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Abstract - The heart of the voltage stability problem is 
the voltage drop that occurs when the power system experi- 
ences a heavy load, and one serious type of voltage instability 
is voltage collapse. In this paper, a mechanism of the dynamic 
phenomenon of voltage collapse is presented from the physical 
point of view. It is shown that an iterative reaction of voltage 
drop between a dynamic load and the system network can cause 
voltage collapse. The dynamic phenomenon of voltage collapse 
is analyzed on a simple power system model which includes a 
synchronous motor. 

1. INTRODUCTION 

The voltage stability problem is now a serious concern to 
the electric utility industry. Many large interconnected power 
systems are increasingly experiencing abnormally high or low 
voltages and voltage collapse. These voltage problems are as- 
sociated with the increased loading of transmission lines, insuf- 
ficient local reactive supply, and the shipping of power across 
long distances. 

The heart of the voltage stability problem is the voltage 
drop that occurs when the power system experiences a heavy 
load, and one serious type of voltage instability is voltage col- 
lapse. Voltage collapse is characterized by an initial slow pro- 
gressive decline in the voltage magnitude of the power system 
buses and a final rapid decline in the voltage magnitude. 

There is a body of literature on voltage collapse with both 
static and dynamic considerations. Venikov et al. [l] sug- 
gested a criterion for voltage stability based on a steady state 
sensitivity analysis using a simple two bus system. Kwatny et  
al. [2] studied the problem by applying the bifurcation analysis 
to the load flow equations. They showed that a static bifur- 
cation associated with voltage collapse exists and at that point 
the load voltages are infinitely sensitive to parameter variations. 
Tamura et al. [3,4] explained the voltage collapse by multiple 
load flow solutions and showed that load flow solutions undergo 
saddle node bifurcations as reactive power supply parameters 
are varied. Medanic et  al. [5]  studied the voltage stability 
of discrete models of multiple tap changers. Liu [6], and Liu 
and Vu [7] presented a nonlinear on-line tap-changer model for 
a dynamical description of voltage collapse using simple two or 
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three bus models, and analyzed the voltage stability by charac- 
terizing the voltage stability region in terms of the tap-changer 
model. 

[8-101 introduced PQ and PV stabilities 
and controllabilities based on how the bus voltage at  every load 
bus and the reactive generation at every generator bus should 
react to voltage changes at  generator buses and reactive load 
changes at  load buses. They presented a unified theoretical 
foundation for determining tests for voltage security conditions. 
These conditions are for static voltage stability and Lee et al. 
[ 111 demonstrated their usefulness for security economic opera- 
tion. Rajagopalan et al. [12] included the excitation system 
for voltage stability analysis and investigated the eigenvalues 
of the linearized system matrix for the dynamic voltage stabil- 
ity. Sekine et al. [13] suggested an eigenvalue method to judge 
voltage instability. It was shown that voltage instability is in- 
fluenced by multiple solutions and by dynamic characteristics of 
loads and control equipments. They showed that a static var 
compensator improves voltage stability. Sekine et al.[ 141 also 
analyzed the dynamic phenomena of voltage collapse using in- 
duction motor models. Dobson et  al. [15-161 and Chiang et 
al. [17] explained the dynamics of voltage collapse as a dynamic 
consequence of the bifurcation, using a simple three bus model 
including a dynamic load. They analyzed voltage collapse based 
on a center manifold voltage collapse model. 

Although there is extensive literature on voltage collapse, 
very few deal with the physical mechanism of the voltage col- 
lapse phenomenon. This paper presents a mechanism of voltage 
collapse using a simple power system model. It is evident that  
the system is unstable when the linearized system matrix has a 
positive eigenvalue, even if it may be infinitesimally small. But 
the mechanism by which its eigenvalue changes from a small 
negative value to a small positive value by some disturbance, 
and consequently leads to voltage instability, has not yet been 
well understood. 

In this paper, a synchronous motor operating at fixed exci- 
tation is introduced as a load for voltage collapse analysis. This 
model for voltage collapse analysis is also applicable to more 
general power system because the synchronous motor model can 
easily be changed to a generator model. A detailed mechanism 
of the voltage collapse phenomenon is analyzed from the phys- 
ical point of view rather than the mathematical point of view. 

When the system is operating near the bifurcation point and its 
linearized system matrix has a very small negative eigenvalue, 
dynamic equations describing the mechanism of voltage collapse 
caused by a very small disturbance are derived and the physi- 
cal explanation of the voltage collapse mechanism is presented 
in detail. It is shown that an iterative reaction of voltage drop 
between the machine and the system network can cause voltage 
collapse. 
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characteristics of induction machines, however, can be included 
in a composite load model as in usual stability studies. 

The mathematical model for the dynamic stability study of 
a power system comprises a) differential equations, b) stator 
algebraic equations, and c) network equations. The model can 
be shown to be in the following differential-algebraic form: 

The mathematical model for dynamic analysis of a power 
system comprises 1) differential equations, 2) stator algebraic 
equations, and 3) network equations. The generator bus is a 
slack bus at which the voltage magnitude is maintained at  a con- 
stant value. The load model at  bus 3 is a composite of constant 
power, constant current, and constant impedance as follows: (2'1) 

0 = d? Y ) ,  (2.2) 

where x represents the state variables of the machines and the 
P = P A  + PB . v + P c  .vz , 

excitation systems, and y represents the stator currents of each 
machine, the injected real and reactive powers, and the voltage 
magnitudes and angles at  each of the network buses. The steady 
state values or equilibriums of the dynamic system states are 
evaluated by setting the derivative in equation (2.1) to zero. 

In the neighborhood of an equilibrium point, equations (2.1) 
and (2.2) can be linearized to give 

Q = Q~ + Q ~ .  v + Q~ . v Z  . ( 3 4  

(2.3) 

O = C A x + D A y .  (2.4) 

dAx  
dt 
- = A A x  + B A Y ,  

Furthermore, the incremental algebraic variables can be elimi- - - - - - - - nated and the resulting dynamic system is 

Fig. 1. A simple power system model d A x  
dt (2.5) -- - ( A  - B D - ' C ) A z  = A & .  

The static bifurcation can occur when det[D] = 0. However, 
since only the dynamic bifurcation phenomenon is considered 
here, it is assumed that det[D] # 0 and D-' exists. 

By monitoring the eigenvalues of A mat_rix, dynamic stabil- 
ity is analyzed. When the determinant of A is zero, that is, A 
has a zero eigenvalue, the equilibrium point becomes a bifurca- 
tion point and voltage collapse will occur. The matrix A reflects 
electrical and mechanical variables whose time constants are rel- 
atively small, and its eigenvalues are large. However, matrix A 
reflects the interactive reaction between machines and network 
and its eigenvalues may become very small resulting in a very 
slow process of voltage collapse. Dynamic stability analysis for 
this type of model was also presented in [12,13]. 

3. MODELING FOR DYNAMIC VOLTAGE 

It is assumed that the synchronous motor of load bus 2 
is operating under fixed excitation with unity power-factor and 
that the losses of the motor can be neglected. For simplicity 
of analysis on voltage collapse, only the dynamic model of the 
synchronous motor is considered while the terminal voltage V I  
of the generator bus 1 is being held constant. 

Differential equations of a synchronous motor in a large 
network are expressed normally as follows: 

(3.3) 

(3.6) 
STABILITY ANALYSIS 

A simple 3-bus power system is shown in Figure 1. Two 

buses is connected to a cylindrical-rotor synchronous motor as 
a dynamic equivalent at  the bus. This system resembles the 
case when power is transfered Over a long transmission line to a 
receiving-end which is in synchronism with the sending-end but 
often experiences voltage collapse. The receiving-end may have 
its own generating units but unable to meet all power demand in 
its own service area. Although the service area may have many 
induction motors as industrial loads, its dynamic equivalent will 
be better represented by a synchronous machine rather than 
an induction machine since the area has other generating units 
which are in synchronism with the rest of the network. The 

where M ,  D and TM are the moment of inertia, damping co- 

the machine constants; subscripts d and denote the direct- and 
quadrature-axis components; and the subscript m represents the 
synchronous motor bus and is 2 in Figure 1. Also, stator alge- 
braic equations of the motor are as follows: 

Vicoso, + R,i(I&sinbi + IqicosGi) - XLi(Iqisin6i - IdicosGi) 

-[Eii~inG,t(XC,i-XL,)l,,sinG,+EC,~cosGi] = 0 ,  i = m 

VisinOi + R,i(lq,isin6, - Idicosbi) + Xhi(Idisin6, + I,,cosGi) 

-[E~isinG,-(X~i-X~i)I , icosG,-E~icosGi] = 0 ,  z = m 

load buses are fed by One generating unit and One Of the load efficient and mechanical torque, respective]y; T f ,  x and X f  are 

(3 .7 )  

(3.8) 



968 

Finally the network equations of the power system are ex- E;, - vicOs(6, - e,) 
XAi 

Qi = Vt [ cos(6i - ei) pressed as follows: 

Pa = V1',[I~,sin(6,-B,)+I,,cos(6,-8,)]+P~,(~,), i = m, (3.9) 
J 

'It 
A 

Q ,  = ~ , [ ~ ~ ~ c 0 ~ ( 6 , - ~ t ) - ~ , , ~ ~ ~ ( ~ , - ~ , ) ] + ~ ~ , ( ~ , ) ,  a = m ,  (3.10) 

(3.11) 

(3.12) 

where P, and Q, are from equations (3.13) and (3.14). 
Equations (3.17)-(3.21) are now in the general form of equa- 

tions (2:1)-(2.2). Following the procedure of section 2, eigenval- 
ues of A in equation ( 2 . 5 )  and thus a possible bifurcation point 
can be found. 

a = m + l ,  ..., n, 

= + 1, ..., n, 

PI = PLl(VJ, 

Qt = Q L ~ ( V ~ ) ,  

where n is the number of total buses, PI and QI are net injected 
real and reactive powers at  each of the buses, and PL,(V,) and 
Q L ~ ( V ~ )  are real and reactive power loads at  bus i, respectively, 
which are given in equations (3.1) and (3.2). For the system in 
Figure 1, there is only one load bus that is not expressed by a 
synchronous machine model and thus z = 3 in equations (3.11) 
and (3.12). The net injected real and reactive powers are given 
as 

n 

pa = IY,,Iv,v,eos(-e,, - e, + e,), (3.13) 
,=1 

4. DYNAMIC ANALYSIS OF VOLTAGE COLLAPSE 
AROUND THE BIFURCATION POINT 

Assumptions 

It is assumed that the power system is at  a steady state with 
a very small negative eigenvalue at  the initial time, the generator 
of bus 1 holds its bus voltage constant, and the real power load 
of the motor is constant. The motor is in synchronis-m and the 
change in speed is very small. It is also assumed that A matrix of 
the power system in equation (2.5) has the infinitesimally small 
negative eigenvalue right after a small disturbance of AE;  takes 
place. That is, the equilibrium point of the power system is near 
the bifurcation point. Since the synchronous machine is of the 
cylindrical rotor, xd = x,  and x:, = x;, and since the machine 
operates at  fixed excitation, Efd is constant. 

Dynamic Analysis of Voltage Collapse Phenomenon 

where Y,, is a complex element of the bus admittance matrix. 

In general, EA is very small compared to E& and R, is 
very small compared to Xd and X , .  Therefore, their effects are 
neglected for simplicity of analysis. Then the stator algebraic 
equations (3.7) and (3.8) are simplified as follows: 

For the convenience of notation, the subscript m that rep- 
resents the synchronous motor bus is deleted in the following 

consider equation (3.19): 

E ; ~  - Vmcos(6, - e m )  
Idm = 9 (3'15) developments. To understand the voltage collapse mechanism, 

XAm 

Vmsin(6m - 0,) 
X;m 

Iqm = 

These current equations are substituted into the differential 
equations and the network equations in order to reduce the num- 
ber of variables. Then differential equations of the motor are 
obtained as follows: 

where E; means dE;/dt. 

represented by 
Solving this for V ,  the terminal voltage of the motor bus is 

i = m ,  (3.17) 

And the network equations of the power system can be rewritten 
as follows: 

where r) = 6 - B. This equation reveals an important fact 
that voltage collapse is closely related to the collapse of E; and q. 
Thus, it is necessary to develop a dynamic model describing the 
changes of these two variables. Therefore, the static formulation 
alone cannot give an adequate answer to the voltage collapse 
problem. 

When the loss of the machine is neglected and the machine 
is of the cylindrical rotor type, its real power can be expressed 
as follows: 

P = sin(r)), 
E'V 

(4.3) 
XA 

where the positive power and the negative power represent the 
generation and the load, respectively. When the change in speed 
is very small i~ in equation (3.18) is negligible, and from the 
condition that the real power load of the machine is constant, 
equation (3.18) yields 

-1-- 1- -- 
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The change in E; also causes 7 to change. To see this effect, 
equation (4.2) is substituted into equation (4.3): 

E;Vsin(q) = c ,  (4.4) 

where c is a constant. 
Equation (4.4) also indicates that the change in voltage v P =  tan(7)  (XdE; - X i E f d  + XAT&)Ei. (4.12) 

is due to the changes in Eh and 7 .  In order to develop expres- x: (xd - XA) 
sions for these changes, consider the magnitude of the armature 
current of the machine which can be expressed as follows: Expanding this in a Taylor series and neglecting higher order 

terms, the following sensitivity relationship is obtained: 

III = 41; +I,". (4.5) 

Fromequations (3.15), (3.16), (4.2) and (4.4), this can be rewrit- 
ten as follows: 

where 

The equation (4.6) is linearized about an equilibrium point to 
yield the following sensitivity relationship: 

Thus far, we have shown how the change in E; affects armature 
current and angle 7 .  We now show that E; is affected dynami- 
cally by the armature current and angle q. 

The decrease in flux across the air gap of the machine caused 
by armature current cannot take place immediately. This means 
we can assume that the time constant of the armature circuit 
is very small compared to the time constant of the field wind- 
ing and thus it can be neglected. Then equation (3.5) can be 

XA2TiE;3(E; - Efd + Ti&;) + ' (4.7) where k is an integer, and the time interval T is related to the 
time constant of the field winding and can be set to Ti .  Then F(E; ,  E;) 

where A ~ I A (  means the variation of the armature current I due 
to A E ;  and A E ;  when the effect of voltage drop is not con- 
sidered. However, due to the variation of the armature current, 
voltage drop will occur through the transmission line: 

this equation can be expressed as 

i- = E f d  - ( x d  - xi) ' I1dd((k - 1)T) + AId(kT)]  
= E i ( k T )  - (xd - XA) . LlId(kT). (4.15) 

where Z is the impedance of the transmission line from the gen- 
erator bus to the motor bus and 1 is a phasor of the voltage. 
Since the motor operates at  unity power-factor and A(V( is very 
small compared to IVI, the magnitude of AV can be approxi- 
mated as follows: 

AlVl FZ - R .  A ~ I A / ,  (4.9) 

where R is the resistance of the transmission line from the gen- 
erator bus to the motor bus. 

To see the effect of this voltage drop on the armature cur- 
rent, consider the real power absorbed by the motor bus as fol- 

The direct axis component of the armature current, Idr is ex- 
pressed as follows: 

Id = -111 sin(7 + 4 ) .  (4.16) 

Since 4 = 0, the variation of nId = -szn(q) . AI11 - 
IIlcos(q) .AV. Thus, equation (4.15) can be rewritten as follows: 

is: 

lows: 
(4.10) where the variation of armature current AI11 is the superposi- 

tion of both variations in equations (4.7) and (4.11). E; and 

as follows: 

IPl = IVIII  C..(dJ), 

where 4 is the between the phase and the phase in equations (4.2), (4.7) and (4.13) can be approximated 
current I and its value is 0 from the assumption that the motor 
operates at  unity power-factor. 

The reduction in terminal voltage, AV, causes further in- 
crease in the armature current in order to maintain the constant 

. E;(kT)  - E;((k - 1)T) 
T 9 ( 4 . 1 8 ~ )  E' = 

power in equation (4.10). Let the variation of the armature cur- 
rent I due to AV be A I B .  Then from equation (4.10), 

A E ; ( k T )  - A E i ( ( k  - 1)T)  
T 

nE; = (4.18 b )  

(4,11) 
The dynamic change in E; is now modeled by equation (4.17) 
as a function of the changes in I and 7 ,  which are given in equa- 
tions (4.7), (4.9), (4.11) and (4.13). Then, by combining these 
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equations together with (4.2), equation (4.17) can be shown to 
be in the following form: 

where E; and q are updated as follows: 

Ei((k + 1)T) = E i ( k T )  + A E i ( ( k  + 1)T) ,  (4.20) 

q((k  + 1)T)  = q ( k T )  + Oq((k  + 1)T). (4.21) 

with Oq being given in equation (4.13) 

Finally, in order to demonstrate the voltage collapse phe- 
nomenon, the value of V can be obtained by substituting the 
values of E; and q into equation (4.2) together with equation 
(4.1 sa). 

The key equation governing the dynamics of voltage col- 
lapse is equation (4.19), where the gains GI and Gz determine 
the characteristics of the voltage collapse mechanism. In order 
to see the mechanism more clearly, we can make the following 
simplifications. The effect of E; is relatively small in the ini- 
tial stage of voltage collapse since the voltage collapse proceeds 
very slowly. Neglecting the effect of @;, equation (4.19) can be 
approximated in the following form: 

= G ( E i , q ) .  A E i ( k T ) ,  (4.22) 

where the argument kT is deleted in variables in the coefficient 
G(E;,q) .  Thus, the gain G(E; ,q )  plays the vital role in the 
analysis of the voltage collapse mechanism. 

5. DISCUSSION AND RESULTS OF SIMULATION 

Initial Data 

The data of the power system model shown in Figure 1 are 
as follows: 

xd = 1.18, xi = 0.22, x, = xd, xi = xi, Ti = 1.28, 
M = 0.0498, D = 0.0053, = 377., v, = 1.0, e l  = 0, 
Z13 = 0.012 + j0.08, 2 3 2  = 0.014 + j0.092, R = 0.026. 

where the above data are in P.u., except that us is in rad/sec 
and B1 is in radian. 

Bifurcation Point 

At a bifurcation-point the determinant of 2 in equation 
(2.5) is zero and the A matrix has a zero eigenvalue. A dynamic 
bifurcation of the power system can be found by adjusting real 
and reactive powers of each-bus and the value of the capacitor in 
the load bus 3 so that the A matrix may have a zero eigenvalue. 
Figure 2 shows the variation of a critical eigenvalue as the real 
power load of bus 3 is increased in steps from a value of -1.0 

p.u. to -3.0 p.u. It is shown that the critical eigenvalue drifts 
towards the positive value as the loading increases progressively. 

- l , , \ , , ~ , , , + l l  1 ;  1 8  1 '  

- 2 . 5  -2.0 -1.5 -1.0 -3.0 

P3 (P...) 

Fig. 2. Variation of a critical eigenvalue due to loading effect 

The data for a case when the 2 matrix has a zero eigenvalue 
are shown using per unit values as follows: 

PZ = -1.12, Pa = -2.0032, 9 2  = 0, Q3 = -0.4976, 
PA = -1.8115, PE = -0.1006, Pc = -0.1006. 
Q A  = -0.45, QB = -0.025, &c = -0.025, C = 1.2221. 

From the output of the load flow, V2 = 0.9450, V3 = 0.9678, 
8 2  = -0.3824, and 83 = -0.2695, where angles are in radians. 
The power of the swing bus 1 is 3.2728+j0.3486. 

For the case considered the bifurcating equilibrium point 
- Z ~ = ( ~ ~ , W ~ ,  E;') is (-0.6516,377., 0.9803), where w is in rad/sec. 
The eigenvalues a t  the bifurcation are 0.0, -0.9624+j5.3321, 
and -0.9624 j5.3321. The eigenvector corresponding to the 
zero eigenvalue is e= (-0.7801, 10.12D-6, -0.6257). Here the 
component values of 6 and E; are relatively large. It is well 
known that the bus voltages are very closely related to 6 and 
E;. From equation (4.3), the real power is also very closely 
related to q and E;, where q = 6 - 6'. Therefore, due to the 
strong coupling between voltage and angle, the voltage collapse 
will inevitably accompany the angle collapse. 

Explanation o f  Voltage Collapse Mechanism 

Suppose that the power system, which is initially at a steady 
state with a very small negative eigenvalue, is perturbed by 
(0.1D-3)g in the direction of the eigenvector g so that the equi- 
librium may be near L. Suppose also that the parameters of 
the power system do not vary during the entire period of the 
voltage collapse. Right after the very small perturbation, the A 
matrix of this power system has an infinitesimally small negative 
eigenvalue. Then the scenario of voltage collapse is as follows: 

1) By the above assumption', a very small perturbation took 
place and right after this small perturbation, the equilibrium 
point of the power sys_tem is near the bifurcating equilibrium 
point d. That is, the A matrix in equation (2.5) has an almost 
zero eigenvalue. The eigenvector with an almost zero eigenvalue 
dominates the dynamics of the system, while the components as- 
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sociated with other relatively larger negative eigenvalues dimin- 
ish very fast. Thus, the value of each variable will still remain 
displaced by the initial perturbation due to the effect of the al- 
most zero eigenvalue. Since E; was perturbed in the direction 
of decreasing magnitude however, the magnitude of armature 
current should increase in order to supply the constant power to 
the motor from equation(4.7). This is verified from the fact that  
the values of the coefficients of A E ;  and A E ;  in equation (4.7) 
are negative when the motor operates at  unity power-factor. 

2) The increase in the magnitude of armature current causes 
the voltage drop through the transmission line except for lead- 
ing power factors. This voltage drop becomes an initial motive 
force that makes the dynamic trajectory move even further. The 
equation (4.9) represents the voltage drop through the transmis- 
sion line. 

3) This voltage drop in turn causes the increase of armature 
current in order to supply the constant power to the motor. The 
equation (4.11) represents this increase of armature current in 
order to compensate for the terminal voltage drop at  the motor 
bus. 

4) The effect of the disturbance reacts again to the machine. 
This increase of armature current causes a decrease in the airgap 
flux, which in turn causes the magnitude of E; to decrease. 
However, since the airgap flux cannot change instantaneously, 
a time delay occurs by the amount of the time constant of the 
field winding. The equation (4.17) represents this relationship. 

The internal voltage of the machine, E;, thus decreases af- 
ter the time delay and the above procedures from 1) to 4) are 
repeated. Thus, an iterative reaction of voltage drop between 
the machine and the system network can lead to voltage col- 
lapse. When the system is operating near the bifurcation point 
and its linearized system matrix has a very small negative eigen- 
value, dynamic equations for describing the mechanism of volt- 
age collapse, caused by a very small disturbance, were derived in 
Section 4 following the above sequence of events, i.e., the differ- 
ence equations (4.19), (4.20) and (4.21) represent this iterative 
process. 

Criteria for Dynamic Voltage Stability 

We can also use equation (4.22) to approximate equation 
(4.19). The coefficient G(E;,  q )  in equation (4.22) is obtained by 
neglecting the effect of E;. This approximation is very good, es- 
pecially during the initial stage of voltage collapse, sinSe voltage 
collapse proceeds very slowly and the magnitude of E; is very 
small in the initial stage of voltage collapse. In the case of a very 
small perturbation, the system will remain at  equilibrium if the 
magnitude of G(E;,  q) is less than 1. However, if the magnitude 
of G(E; ,q )  is larger than 1, the power system will experience 
voltage collapse. The function G ( E i , q )  depends on E; and ini- 
tially its value increases very slowly as E; decreases very slowly, 
and then increases very sharply near the voltage collapse point 
when $7; decreases very sharply (See Figure 6) .  From equation 
(4.22) we also note that the magnitude of G ( E i , q )  increases if 
the real power load of the motor, IPI, increases. 

Here we conclude the following criteria for preventing a volt- 
age collapse: 

a) The linearized system matrix (A) has all negative 
eigenvalues. 

b) The magnitude of G ( E i ,  q )  at an equilibrium 
point is less than 1. 

Extension of the Model to General Power System 

The voltage collapse model is developed for a radial power 
system. It has been reported that a voltage collapse starts at  
the weakest node and then spreads out to other weak nodesjl41. 
Therefore, the weakest node is the most important in the voltage 
collapse analysis. For the general power system, the weakest 
node can be handled as one bus and the rest of the system can 
be handled as another bus. Then the criteria suggested above 
can also be applied for voltage stability. 

This voltage collapse analysis model can be extended to 
include synchronous generators because the synchronous motor 
model can be easily changed to the generator model. The fixed 
excitation implies that  the generator operates with fixed excita- 
tion in the case of an emergency or that the generator operates 
as a PQ bus when its reactive power hits its limit. Then the 
generator does not have reactive power reserve and loses the 
capability of voltage control. This can happen during the peak 
load of the power system. When the generator supports constant 
power as a PQ bus during the peak load, this voltage collapse 
analysis model can be applied similarly. This also agrees with 
the general theory that the voltage instability occurs if the re- 
active demand is not met. 

Results of Simulation 

From equations (4.19), (4.20), (4.21), and (4.2), the dynam- 
ical trajectories of several variables are drawn, with the initial 
value of G(E;,q)  as 1.036. Figures 3, 4 and 5 show the dy- 
namical behaviour of E;? q and V ,  respectively. From Figures 
3 and 5 we see that E: is very closely related to V .  Figure 
4 shows that the angle collapse is accompanied by the voltage 
collapse. Figure 5 shows the dynamical characteristics of the 
voltage collapse of bus 2. The voltage decreases very slowly un- 
til it approaches a certain value, and then it collapses abruptly 
near a voltage collapse point. 

The voltage collapse model described by difference equa- 
tions not only gives a systematic explanation of the voltage col- 
lapse mechanism, but also produces anticipated results, which 
have been sought by many researchers. These results can also be 
obtained by applying similar assumptions to more detailed dif- 
ferential equations (3.17)-(3.19), but with much extensive s k u -  
lation effort. 

For an approximate analysis, equations (4.22), (4.20), (4.21), 
and (4.2) can be used.' Figure 6 shows the trajectory of the 
magnitude of G(E:, q ) .  From Figure 6 we observe that the mag- 
nitude of G(E;, q )  increases very sharply around the voltage col- 
lapse point and accelerates the dynamics of the voltage collapse. 
Figures 7, 8 and 9 show the approximated trajectories of E:, q 
and V ,  respectively. Since the effect of E; is neglected in the 
approximation, we note from the figures that the trajectories of 
these variables proceed rather slowly. Finally, it is also observed 
that if the initial magnitude of G(E; ,q )  or the magnitude of 
the initial perturbation increases, the time required for voltage 
collapse decreases. 
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6. CONCLUSIONS 

This paper has demonstrated a detailed dynamic mecha- 
nism of the voltage collapse phenomenon using a simple power 
system model which includes a synchronous motor. Especially 
in this paper, the mechanism of voltage collapse phenomenon 
was analyzed from the physical point of view rather than from 
the mathematical point of view, and some meaningful physical 
interpretations are given. 

When the system is operating near the bifurcation point and 
its linearized system matrix has a very small negative eigenvalue, 
dynamic equations describing the mechanism of voltage collapse 
caused by a very small disturbance are derived and the physi- 
cal explanation of the voltage collapse mechanism is presented. 
It has been verified that the voltage collapse phenomenon ac- 
celerates very fast near the voltage collapse point because the 
magnitude of G ( E ; ,  q )  increases very sharply around a voltage 
collapse point. It is also shown that from the simulation results 
of the derived dynamic equations an iterative reaction of volt- 
age drop between the dynamic load and the system network can 
cause voltage collapse. 

This paper presents an alternative model to describe a volt- 
age collapse mechanism. It is believed that this paper may 
provide a deeper insight into the dynamical mechanism of volt- 
age collapse phenomenon which has not been well understood. 
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