than probability, the
test revealed that this difference is not significant.

All of the above test results allow us to draw a clear conclusion that the distance represen-
tation is a better choice than the alternatives. The reason for its superiority is in most cases
also rather straightforward. The binary, binary distance, and distance representations convey
different amounts of information, with the last one conveying the most, and the first one—the
least. It is very easy to convert the distance representation into binary distance and the binary
distance into binary, but the reverse is impossible. This asymmetry of conversion can be
viewed as a lossy data compression, and the experiments simply show that the information
lost in this process is valuable. Regarding the inverse distance squared representation, the
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Fig.5 Results of the Friedman test with post hoc Nemenyi test for different cluster representations

aim was to check whether looking at the features differently, namely as the importance of a
given example w.r.t. a given cluster rather than its simple spatial orientation, would benefit
the process. This hypothesis turned out to be wrong; however, we suspect that the importance
of examples could be potentially useful as a way of weighting training examples. The prob-
ability, although collectively statistically indistinguishable from the distance representation,
was ultimately significantly outperformed by it on several datasets, while the reverse was
never true. Although we do not see a straightforward reason for this outcome, our educated
guess is that, since probability by definition puts an emphasis on cluster membership, it
focuses on single clusters, so the information is not as well distributed across all features as
in the case of the distance representation. Given the above, we recommend relying on the
distance representation as the default way of encoding clusters as new features and use this
representation in the remainder of the experiments.
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5.2 Comparison of clustering algorithms

The first major component of the analyzed framework is the clustering algorithm used to form
groups of training examples. Although there are many options to choose from, we wanted to
focus on two main characteristics: a) how it deals with the number of clusters and b) what
is the shape of the produced clusters. As a result, we decided to compare three approaches
along those axes. The first two are k-means and affinity propagation, which allow us to deal
with the first characteristic (as already described in Sect.4.1). Since these approaches tend to
produce spherically shaped clusters, we selected spectral clustering as the third candidate, as
it allows for discovering clusters of irregular shapes. Conveniently, all of these approaches
produce cluster representatives, so there is no need for determining them separately.

Since the selected algorithms deal differently with the number of clusters, we had to make a
small adjustment in the experimental procedure. Affinity propagation determines the number
of clusters automatically and our experiments have shown that it produces significantly
more clusters than we would normally select for k-means or spectral clustering using other
methods like the gap statistic [31]. Since each cluster is encoded as a new feature, this poses
a problem, namely how to isolate the influence of the clustering algorithm from the influence
of the number of features on the classification quality. Here, we only want to measure the
impact of the former, while the impact of the latter will be analyzed in Sect.5.4. Therefore,
for each dataset we first perform the experiment using affinity propagation and then use the
detected number of clusters as an input for k-means and spectral clustering. The results of
this experiment are presented in Fig. 6.

Looking at the results, there is not a single case in which one algorithm would produce
noticeably better results than the others. This is only further confirmed through the ANOVA
tests which were unable to find significant differences between the algorithms on any dataset.
Analyzing the results collectively, we were still unable to find any regularities. The Friedman
statistical test confirms this observation as it was unable to reject the null hypothesis which
states that the differences between the results are the product of random chance.

The above analysis allows us to draw a firm conclusion that the clustering algorithm does
not impact the outcome of the discussed process in a significant way, if at all. On the one
hand, this is a positive outcome as it allows us to select any clustering algorithm (e.g., the
most efficient) rather than the one which produces the best clusters. On the other hand, it
begs the question whether the composition of clusters has any impact on the process or does
not matter at all. We will address this question with a dedicated experiment in Sect.5.5.

5.3 Clustering per class or global clustering?

The intuition behind the hypothesis stated in this study is that clustering of training examples
regardless of their class could help generalization through the use of global information. We
refer to this approach as global as it requires a “global look™ at the dataset, without artificially
dividing it into predefined categories. However, one could argue for an alternative approach
in which clustering is performed per class. We are still adding some global information about
distant objects’ similarity, however, with the additional potential benefit of modeling the
space occupied by each class. We refer to this approach as local as it analyzes the dataset
“locally” in each class. To verify which of these approaches is better, we compared them
empirically.

To make the comparison meaningful, we have to ensure an equal number of clusters in
both approaches, to make sure that the results solely rely on the generated clusters and not
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Fig. 6 Results of comparing different clustering algorithms: affinity propagation (ap), k-means (km), and
spectral clustering (sc)

their quantity. This is the same issue we faced when comparing clustering algorithms in
Sect.5.2. To achieve this goal, the experiment is performed as follows. First, we cluster the
dataset separately in each class using affinity propagation to automatically determine the
number of clusters. Next, we perform the same experiment using the global approach using
k-means with the number of clusters equal to the total number of clusters found in all classes
by affinity propagation. This way both approaches generate the same number of clusters for
each dataset but using different approach. Since in the previous experiment we showed that
the selected clustering algorithm does not influence the outcome of the process we can be
confident in using different algorithms (affinity propagation and k-means) for each approach.
The results of this experiment are presented in Fig. 7.

At first glance, the results do not reveal a clear winner, although the global approach
seems to work better in more cases than the local. Looking at individual cases, the differences
become more apparent with the global approach dominating significantly in several cases. A
t-test confirms this observation indicating a significant difference between the means of the
approaches for wine, glass, vowel-context, iris, sonar.all, image-segmentation, ionosphere,
pendigits, and statlog-satimage datasets, among which only one (pendigits) is in favor of the
local approach.

Analyzing the results collectively, the Wilcoxon signed ranks test was unable to find
a significant difference between these two approaches. We therefore cannot state with all
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Fig.7 Results of comparing local and global clustering

certainty that clustering the whole dataset produces better results than clustering for each
class separately. That being said, global clustering did significantly outperform local on eight
datasets, while the opposite was only true in one case. Moreover, global clustering is also the
more reasonable choice, as it ensures a more even spread of the cluster representatives, while
local clustering can produce highly overlapping clusters and, as a result, redundant features.
Finally, the global approach is also the more intuitive one, as it allows the algorithm to access
the hidden structure of the dataset which may be invisible through the lens of the classes.
Given the above, even though we cannot statistically state that global clustering works on
average better than local clustering, we still deem it a superior choice.

5.4 Sensitivity test

So far, in each experiment the number of clusters was determined by affinity propagation and
remained unchanged for all tested approaches to isolate the influence of a given component. In
this experiment, in turn, we isolate the number of clusters parameter to measure what impact
it has on the quality of classification. We do this by executing the experimental procedure with
the k-means clustering algorithm for increasing numbers of clusters from 1 to 200. Notice
that 200 clusters is an unreasonably large number for certain datasets as some of them do not
even have this many examples. This number was picked on purpose to pinpoint a moment
at which the added features start leading to model overfitting. To fully achieve this goal, in
addition to measuring the test set accuracy we also report training set accuracy to check when
exactly the model starts overfitting the data. The results of the experiment are presented in
Fig.8.
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the number of clusters selected by affinity propagation for a given dataset

Itis easy to observe a point of saturation for most datasets at which training accuracy starts
to diverge from test accuracy when it reaches a plateau. This is particularly well exemplified
by the plots for glass, pima-indians-diabetes, sonar.all, and spectrometer datasets. On the
other hand, for datasets image-segmentation, optdigits, pendigits, and statlog-satimage this
effect is fairly insignificant, although still observable. Since SVM is a reasonably robust
algorithm, this effect is not as dramatic as one could expect; however, the interpretation of
these results is still very clear—there is a certain number of clusters after which the model
starts to get needlessly complex. Interestingly, judging by the vertical lines in each plot,
affinity propagation seems to produce a reasonable number of clusters, usually around the
point at which the model starts overfitting. The only significant exceptions from this case
are optdigits and pendigits datasets; however, coincidentally they also exhibit the effect of
overfitting in the smallest amount, so, apart from the models being needlessly complicated,
training accuracy still reasonably approximates test accuracy in these two cases.

The main conclusion from this experiment is that the number of clusters has a significant
impact on the quality of predictions. Furthermore, most of the datasets show a predictable
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link between the number of clusters and classification quality. Up until a certain point, the
more clusters we create the better. Afterward, the model starts to overfit the data and gets
needlessly complicated without further improving the quality of predictions. The experiments
also demonstrate that the number of clusters produced by affinity propagation is usually a
good compromise between how complicated the model is and how well is it able to predict.
From our point of view, this is a very important finding as it confirms that our choice of
affinity propagation as the source of the number of clusters for all clustering algorithms was
appropriate.

5.5 Taking into account cluster purity

Since we have already established in our sensitivity experiment that the number of clusters
has a clear influence on the quality of classification, let us now check whether the purity w.r.t.
the class of the clusters themselves makes any difference. In order to do so, we will cluster
the datasets into the number of clusters indicated by affinity propagation, encode the clusters
as new features, and evaluate the quality of each new feature using Fisher score defined as:

Y k(] — pd)?
(07)?

FS (x i j) = )
where ny is the number of examples in k-th class, M/JC and o] are the mean and standard
deviation of k-th class corresponding to j-th feature, while ©/ and o/ are the mean and
standard deviation of the whole dataset corresponding to j-th feature. Next, we will add new
features one by one in order of their increasing and decreasing quality to observe the effect
they have on classification accuracy. The results of this experiment are presented in Fig.9.

Ultimately, the approach discussed in this study is based on selecting points in m-
dimensional space (where m is the number of features), calculating the distances between
all data points and the selected points, and encoding these distances as new features. The
analyzed plots illustrate that the choice of these points matters and has a clear impact on the
quality of classification. On the diagram, the yellow (lighter) line represents classification
quality when adding new features according to their descending Fisher score, while the blue
(darker) line represents the same in an ascending order. The lines necessarily meet at the end,
since in both cases in the end all features are used for classification. A direct observation from
these plots is that adding new features in order of descending Fisher score usually produces
better results than adding them in reversed order. This, however, leads to a more general and
more important observation that some points (clusters) hold more information than others
from the classification perspective which, in turn, seems to indicate that the choice of these
points should matter. This effect is displayed most prominently in the plots for breast-cancer-
wisconsin, ionosphere, iris, pima-indians-diabetes, sonar.all, and wine datasets. An odd case
is the statlog-satimage dataset, where adding features in the ascending order of their discrim-
inative power produces better results most of the time. However, this can be easily explained
by, e.g., a single feature which achieved a low Fisher score but was actually crucial from the
classification point of view.

Another obvious observation from the plots is that the maximum accuracy is almost always
at the end of each plot, i.e., when all features are being used. This suggests that all of the
generated features are important (albeit to a varied extent) and contribute valuable informa-
tion from the classification perspective. This observation also confirms the results from the
sensitivity experiment, hinting that the number of clusters selected by affinity propagation
indeed strikes a good balance from the under-/overfitting perspective.
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Fig.9 The results of measuring the impact of cluster purity w.r.t. class on classification. The plots illustrate how
adding new features in order of their quality influences the accuracy. The “top” (light yellow) line represents
adding new features from best to worst, the “bottom” (dark blue) line—from worst to best

In conclusion, the experiment suggests that not all clusters are equally valuable. The results
clearly indicate that some clusters yield features of higher purity, and this difference has a
noticeable impact on the quality of predictions.

5.6 The impact of distance measure

In Sect. 5.1, we have established that encoding clusters as a distance from training examples
to cluster representatives is the best among the proposed representations. Still, there are
various distance measures to choose from. So far, in all of the tested approaches we have
been relying on the Euclidean distance which by its nature produces spherically shaped
clusters. However, one often encounters correlations between features which produce non-
spherical clusters, to which the Euclidean distance is completely insensitive. Therefore, in
this experiment we would like to test just how big of an impact this particular characteristic
has on the classification quality by comparing the Euclidean distance against the Mahalanobis
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Fig. 10 Boxplots illustrating the results of comparing Euclidean distance to Mahalanobis distance

distance. Mahalanobis distance effectively measures the distance from a given point to a group
of points and is capable of tracking correlations of features within that group. Therefore, in
our case its values will be adjusted according to the data distribution in each cluster allowing
us to form non-spherically shaped clusters.

Both measures will be tested using linear SVM classifier and k-means clustering algorithm
with equal number of clusters for each dataset according to the experimental procedure from
Fig. 3. However, since k-means inherently relies on the Euclidean distance, we have to alter
it slightly for the purpose of this experiment. The modification for the Mahalanobis distance
is as follows. The first iteration of the algorithm is carried out in a regular fashion using
the Euclidean measure. This allows us to form first, candidate groups of objects. Each next
iteration is carried out using the Mahalanobis distance, evaluated for each object based on its
distance from each cluster representative, taking into account the covariance matrix calculated
based on the objects within a given cluster. Just as in regular k-means, cluster centers are
recalculated after each iteration along with the covariance matrix of the objects in each cluster.
The results of this experiment are presented in Fig. 10.

The results of the experiment do not reveal a superiority of one measure over the other;
however, noticeable differences are observable in many cases. For datasets yeast, vowel-
context, glass, iris, sonar.all, optdigits, pendigits, spectrometer, statlog-satimage, and statlog-
vehicle, the plots clearly indicate significant differences between the applied measures. The
Euclidean distance came out on top in 7 out of 10 of these cases, while the Mahalanobis
distance prevailed in the remaining 3. This observation is statistically confirmed for each of
these datasets using a 7-test. Analyzing the results collectively, the Wilcoxon test was unable
to differentiate between the two measures (by a large margin with p-value = 0.86).
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Although from a global perspective the results of this test seem inconclusive, the individual
results clearly indicate that the applied measure can have a significant impact on the outcome
of the process. The experiment therefore hints that the effectiveness of the measure depends on
the dataset. This observation could be somewhat expected, as each dataset can have a different
data distribution and correlations between features. We can therefore speculate that in some
cases the Euclidean distance sufficiently maps the analyzed space, while the Mahalanobis
distance makes it excessively complicated, and in other cases, the Euclidean distance is unable
to track irregularly shaped data patterns which are detectable by Mahalanobis measure. In
any case, obtaining the information about the shapes appearing within a dataset is the exact
task of clustering, so we naturally cannot know this information in advance. Consequently,
since the Euclidean distance proved to be sufficient more often than not, we use it in all of
our remaining experiments.

5.7 Semi-supervised learning

Since the methodology discussed in this study creates new features regardless of the decision
attribute, it is tempting to try it in a semi-supervised setting and compare it against a fully
supervised one, since the transition from one to the other is very straightforward. We achieve
this by checking whether clustering on both training and testing data produces better features
than clustering only on the former. Apart from using both training and testing data for
clustering, the methodology and experimental procedure remains unchanged. The only extra
modification concerns the number of clusters for each approach as the additional data may
lead to more clusters being detected. Since in Sect. 5.4 we have established that the number
of clusters has a significant impact on the outcome of the process, we wanted to eliminate
this factor from the experiment. Analogous to Sect.5.3, we achieve this by first clustering
each dataset on both training and testing sets for the semi-supervised approach using affinity
propagation and then using the detected number of clusters as an input for the k-means
algorithm in the supervised approach. Using two different clustering algorithms is not a
problem, since in Sect.5.2 we have established that the effect of this choice is insignificant.
The results of the experiment are presented in Fig. 11.

The boxplots clearly show that there is virtually no difference in the quality of predictions
between the supervised and semi-supervised scenario. A 7-test for every dataset detected
significant differences only in two cases—vowel-context and iris—one in favor of the super-
vised, while the other in favor of the semi-supervised approach. A further Wilcoxon test only
confirms this lack of difference on a global scale as it was unable to differentiate between
the approaches by a large margin (p-value = 0.9).

One would expect that the additional information stemming from clustering both training
and testing datasets would benefit the quality of predictions; however, the results clearly
indicate that this is simply not the case. On the one hand, this result seems surprising as
one would expect the additional information provided by the test set to be beneficial for
the classifier. After all, more information allows us to model the structure of the data more
accurately and form better clusters which are later used to produce new features. On the other
hand, the comparison of clustering algorithms from Sect. 5.2 has already shown us that the
clusters themselves are not that important. Why is it then that more information does not
benefit our method? The answer to this paradox could lie in the way we encode clusters as
new features, namely as distance from each data point to each cluster representative. What
this result seems to suggest is that it is not about how accurately the cluster representatives
are selected but how well they cover the dataset space. If true, this observation would be
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Fig. 11 Results of comparing a fully supervised training to a semi-supervised one, in which test examples
were used for clustering

consistent with the observations from the feature quality and sensitivity experiments as they
clearly suggested that the right number of clusters is more important than their exact positions.

5.8 Can clustering-generated features improve classification quality?

In the next two experiments, the main premise of this study is put to the test, namely do
clustering-generated features improve classification quality or not. In this first experiment,
we compare the original features against two alternative approaches: relying only the new
features or combining them with the original ones. This comparison is carried out using the
linear SVM classifier. The better of the two tested alternatives will be further evaluated in
Sect. 5.9 on 7 other classifiers, allowing us to form conclusions regarding the utility of using
clustering-generated features in classification in general. The results of the first comparison
are presented in Fig. 12.

The boxplots reveal many notable differences in performance between the compared
approaches. Only in 5 cases all three feature sets performed in a comparable way, namely for
breast-cancer-wisconsin, ecoli, sonar.all, wine, and yeast datasets. Comparing the original
and new features, one can notice a substantial variation in the results and none of the two
seems to be working better than the other. However, when combined they produce an outcome
which is more often than not equal or better than the two feature sets used separately.

The ANOVA statistical tests reveal significant differences for glass, vowel-context, iris,
image-segmentation, ionosphere, optdigits, pendigits, spectrometer, statlog-satimage, and
statlog-vehicle datasets. The pairwise z-tests show that in 6 out of these 10 cases using both
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Fig. 12 Results of comparing original features with features generated using clustering and both sets of features
used together

features was significantly better than relying only on the original ones, while the opposite
was not true in any case. In the same test using new features significantly improved the result
exactly as many times as it has diminished it, i.e., in 5 cases.

Analyzing the results collectively, the Friedman statistic was unable to find significant dif-
ferences between the results. We are therefore forced to conclude that clustering-generated
features do not improve classification quality in a general sense. However, given the above
discussion, we can clearly see that they can significantly improve classification accuracy
in some cases while not diminishing the quality in other cases. We can also infer that
clustering-generated features can be used as an alternative to the original features, albeit
with some reservation as the results vary significantly. Consequently, we recommend using
clustering-generated features in conjunction with the original ones as this way they can
improve classification quality without adding unnecessary risk. The only obvious downside
to this is the extended dimensionality of the dataset which can result in longer training.

5.9 Classifiers
So far we have been only testing our hypotheses on a single, linear SVM classifier. In this final

experiment, we want to observe what impact does the analyzed process have on other classi-
fiers. Since in the previous experiment we have established that augmenting original features
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Fig. 13 Results of comparing original features and augmented features on penalized multinomial regression
classifier

with new ones works favorably to relying solely on the new ones, in this experiment we are
only going to compare the original features against the augmented features. We evaluate the
process on several different, linear and non-linear classifiers, namely: penalized multinomial
regression (multinom), penalized discriminant analysis (pda), Bayesian generalized linear
model (bayesglm), decision trees (rpart), k-nearest neighbors (knn), SVM with RBF kernel
(svmRadial), random forest (rf). The results are presented in Figs. 13, 14, 15, 16, 17, 18, and
19.

The first thing that one notices when analyzing the results is that the differences are very
subtle, with the exception of only a few cases. However, some of these differences appear
consistently across all repetitions and are therefore significant. In the case of penalized
multinomial regression, one can easily identify several datasets for which adding clustering-
generated features was significantly beneficial to the quality of predictions without degrading
the quality on other datasets. The same observations hold true for penalized discriminant anal-
ysis classifier. Boxplots of Bayesian generalized linear model classifier paint a similar picture,
although in the case of image-segmentation dataset the accuracy is noticeably degraded after
adding new features. Decision trees produced similar results, although noticeable quality
degradation can now be observed in two datasets: glass and image-segmentation. Adding
the clustering-generated features proved to be detrimental to the accuracy in the case of the
k-nearest neighbors classifier, where it seems to have helped only in two cases (ionosphere
and vowel-context) but harmed the quality on at least 7 datasets. Interestingly, swapping the
kernel in SVM from linear to RBF dramatically changed the effect of the analyzed process on
classification quality. While adding clustering-generated features generally helped with the
linear kernel, it seems to have no particular effect in case of the RBF kernel, except for two
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Fig. 16 Results of comparing original features and augmented features on decision trees classifier
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Fig. 18 Results of comparing original features and augmented features on SVM with RBF kernel classifier

Accuracy E original augmented
breast-cancer-wisconsin ecoli glass image-segmentation
0.98 0881 0801 0.980 1
4 0.754 0.9754
22; > 0.70 ppdhy
’ 0.80 ' 0.965-
0.951 0.654 0.960 4
— ’ 0.955
ionosphere iris optdigits pendigits
0.95
0.9900 -
0.944 i 0981 ==
0.96
0.93 0.974 0.9875 -
0.92 0.94 : 0.9850 -
0.914 0.96
0.904 0.924 0.9825 -
> 0.
8 0.89 — 0.95
i
3 pima-indians—-diabetes sonar.all spectrometer statlog-satimage
S 784 0.90 0.56
<0 0.9154 |
1 0.554
0.85
0.76 1 060 0541 0.910
0.744 ’ 0.531 0.905-
0.754 0.52 ’
0.724 & 0.70 0.514 . 0.900 4
statlog-vehicle vowel-context wine yeast
0.76 0.94 | 1.009
0.74 E ' 0.99- 062
0724 0924 0.984 0604
0.974
0.704 0.90 0.964 0.58+
[ ]
orig'inal augm'ented orig'inal augm'ented orig'inal augm'ented orig'inal augm'ented
Features

Fig. 19 Results of comparing original features and augmented features on random forest classifier
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datasets (optdigits and pendigits), where it significantly degraded the quality of predictions.
The worst result recorded was on the random forest classifier, where new features did not
improve the quality of predictions on any dataset, but degraded the accuracy in at least 7
cases.

The z-tests for each dataset on each classifier only confirm the above observations but do
not provide any additional insight. The clustering-generated features significantly improved
the quality on: 6 datasets for multinom classifier, 7 datasets for pda classifier, 5 datasets for
bayesglm classifier, 6 datasets for rpart classifier, and 2 datasets for knn classifier. However,
they also significantly degraded the quality on: 1 dataset for rpart classifier, 7 datasets for knn
classifier, 2 datasets for svmRadial classifier, and 4 datasets for rf classifier. The additional
Wilcoxon signed ranks test was unable to distinguish between the two sets of features for any
of the discussed classifiers, which forces us to conclude that from a global perspective, the
discussed process on average does not influence the quality of predictions. However, given
the above discussion, we can see that it can have a huge and consistent impact on the quality
of predictions, albeit, depending on the classifier. For instance, it is uncontroversial to say
that clustering-generated features seem to be a safe option when dealing with linear models,
as adding them did not degrade classification quality on any dataset and was significantly
beneficial in many cases. It is also safe to say that the discussed methodology should not
be used in conjunction with the knn classifier as it can significantly harm the quality of
predictions.

The results also lead to an interesting observation in terms of datasets as they seem to
indicate that some datasets are more easily impacted by adding new features than others. In
particular, the vowel-context, optdigits, pendigits, and statlog-satimage datasets produce sig-
nificantly different results in nearly every case. However, and this is the most intriguing part,
this effect swings between significant improvement and significant degradation depending
on the classifier. The general trend remains unchanged, i.e., for linear models the datasets
benefit when adding new features, while the nonlinear models are more often than not harmed
by the addition of new features, but the reason for this pattern remains unclear.

In conclusion, we can state that clustering-generated features can improve classification
quality, although not with every classifier. In general, the discussed methodology is beneficial
for linear models, however, should be used with caution for nonlinear learners. Moreover,
clustering-generated features are particularly harmful when used with k-nearest neighbors
and random forest classifiers.

5.10 Dataset characteristics

Many of the experiments conducted so far indicate that the results are highly dependent
on the characteristics of the analyzed data. That is why, in this section, we aim at exploring
how each dataset characteristic influences the performance of clustering-generated features
compared to the original features. Although in Sect. 5.8 we have established that augmenting
the original features produces in general better results than relying solely on the new ones, in
this experiment, we compare the original features only against the new features to be able to
focus on their properties in isolation. To facilitate a meaningful comparison, we use a dataset
generator (from scikit-learn package [24]) which allows us to compare both approaches in
various scenarios by changing several distinct data characteristics in a precisely controlled
manner and separation from each other. We chose 5 common characteristics to experiment
with: number of features, number of classes, number of clusters per class (i.e., number of
distributions the data points are drawn from for each class), class distribution, and dataset

@ Springer



A study on using data clustering for feature extraction to...

1799

Clustering = ap ~ no

09 \\

Accuracy
o
»

o
N

0.6

0 25 50 75 100
Number of features

(a) Varying number of features (affinity
propagation, automatic k)

Clustering = ap = no

1.00

0.75

Accuracy
o
@
g

0 10 20 30 40 50
Number of classes

(¢) Varying number of classes

Clustering — ap no

\“'-—‘-_________

o
©

Accuracy

o
o

0.7

0.1 0.2 03 04 05
Class distribution

(e) Varying class distribution

Clustering = km = no

0.9
08 3 ;

07

Accuracy

0.6

0 25 50 75 100
Number of features

(b) Varying number of features (k-means,
k=number of features)

Clustering = ap = no

0.8

Accuracy

o
>

0.4

0 10 20 30 40 50
Number of clusters per class

(d) Varying number of clusters per class

Clustering = ap no

o
o

Accuracy

0.6

0.0 05 10 15
Class separation

(f) Varying dataset difficulty (class separa-
tion)

Fig. 20 Accuracies for original features and clustering-generated features for datasets with varying charac-
teristics. Each point represents a different dataset generated with the parameter value given on the x axis, the
regression lines represent the LOESS curves, while the bands represent their corresponding 95% confidence

intervals

difficulty (measured by class separation—the higher the separation the easier the dataset). To
better capture the influence of each characteristic, we generate a range of datasets for each
parameter by gradually changing its value. We rely on the experimental procedure presented
in Fig. 3, but the whole process is executed for each parameter value in a specified range and
each repeat generates a new dataset. Also, due to more randomness, we increased the number
of repeats to 20. For each characteristic, we selected a wide range of parameter values to

@ Springer



1800 M. Piernik, T. Morzy

better illustrate the whole spectrum of possible outcomes. The parameters in each experiment
change as follows, with the remaining parameters set to default:

— number of features: 2, 3, ..., 100 [default: 10]

— number of classes: 2, 3, ..., 50 [default: 2]

— number of clusters per class: 1, 2, ..., 50 [default: 1]

— class distribution: 1:39, 2:38, ..., 19:21, 1:1 [default: 1:1]

— difficulty (class separation): 1.5, 1.4, ..., 0.1, O [default: 0.7].

The maximum value of class separation (1.5) was picked experimentally, as higher values
produced trivial datasets which did not add any further insight into the analysis. In most
of the experiments, we used affinity propagation with automatically determined number of
clusters, with one exception discussed below. The results of this experiment are presented in
Fig.20.

The results reveal some very interesting properties of the analyzed method. Figure 20a
clearly shows that the dimensionality of the dataset has a major impact on the quality of
clustering-generated features. It also influences the quality of predictions on original features,
but to a much lesser extent. However, this result does not paint the whole picture. Since we
chose affinity propagation as the clustering method, the number of clusters was selected
automatically. Interestingly, regardless of the number of features, the number of clusters
was relatively stable between 15 and 25 for each dataset. This gave the clustering-generated
features an advantage up until 20 features, while in higher dimensions the advantage was
reversed. To address this issue, we re-ran the experiment with k-means and the number
of clusters equal to the dimensionality of the dataset. This way, the dimensionality of the
clustering-generated features is equal to the dimensionality of the original data. The result
presented in Fig. 20b paints a very different picture—the outcome is to some extent reversed.
These two results further amplify our main finding that the number of clusters is the key to
the performance of the clustering-generated features.

Figure 20c, d shows that varying the number of classes and the number of distributions
within each class has a major impact on the quality of predictions, albeit not much different
than on original features. These results only indicate that the clustering-generated features
do not introduce any additional robustness against these factors, nor do they hinge the per-
formance with regard to these two class characteristics. A similar conclusion can be drawn
with respect to class distribution, as illustrated in Fig. 20e, with one additional observation.
On average, clustering-generated features seem to produce slightly more stable and better
results with the increased balance of the class distribution.

The true highlight of the dataset characteristics analysis is the result of the dataset difficulty
experiment presented in Fig. 20f. The plot clearly illustrates that clustering-generated features
are much better at predicting difficult to distinguish classes than the original features, without
hinging the performance for easier datasets.

In conclusion, the dataset characteristics analysis reveals two main findings. Firstly, it
amplifies the importance of the number of clusters as the key to the performance of clustering-
generated features. Secondly, it reveals that clustering-generated features are well suited for
dealing with difficult problems, i.e., datasets with difficult to distinguish classes. However, it
is very important to note that the second point holds only given that the first point is fulfilled,
1.e., there is a sufficient number of clusters.
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6 Discussion of the results

Let us now summarize the main findings of our study and discuss them in a broader context.
In this paper, we formulated ten questions concerning using clustering as a means for feature
extraction which we deemed important and consequential. The results of our experiments
allow us to answer these questions, provoke other questions, and also shed some light on the
general idea of using clustering for classification purposes.

We start the discussion by answering the fundamental question: does using clustering
in conjunction with classification always improve the quality predictions? The answer to
this question is unambiguously negative. Sometimes, clustering a dataset prior to classifi-
cation improves the accuracy, and sometimes it does not. This outcome is dependent both
on the dataset and the classification algorithm being used. The results of this study show
that the improvement in classification accuracy concerns mainly linear classifiers, namely
support vector machine, penalized multinomial regression, penalized discriminant analysis,
and Bayesian generalized linear model. A possible explanation of this observation is that
clustering-generated features give linear classifiers an access to more variance in the data
(by introducing nonlinear feature transformations), thus improving the bias-variance balance
of a given model. In case of nonlinear classifiers, clustering-generated features are much
less beneficial and in some cases even degrade the quality of predictions, most prominently
for k-nearest neighbors and random forest classifiers. This difference between linear and
nonlinear models is very clearly illustrated on support vector machine, where going from a
linear kernel to RBF kernel drastically hurts the outcome, from mostly improving the qual-
ity in the case of the former, to no improvement and sometimes degrading in the case of
the latter. This can be explained by the fact that nonlinear models already have access to
higher-dimensional feature spaces (infinitely dimensional in the case of the RBF kernel), so
in these instances clustering-generated features do not introduce any new information. These
observations confirm the findings of Trivedi et al. [32], where the authors also observed
that clustering improved the quality of logistic regression, but was much less beneficial for
random forest.

Another unambiguous and intuitive conclusion that follows from our study concerns
cluster representation. The results of the experiment in Sect.5.1 clearly demonstrate that
constructing clustering-generated features as distances from cluster centers or cluster
membership probabilities provide significantly better results than the analyzed alternative
representations, most importantly, the binary representation, which only encodes cluster
membership of each example. This observation can be easily explained by the fact that dis-
tance representation contains exactly the same information as binary representation and adds
some additional information on top of it, which is clearly important from the classification
perspective. A similar case can be made for cluster membership probability as it is based on
distance but does not introduce any obvious information loss. This is an interesting finding
in the context of using frequent patterns for classification, studied by Cheng et al. [5], which
was the inspiration for our study. In this work, the authors show that encoding the infor-
mation about frequent patterns as new (binary) features significantly improved the quality
of classification. Our results regarding representations suggest that adding the information
about the distance between frequent patterns and the examples could improve the quality of
predictions even further. Of course, one would first have to devise such a measure; however,
given the potential gain in quality, we consider it to be a very promising area of new research.

The final conclusion which we find uncontroversial concerns the clustering methodology,
i.e., whether clustering should be done separately in each class (local approach) or for the
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whole dataset at once (global approach). It turns out that clustering globally often leads to
much better results than local clustering. This result aligns with our intuition that looking at
the dataset as a whole allows global clustering to access more information by unveiling the
hidden structure of the dataset rather than being confined to predefined classes.

In addition to the above-described intuitive conclusions, our study also reveals many
unexpected outcomes, some of which even standing in contradiction to one another. Firstly,
the experiment in Sect. 5.2 suggests that there is no difference in classification quality when
using different clustering algorithms. This surprising result leads to a bizarre conclusion that
clusters themselves (their contents and shapes) have no impact on the quality of predictions.
This observation is only amplified by the results from Sect. 5.7, where using semi-supervised
learning to generate clustering features did not improve the classification accuracy whatso-
ever. So not only is the clustering algorithm irrelevant, but adding more relevant information
into the process also does not help. What is even more intriguing is the fact that both of these
results seem to stand in contradiction to the results from Sect. 5.5 which clearly indicate that
there is a difference in the quality of features produced by the clusters which is then reflected
in the quality of predictions. We think that the answer to this paradox is hinted by the results
of the sensitivity test from Sect. 5.4 and the dataset characteristics analysis from Sect.5.10.
The sensitivity analysis shows that adding new clustering-generated features improves the
accuracy to a certain point, but once enough clusters have been generated, adding more does
not improve the quality further. Similarly, the dataset characteristics analysis reveals that
clustering-generated features are well suited even for datasets with difficult to distinguish
classes, however, only granted that the right number of clusters is selected—if not, the new
features can even be detrimental to the quality of predictions. What all of these contradictory
results seem to suggest is that the clusters themselves do not matter. What really matters is
the number of clusters. This observation somewhat explains the work of Trivedi et al. [32],
which, given the fact that they rely on k-means with a relatively low value of k, we suspect
could yield much better results by simply using more clusters.

The conclusion that the character of clusters is irrelevant but the number of clusters matters
is rather difficult to explain, unless we entertain the possibility that it is not clustering that
drives the improvement and that in the discussed process clustering is not even necessary.
After all, given the fact that the process relies on adding new features as distances from
cluster representatives, all that the clustering algorithm really does is finding points in space.
The process then proceeds to encode new features as distances from these points, but the
points themselves could in principle be generated by any other method. This readily explains
the fact that neither the clustering algorithm nor the clustering of both training and testing
datasets had any impact on the quality of later predictions. Ultimately, the features generated
by the process are simply nonlinear combinations of the existing features. In our experiments,
this nonlinear combination was done according to the Euclidean distance; however, different
measures would naturally produce different feature combinations. This is consistent with the
observations taken from the experiment involving the Mahalanobis distance from Sect. 5.6,
where the results varied significantly in comparison with the Euclidean distance from one
dataset to another.

This line of thought leads to a very interesting question, namely is there any merit to using
clustering as a way of creating new features or could the same result be achieved by simply
selecting random points in space? Answering this question constitutes a fascinating new area
of research, one which could potentially change the way we think about using clustering in
supervised learning problems.
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7 Conclusions

In this paper, we explored the idea of using data clustering as a way of extracting new features
with the aim of improving the quality of classification. To achieve this goal, we proposed
a framework which augments every dataset with clustering-generated features. The frame-
work is generic w.r.t. similarity measures, clustering algorithms, classifiers, and datasets, and
requires only that a similarity measure between data points exists. The framework was then
used to answer several pressing questions regarding using clustering as a means of extracting
new features. Each answer was supported with a separate experiment on 16 publicly available
datasets, followed by a series of appropriate statistical tests.

The results of the study show that adding clustering-generated features can improve the
quality of classification, albeit only when done in a specific way and not for all classifiers.
Encoding clusters as features using distance from the examples to cluster representatives
or cluster membership probability is significantly better than merely relying on their clus-
ter membership, and the distance measure used produces significantly different results for
different datasets. Moreover, adding the generated features to the existing ones rather than
replacing them altogether is a safer option which yields more improvements without degrad-
ing the quality in other cases. As for the classifiers, the methodology seems to work better
with linear classifiers, sometimes improving but never degrading the quality of predictions,
but should not be used with nearest neighbors and random forest approaches. Finally, clus-
ters generate features of varying quality which predictably impacts the quality of predictions;
however, the character of the clusters themselves does not matter (even in a semi-supervised
setting when clustering both training and testing sets at once), as long as there is enough of
them.

Finally, this study opens several new doors of potential scientific inquiry. As adding
clustering-generated features in a way described by our methodology is a generic approach,
it would be interesting to see what results would this method yield with complex data types,
e.g., sequential data, graphs, etc., and compare them with features generated using domain-
specific methods. Furthermore, since we focused on the classification task, it would also
be interesting to test the discussed approach in other machine learning and data analysis
scenarios, both supervised and unsupervised. Although using clustering-generated features
for clustering may seem redundant, it could prove useful in complex data types, in particular
when dealing with multiview clustering [35] if each view is of complex, potentially different
data type. In this scenario, relying on the proposed methodology for each view separately
would allow for using existing multiview clustering approaches working on regular features
[22]. On another front, the discussion of the results provokes many new questions related
to the nature of encoding clusters as new features. Since in the discussed methodology, it
is achieved based on the distances from cluster representatives to examples, it inherently
reduces the role of clustering to an elaborate way of selecting points. The main question here
is, are clustering-generated points in any way better than randomly or uniformly distributed
points, and if so—why?
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