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ABSTRACT

The newer context-aware applications require many inputs and amongst them the location information is one of the most
important. In the near future, we see the potential in using wireless sensors deployed inside buildings to support in generating
the location information besides their other routine tasks. This paper records the efforts involved in designing and prototyping
a centralized indoor positioning system for tracking a target’s position. We present an in-depth discussion on the RSSI based
positioning algorithms both, range-based and range-free. Considering that the signal strength can be distorted heavily due
to multi-path and shadowing, we have proposed the weighing schemes to leverage the credibility of the measured RSSI
values. For online tracking, we have also proposed boundary selection and local grid scanning to lower the searching time,
and the RSSI data dissemination and collection schemes to reduce traffic overhead. Evaluations have been done in both
the field measurements and with an RSSI generator. The generator has been developed to simulate and replace the real
measurements for the ease of algorithm design and testing, thus avoiding repetitive field measurements. The results show
that positioning systems with adequate accuracy can be built with our proposed schemes. We expect that these proposed
schemes to be integrated in multitude of systems with context-aware applications, which use location information Copyright
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1. INTRODUCTION

With the emergence of new solutions for connectivity
anywhere and everywhere [1] and with the concept of
Ambient Intelligence [2,3] people have been expecting the
imminent advent of a new network paradigm featured by
context-awareness. The new paradigms securely connecting
many heterogeneous nodes and/or networks have been
proposed recently. European projects on wireless personal
network (WPN) [4] and future home networks (FHN) [5],
are both the examples where context-aware applications
are thought to be an essential part of the applications in the
mobility enabled networks. In a WPN the user and all the
belonging devices are constantly and securely connected,
and applications are adapted in such a way that the service
sessions are transported seamlessly without the user’s
intervention depending on the context or situation. The
context-aware solutions try to exploit information regarding
geographical locations, time, available equipment and
history of the user’s interaction/usage, environmental
changes, and the presence of other people [4]. Thus the
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services are provided in the way that most suited to the
user’s present situation. One of the important inputs
for a context-aware application is the knowledge of the
physical location of users and devices. Location awareness
sustains important functionalities such as session transfer,
self-organization and maintenance of the network. Since
the location information is an important aspect of the
context, it is necessary to implement the positioning
system in a context-aware network efficiently. Thus we
concentrate on localization, especially indoor positioning,
in this paper. We have explored the promising positioning
schemes to provide the location information with sufficient
accuracy, i.e., room level for context-aware applications.
Global positioning system (GPS) [6] is currently the most
successful positioning system available in the market. In the
outdoor environment sufficient accuracy can be achieved
with GPS. However, due to the distortion of satellite radio
signals by various building materials and structures, GPS
loses its effectiveness inside buildings, where a rich variety
of context-aware applications are on demand. Alternatively,
special sensing devices such as those with the infrared
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beam and the ultrasound transmitter can be used for indoor
localization. However, it would be better if many devices,
already deployed, can be exploited for positioning along
with their other usual tasks. With the rapid progress in the
field of wireless sensor networks (WSN), sensors which
are already deployed for specific tasks can be used in
the meanwhile for generating the location information.
An important resource used for finding location is the
received signal strength, which can be easily acquired from
the sensor network in the form of the Received Signal
Strength Indicator (RSSI). In general, proposed RSSI-
based positioning algorithms proposed can be classified as
range-based and range-free. The range-based algorithms
translate RSSI to the absolute location or distance by
using the ‘signature-based’ implementation or triangulation
method. However, many have pointed out that RSSI is
vulnerable due to many factors, which largely degrades
the performance of the range-based methods. On the other
hand, the range-free algorithms exploit RSSI measurements
by only comparing their values. This is expected to bring
more error tolerance than the hard mapping done in their
range-based counterparts.

Although the extensive localization techniques have been
reported in the prior works, the prototyped position tracking
systems we have studied mainly adopted simple algorithms.
For example RADAR [7] and MoteTrack [8] used signature-
based techniques, PetTracker [9] approximated the target’s
location as the closest anchor’s location, and the enhanced
RSSI-based tracking system in Reference [10] used simple
triangulation method. Therefore, we believe it is of great
importance to study positioning systems with the tailored
localization algorithms, both range-based and range-free,
for online tracking. To evaluate the feasibility of our
proposed location algorithms under the real situations, we
have prototyped an Online Person Tracking (OPT") system,
which can potentially be integrated into a larger framework
of context-aware networks. A widely used wireless sensor
device, Tmote-Sky [11] has been employed in our test-
bed. Our system is simple and inexpensive containing a
small number of sensor devices. Another contribution of
this paper is that we have developed an RSSI generator to
simulate the RSSI values by capturing statistical features of
the field measurements. The generator eases the design and
evaluation of algorithms by providing a more realistic RSSI
input while eliminating many trivial settings and laborious
measurements. This work discusses in great depth a detailed
study of RSSI-based positioning system, implementations,
lessons learned and the results thereof.

The rest of the paper is organized as follows: we
first discuss some related earlier works on positioning
techniques in Section 2; in Section 3 we present the
calibration experiments for studying RSSI characteristics,
based on which we propose three RSSI generator models;

TIn fact the term OPT was used to symbolize ‘Online Professor
Tracking’ since one of the professors was tracked during our first
experimentation.
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Section 4 introduces our algorithms, which are designed for
prototyping our positioning system; Section 5 explains the
simulation and test-bed setup and discusses the results of
the simulation and the field experiments; and in the end we
conclude our work in Section 6.

2. POSITIONING TECHNIQUES

2.1. Requirement for Indoor Positioning
Systems

A reliable positioning system is critical especially for
mobile computing environments. The positioning system
must have the following features:

e Adequately accurate: the required accuracy always
depends on the specific application. In the cases
of WPNs and home networks, many context-aware
applications like to know the place where the user
is currently located. However, in most cases, if not
very accurate, an approximate location of the user is
required, so that as he/she moves it should be possible
to find the next room he/she is going to.

e Less complex: as positioning systems mostly gen-
erate inputs for various advanced location-aware
applications, it is required to be as lightweight as
possible, which is in line with the concept of ambient
intelligence—for responding in an unobtrusive and
invisible way [2]. In most cases, it is unlikely that
dedicated positioning devices will be deployed at
high density and price. It is expected that positioning
should be done as an additional function of the
devices along with their routines, for example, access
points and environmental sensors. Therefore, the
system complexity is constrained by the power and
computational capacity of the available devices. For
online tracking real-time location information is
required, thus computational complexity should as less
as possible to get estimations timely updated.

e Real-time: one of the goals for context-aware
application is to adapt itself to the new context where
the user moves onto. The adaptation is based on the
acquisition on the updated context. As the location
information is among the most dynamic, it should
be updated periodically at appropriate intervals. The
update duration should be determined by the person’s
mobility and the building structure. Considering the
moderate mobility with walking speed of 1 to 2 m/s as
commonly seen in the indoor scenarios, the updating
duration should be within a few seconds.

2.2. Earlier Studies on Positioning Systems
To acquire the location of a person, the most primitive way is

to either ask the person to explicitly ‘report” his/her location
from time to time, or to infer the person’s location via
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some of his/her traceable activities such as logging into the
computer in different domains, etc. However, they are either
disturbing (due to the requirement of active involvement by
the person) or lacking in accuracy in case the person does
not have any activity that can give these inferences. Thus
they are hardly used. For this reason, many works have been
done on the positioning systems which can automatically
detect person’s location.

Positioning systems adopt many approaches that are
suited for different problems. Hightower and Borriello [12]
developed the taxonomy to develop, evaluate and identify
opportunities for location-sensing techniques in general.
When we look into the approaches in detail, different
positioning algorithms focus on different types of data
explored [13]. The main techniques are based on Angle-of-
Arrival (AoA), Time-of-Arrival (ToA), and the radio signal
strength, which is mostly indicated by the RSSI.

Earlier studies that used AoA and ToA-based techniques
have showed that a sufficient accuracy could be achieved in
finding the range. Additional improvement can be obtained
using Ultrasound and Ultra Wide Band (UWB) technologies
with ToA measurements [14,15] or using AoA assisted ToA
systems [16]. A survey on UWB-based localization can be
found in Reference[17]. However, these systems require
extra hardware support like antenna arrays, ultrasound and
UWRB transceivers to measure the time taken for the radio
wave to propagate between the devices. Hence it increases
the complexity of the devices and becomes expensive.

Studies on the radio propagation model have shown
that given the transmitted signal power, the received signal
strength is essentially related to the transmission distance.
This motivates extensive researches on localization systems
by making use of the radio signal strength.

GPS is one of the well-proven techniques. It is usually
very effective for outdoor positioning. However, due to
the dependency on expensive hardware as well as the
inaccuracy and fallibility caused by the interference and
multi-path fading inside buildings, GPS is not suitable for
indoor positioning.

Alternatively, most signal strength based indoor
positioning systems have been proposed to make use of
the existing indoor networking facilities, such as WLAN
system, RFID Tags [18] and especially, WSN. WSNs
are gaining great popularity in the recent research and
deployment, as more and more environment monitoring
sensors have been deployed in many buildings in order to
collect the data of the environmental parameters such as
temperature, humidity etc. The environmental sensors along
with the wearable sensors (e.g., used for monitoring one’s
health) can be exploited for finding the location of a person.
This way it is more practical, cost effective and simple. In
Reference [19], the authors provided an extensive survey of
wireless senor network localization techniques. However,
as pointed out in the same paper one of the challenging
research topics is the problem of the noise distance
measurement. For RSSI-based positioning techniques, the
distance errors are mainly due to the unreliable RSSI
measurement. Ideally RSSI value monotonically decreases
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with the increase of distance according to the Log-distance
path loss model. However, RSSI value is easily affected by
the imperfect omni-directional antenna pattern, as well as
by the indoor conditions such as obstructions and human
activities that cause multi-path fading and shadowing.
This can violate the monotonically decreasing relation; for
example, at the fixed distance between the transmitter and
the receiver, multiple RSSI values can be measured if the
transceiver pair is placed at different places. The distance
estimation from RSSI measurement is greatly challenged
by the lack of a universally applicable indoor propagation
model that could be employed in different types of building
structures and antenna patterns. Further, a unified model is
also difficult to achieve. Thus the earlier investigations have
mostly focused on the estimation algorithms to minimize
the effect of the unreliable RSSI measurements.

RSSI-based positioning algorithms can generally be
divided into two categories: Range-based and Range-free.

Range-based algorithms use the absolute distance or
angle calibrated from the pre-measured RSSI map, which
canbe in the form of ‘signatures’ or a RSSI to distance/angle
relation map. Radio signatures are collected at various
indoor locations at the off-line stage, and are stored in
the database with the corresponding locations. During
the online positioning, the system matches the RSSI
acquired by the mobile target and the signatures in the
database to map the target with the known locations.
Prototype examples for such systems are RADAR [7] and
MoteTrack [8], which can achieve accuracy with a mean
error distance of 2-3 m. Further in Reference [20], the
coefficients of Fourier transformation of the RSSI (RSS-
DFT) were used as the signature, which improved the
positioning with the average error of about 1.5 m. Instead
of constructing a database of signatures, target’s location
can be estimated by triangulation using the RSSI-distance
relation mapping. That is, given the RSSI values of the
reference points (called anchors now on), which are aware
of their own positions, the distance between the target and
the anchors can be found from a pre-calibrated relation map.
With three (or more) distances, the location of the target
can be fixed. A commonly applied method is the Minimum
Mean Square Error (MMSE) estimation, examples as: the
enhanced RSSI-based tracking system in Reference [10],
AHLOoS in Reference [14] and the autonomous localization
method in Reference [21].

Instead of using the RSSI to map the absolute locations,
range-free algorithms utilize the geographic relationship
between targets and anchors. We can further group range-
free techniques as the geographical constraint and the hop
constraint. The geographical constraint techniques explore
the location information of anchors within the range of the
target. One of the simplest methods as used in the PetTracker
system [9] is to compare the target beacon packets’ RSSI
of the neighboring anchors and approximate the target’s
location by picking the location of the anchor that receives
the highest RSSI. In Reference [22] the authors proposed
a Weight Centroid Localization (WCL) algorithm, which
weighed the known locations of the anchors in the range by

Wirel. Commun. Mob. Comput. 2012; 12:53-70 © 2010 John Wiley & Sons, Ltd. 55

DOI: 10.1002/wem



Wireless sensor network based indoor positioning systems

RSSl-based |localization techniques

Range-based Range-free
Signature- . ’ Geo- Hop-
i i
based et constraint consiraint
RADAR [7] Enhanced RSSI PetTracker [9] CW-HOP [26]
MoteTrack [2] Tracking Sys. [10] WCL [22] MDS [27)
R5S5-OFT [20] AHLoS [14] DRLS [23]
Auto-L [21] ROCRSS! [24]
APIT [25]

Figure 1. Overview of RSSI-based localization techniques, with
the examples referred.

exploring the RSSI. The weights were calculated relying on
the extensive pre-measurement of the RSSI values at two
different frequencies and 15 different transmission power
levels. A similar approach was proposed in Reference [23],
where a grid-scan was used for initially finding the target’s
position and further this position was refined with the
information of the non-neighboring nodes. Whereas in the
methods of [9,22,23] each geographical constraint is made
from the single neighbor anchor, in the proposed Ring
Overlapping based on Comparison of RSSI (ROCRSSI)
method [24], each ring shaped constraint area was generated
by using the RSSI relations between the target and two
neighbor anchors. A series of overlapping ring shape
constraint areas were used to narrow down the possible
area in which the target resides. Similarly the Approximate
Point In Triangulation (APIT) method [25] explored every
time three neighbor anchors to generate one triangular
constraint area. The hop constraint techniques estimate
target’s location by using the hop count information from
certain anchors that is not necessary the one-hop neighbor
of the target. Examples are DV-HOP [26] and MDS [27].
The hop-constraint techniques are mainly designed for large
scale sensor networks and combining with certain routing
algorithms.

An overview of the RSSI-based algorithms is presented
in Figure 1. Comparatively, range-free algorithms release
the laborious off-line measurements, and are supposed to
have large margin to tolerate the RSSI error since the RSSI
values are used only for comparison; while range-based
algorithms are generally simpler in terms of the algorithm
structure.

3. RSSI GENERATOR

RSSI measurement usually involves many trivial settings
and laborious work. Keeping the goal of the field
measurement, which is to evaluate the performance of the
positioning algorithms under the realistic situations, it can
be useful to design an RSSI generator to replace the real
measurement for the ease of the algorithm design. The RSSI
values generator should be able to generate the RSSI at a
given distance with the characteristics expected from the
field measurements. By using the RSSI generator one can
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study all the algorithms and compare them without going
through the laborious process of implementing them on
test-bed while keeping the environmental characteristics
constant for a better comparison. It is very difficult to
get the similar conditions for RSSI-based measurements
in practice, thus no two measurement sets are same. The
advantages of using RSSI generator are, (a) less time
required for evaluating and validating algorithms and, (b) a
stable framework for comparing many algorithms with the
identical RSSI set.

3.1. RSSI Characterization

Before going into the RSSI generator details, we first
explain the calibration experiments which shed the light
on the characteristics of RSSI.

3.1.1. Tmotes.

In the calibration experiments, we have employed the
widely used sensor hardware—Tmote Sky, which are based
on Telos Revision B platform [11]. Tmote features the
Chipcon CC2420 radio [28] for wireless communications.
The CC2420 has an IEEE 802.15.4 compliant radio. The
network stack is implemented in TinyOS [29] which
is an event-driven operating system designed for the
sensor platforms with limited computational and memory
resources. The sensor platform has been developed using
NesC [30]—an extension to the C programming language
designed to be used with TinyOS.

3.1.2. Antenna pattern.

The first experiment has been designed to see the
dependence of the RSSI value on the antenna orientation.
Tmote’s internal antenna is an inverted-F micro-strip that
does not have a perfect omni-directional pattern. We have
conducted a simple experiment to know how the antenna
orientation affects the RSSI values. We placed two motes
with fully charged batteries acting as the transmitter and
the receiver 4m apart in the line-of-sight, and measured
the RSSI values at 8 different relative antenna directions
from 0° to 360° in steps of 45°. During the measurements
each Tmote was placed on top of a Styrofoam cube (width:
5 cm, depth: 5 cm, height: 15 cm) on the linoleum floor. For
each direction, we collected the RSSI values in 5 minutes,
at a rate of 4 packets per second, that is, 1200 samples have
been taken. Figure 2 shows that the antenna has the strongest
signal strength at 0° about —50 dBm, and the smallest signal
strength at 90° about —65 dBm. Thus the RSSI value varies
in a range of around 15 dBm.

3.1.3. RSSI versus distance.

For generating the empirical relationship on RSSI versus
distance, RSSI has been collected by placing two Tmotes
in the middle of a narrow corridor (60 x 2 m) at various
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Figure 2. Antenna orientation measurement.

distances in between. According to the specifications
Tmote’s radio range is up to 50 m. However, it has been
found that after 16 m, the packet drop percentage increases
considerably [31]. Therefore, we would like to operate
Tmotes within this range. As also observed in the previous
work [25], the variations in measured RSSI is higher when
the Tmotes are closer to each other—in order to get a better
resolution at short distances—we took measurements from O
to 1 m with a 0.2 m step, and from 2 to 16 m with 2 m step.
For each distance, RSSI was measured with the receiver
antenna direction of (0°, 90°, 180°, 270°) with respect to
that of the transmitter. Other setups have been kept the same
as described in Subsection 3.1.2. As shown in Figure 3, the
measured RSSI values vary at each given distance, and in
the worst case up to 30 dBm.

3.1.4. RSSI characteristics.
From the calibration experiments we can point out the
following facts on RSSI characteristics based on our setups:

Wireless sensor network based indoor positioning systems

e RSSI value decreases with the distance in general.

e RSSI value also varies at the fixed distance. This is
firstly due to the antenna orientations of the transmitter
and the receiver; and secondly, due to the indoor
environment, such as floors, walls, furniture, and
people around etc., which cause multi-path fading
and shadowing and thus ravage the monotonically
decreasing trend of RSSI with the increase in distance.

3.2. RSSI Generator

Taking into account the statistical characteristics of RSSI
at every distance, we have designed three models for the
generator—1) the one based on the empirical probability
mass function (pmf) of the RSSI measurement; 3) the
statistical distribution best fitting the empirical pmf; and 3)
the simplified model with a uniform distribution bounded
by the collected RSSI values.

3.2.1. Generator-real model.

In this model, the empirical pmf of the RSSI
measurements at a given distance has been calculated, as
shown in Figure 4 the example of the distance at 4m.
The simulated RSSI is generated exactly according to the
probability at each possible RSSI value, which has been
obtained in the field measurement.

3.2.2. Generator-statistical model.

In this effort, we fit the empirical pmf into one of
the probability distribution functions. By doing so, we
expect to gain a general statistical model to minimize the
errors due to the difficulty in carrying out the exhaustive
measurement having samples on any distance with any
antenna orientation. As the variation of RSSI values at a
certain distance can be assumed being small, independent
effects (e.g., multipath fading and shadowing) additively
contributing to each measurement, we have considered
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normal distribution as the one to start with. An observation
from the empirical pmf is that the most of the measured
RSSI values are close to one of the several values (the peaks,
in Figure 4), due to the measurement being made in four
different relative antenna directions between the transmitter
and the receiver. In this case, if we want to minimize this
variation, it is more appropriate for us to fit the statistical
model according to the empirical pmf at individual antenna
directions.

To test the normal fit, at each antenna direction we first
check the fitting with x> goodness of fit test. If the test
result shows positive, a normal distribution is considered
to represent the statistical characteristic of the observed
RSSImeasurement; if not, we take several other types of the
distribution as the hypothesis. We have considered Poisson,
Exponential and Normal distributions as the candidates,
but it is easy to include more types of distributions. The
hypothesized distributions are evaluated by comparing the
root mean squared error (RMSE), which has the form:

RMSE = \/E ((RSSIgenerated - RSSIme;\sured)z)

3.2.3. Generator-simplified model.

In this simplified model, we have considered a random
number generator with uniform distribution. The motivation
behind this is to test the usability of a very simple generator
model to simulate the field measurement of RSSI, at the
same time providing certain flexibility. The lower and the
upper bounds are calculated by fitting the empirical RSSI
values at a given distance into a uniform distribution with
a confidence level of (1 — a)%. To increase the flexibility
of the generator, we added another parameter B to extend
the bounds to S percentage of the original values. That is,
the larger the Br we take, the generated RSSI values are
expected to be more different than the measurement values.

4. ALGORITHMS IN PROTOTYPE

As we investigate localization systems for providing
location information for context-aware applications, partic-
ularly in the indoor environments (e.g., home networks and
office networks), it is reasonable to consider the existence
of context server(s) in the network to make the context
information available for multiple applications. Meanwhile
the indoor networks are typically of small or medium
size, and thus do not suffer severe scalability problem.
Therefore, we consider here a centralized localization
system, which has additional advantages making it able
to (i) access more comprehensive measured data from the
network; (ii) use more sophisticated estimation algorithms
as normally the central processing unit is a computer with
sufficient storage, power and computational resources; and
(iii) reduce the energy consumption burden on the sensor
nodes as the major computation is done at the central
processing unit. The disadvantage of the centralized system
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is the additional traffic imposed on the network as the
measurement data need to be sent from individual sensor
nodes to the central processing unit for further actions.
Therefore, special considerations should be made during
the design phase.

Since using the centralized systems relaxes the constraint
on the complexity of estimation algorithms, we primarily
investigate those algorithms focusing on estimation
accuracy. To get more insight on both range-based and
range-free algorithms for indoor location estimations,
we have started from the conventional MMSE [14] and
the concept of ROCRSSI [24] as the representatives,
respectively. Considering that in the indoor environment
the signal strength can be distorted heavily by multi-path
fading and shadowing effects, we have proposed the
weighing schemes for both algorithms to leverage the
credibility of the measured RSSI values. Besides, under
the special concerns on supporting the quickly updatable
online tracking application, we have proposed the boundary
selection and local grid scanning to lower the searching time
for both the algorithms, the RSSI dissemination scheme
for the sensors to reduce the traffic overhead in the network
and the RSSI collection scheme for the central processing
unit to update estimation in a timely manner. The following
sections explain in detail on the proposed algorithms.

4.1. Range-based Algorithms

Three range-based algorithms have been developed in our
prototype as comparison, and further we select the one that
offers the least error for the online tracking implementation.

4.1.1. Algorithm 1: conventional MMSE
(C-MMSE).

Minimum Mean Square Error (MMSE) has been a
popular positioning technique, which is employed for the
target location estimation using the distance versus RSSI
relation map. We reproduce the MMSE algorithm here for
the sake of completeness. We let the moving target send
beacon packets, and the anchors collect the instantaneous
RSSI values of the beacons. The locations of the anchors
are known a priori. As illustrated in Figure 5(a), let us
assume that N anchors are used for monitoring, and d; is
the estimated distance between the target Tmote, T, and an
anchor, i(Vi,i = 1,2, 3, ..., N)which is located at (x;, y;),

B(x,3,)

Figure 5. lllustrations for algorithms C-MMSE and M-MMSE. (a)
Conventional MMSE. (b) Modified MMSE.
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using the pre-calibrated RSSI versus distance relation. Error
in estimation is defined as

N
A=Y A (1
i=1

where

A= file yo) = \d,- =2+ O o)

@

and (x,, y.) is the estimated position in two-dimensional
coordinates, which is sufficient in most of our cases. The
estimated position (x,, y,) is obtained by minimizing A over
a cross-sectional region, which depends on the error bounds
on the distances using empirical RSSI versus distance
relation. Based on the measurement shown in Figure 3,
we averaged RSSI over the four antenna orientations,
and drew the empirical relation (curve). As shown in
Figure 6, the averaged RSSI decreases with the increase
in distance between the sender and the receiver, but the rate
at which RSSI decreases is different at different distance.
For example, RSSI drops more rapidly within the range
from O to 4 m. That is, the RSSI is more sensitive to the
distance variation comparing to the cases where distance
between two Tmotes is larger than 4 m. The sensitive RSSI
is helpful to provide high resolution estimation, but it is also
vulnerable to the environmental influence, as a small RSSI
error may lead to serious displacement.

This most primitive MMSE method is referred here as
C-MMSE method. The complexity of C-MMSE is much
dependent on the number of anchors involved in estimating
(x., ¥.). For the RSSI-based estimation method with more
number of anchors resulting in more d;-s does not guarantee
a higher accuracy. In many instances, this may result in a
bigger error range. RSSI averaging over many neighbors
does not yield better performance as tested in Reference [7].
Thus in our prototype we have chosen to use only three
anchors with the strongest RSSI values for the algorithms
presented in later sections.
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Figure 6. Experimental measurements: RSSI versus distance.
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4.1.2. Algorithm 2: modified MMSE
(M-MMSE).

M-MMSE simplifies C-MMSE by adopting the
‘qualitative weighing’ concept. Consider the situation
where two anchors are nearer the target and the third one
is farther away. Since estimated distance from the farther
anchor generally has less accuracy than that of the closer
anchors [31], thus amongst the three RSSI values, we
assume that the first two highest RSSI values offer higher
reliability than the third one. Therefore, in M-MMSE, only
two anchors with the highest RSSI values are involved in
the MMSE estimation process. This results in two possible
positions. The third anchor is used to make the final decision
among the two candidate positions. As shown in Figure 5(b),
E, and E, are the candidate target positions estimated by
anchor A and C. A,, and A,, are the estimated differences
according to anchor B’s RSSI value. The final estimation
is chosen from E; and E,, which has min(A,,, A,,). The
advantage of this method is that we have less searching area
while looking for MMSE estimation, and thus it is faster.
Moreover, since the third RSSI value is likely to have less
accuracy, we use it qualitatively to avoid a larger error range
in the estimation.

4.1.3. Algorithm 3: weighted MMISE
(W-MMSE).

In M-MMSE the lowest RSSI value (having the lowest
reliability) out of the three is only used to make the final
choice from the two possible locations. We extend the
same idea—that the reliability of the estimated distance is
low if the anchor is far away from the target—to all the
RSSI measurements from the anchors. Before calculating
the target position by MMSE, we have processed all
the measured RSSI values, and thus the corresponding
distances, with different weights, which depend on the
reliability of the measurements. A quantitative analysis of
the reliability that is reflected in finding the weights used in
this algorithm is discussed below.

Actually there is no explicit way to give a clear
picture about the reliability with respect to the measured
RSSI. Therefore it may be more applicable to consider
that the fidelity of the converted distance is higher if
the corresponding RSSI value is higher. Thus we have
investigated the accuracy of the position measurements by
giving higher priority to those with larger RSSI values.
Intuitively, we have turned back to the experimental
measurement of RSSI versus distance relation shown in
Figure 6. To calculate weights, we have considered using
the slopes, which are the piecewise linear approximation
of RSSI versus distance curve resulting in segments. This
is sensible as generally the steepness of the slopes in
the empirical relation reflecting the RSSI value, thus the
reliability of the RSSI measurement.

We have quantified the weights with the slopes of the line
segments of the empirical curve. We have found various
slopes in the empirical relation as shown in Figure 6, and
then we have used them to modify the distances estimated
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from the empirical relation with different weights. For each
RSSI value we can find a slope § from the empirical relation
for the jth segment of all P segments on the curve. If we
have N anchors, out of them we select a set of three anchors
that have the highest RSSI values. Let us call this set of
three anchors as M = {k, I, m}. First, we find the distance
d;, Vi, i € M from the empirical relation. S,-j is the absolute
slope found from the empirical curve for the anchor i with
an RSSI corresponding to the segment j in the empirical
relation, as shown in Figure 6. Then we define w; to be the
weight for anchors i, as:
Sl'-j
w; max{Sij}’ Vi{i,jl,ieM,jeP 3)

The W-MMSE is constructed as

I—

N
An(:w = ZWI . Alz (4)
i=1

and estimated position (x,, y,) is obtained by minimizing
AHEW'

4.2. Range-free Algorithm

The range-free algorithms eliminate the requirement of the
absolute point-to-point distance estimation. Taking [24] as
an example, the main idea is that each anchor generates a
series of overlapping rings based on the comparison of RSSI
to confine the possible area in which the target resides.

If the target as well as all the anchors in the network
broadcasts beacon packets, the anchors can receive beacons
from both the target and the other anchors. As RSSI value is
related to the transmission distance, by comparing the RSSI
of the beacons from the target and the other anchors, it is
able to find an area, which is bounded by the anchors, and
the target is likely to be inside. As illustrated in Figure 7,
anchor A receives the RSSI values from anchor B, anchor
C and the target T. The RSSI values have the relationship
as RSSIogp > RSSIar > RSSI4c, therefore the target T is

J. Wang et al.

expected to lie in the grey ring. Similarly rings centered at
other anchors, e.g., anchor B, can be generated. With a series
of rings centered on the anchors, the estimated position is
taken as the center of gravity of the final intersectional area
of these rings. We refer to Reference [24] for the details. The
non-isotropic path loss is considered in Reference [24] and a
grid-scan algorithm is employed in Reference [25] to reduce
the influence of the unreliable rings. However, in practice,
RSSI is not only influenced by non-homogenous radio
propagation, but also it is severely affected by the antenna
pattern and building structure. Therefore the algorithm is
very likely to suffer with the inaccurate information. For
example, if the RSSI values received by anchor A have
the relations, RSSIxg < RSSIt and RSSIyr < RSSIyc, no
ring can be generated. Therefore we have proposed a range-
free algorithm, which is designed to solve such problem
by utilizing additional functions such as reliability testing,
weighing and the flexible centering schemes.

4.2.1. Reliability testing.

To solve the unreliable RSSI measurements problem
discussed in the previous section, we have proposed to use
a reliability test in our range-free algorithm. Motivated by
the same reason as that in W-MMSE, we consider lower
reliability if the RSSI value corresponds to alonger distance,
and thus is likely to have a bigger estimation error.

In the design of the algorithm, each anchor has a neighbor
list (ND) sorted in descending order based on the received
RSSI values. For example, in Table I, anchor 6 decides
that target T (Node ID 1) is in the ring between anchor
5 and anchor 7. However, if dgs > dg7, the ring cannot be
generated. Therefore, we refer to target T's ND. T also has
a sorted ND based on the received RSSI from the anchors,
as shown in Table I. In T’s ND, the RSSI from anchor 5 is
higher than the RSSI from anchor 7, which suggests that
RSSI from anchor 5 have higher reliability than the RSSI
from anchor 7. Therefore, we ignore anchor 7 and move to
anchor 3. If anchors 5 and 3 can generate a ring, we proceed
to the next step. If anchors 5 and 3 still cannot generate a
ring, we go back to trust anchor 7 and ignore anchor 5. If
anchor 2 and 7 can generate a ring, then algorithm proceeds
further. The accuracy of the reliability testing process is
based on the assumption that the majority of RSSI values

’,/ \\ Table l. Example neighbor list.
p 7 ) . Target ND (ID1) Anchor ND (ID6)
y J/f' "‘-\\‘ Y \
f Be Anchor RSSI Node RSSI
Y N oT! ID (dBm) ID (dBm)
| A
Ae-
) 2 —b54.387 4 —64.7273
P 3 —83.801 8 —66.3333
\\‘\ 4 —73.778 2 —76.4667
N 5 —66.529 5 ~78.5714
— 6 —80.029 1 —80.0294
Figure 7. An illustration on ranging the target location by / —82.002 / —82.7143
: 8 —85.791 3 —88.6316
comparing RSSI values.
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are reliable. Although RSSI can be disturbed by multiple
factors, the above assumption is usually true in most of the
situations.

4.2.2. Weighted overlapping.

Grid scanning algorithm has been employed to calculate
the center of gravity of the intersection area. In
Reference [24,25], the entire area was divided into small
grids, and each grid maintained a counter, which was
initialized to 0. If a grid was covered by a ring, the
grid counter was increased by 1. After all the rings were
generated, the intersection area was selected as the coverage
of the grids with the highest count. The estimated position
was found as the center of gravity of the intersection area.
However, there are two aspects lacking of justification: (i)
during the estimation process, as the counter is increased
by 1 if the gird is covered by a ring, thus the unreliable
rings have the same contribution as the rings with higher
reliability; (ii) the estimation considers only the intersection
area with the highest counter value, which in worst situation
can be largely contributed by the unreliable rings. Taking
Figure 8 for example, a wrong selection of the intersection
area is made because of the influence of the unreliable
ring.

Therefore we have proposed the weighted overlapping.
Similar to assigning weights to the distances mapped
by RSSI in W-MMSE, weighted overlapping means that
different rings are assigned with different reliability weights
to influence the estimation. When covered by aring, the grid
increases its counter scaled by the reliability weight of the
ring. For the ring with center at anchor I, the reliability
weight is defined as

1 n
= _— 5
w <RSSITI> )

e RSSIy is the RSSI value received from anchor I by
target T.

e nis the power index related to the exponential index of
the radio propagation model. More details on setting n
are given when we discuss the experimental results in
Subsection 5.2.5.

where

/ UI'InlallablE . Estimation
rlng _\'4 o

B
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3 _‘I ’ﬁight ring
~Rightring " Real Position

Figure 8. Influence of the unreliable ring.
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4.2.3. Center of gravity selection of the
intersection area.

In order to investigate the center of gravity selection
based on the grid counter, different scenarios have been
considered. After generating series of rings, three biggest
grid counter values are selected and noted by {max;},— 2.1,
which satisfy (max; > max, > max;). Respectively, we
have defined the ‘max-i’ scheme, in which the girds with
the counter values not smaller than max; are selected as
the intersection area. The target position is estimated as the
gravity center of the chosen intersection area.

4.3. Considerations for Fast Updating

For the online tracking system, the positioning update
should be fast enough in order to give the real-time
estimation. Two factors can affect the update speed. One
is the time taken by the algorithm for computation; the
other is the frequency of the estimation updates, more
specifically, the time needed by the system to collect enough
raw data for the next estimation. To reduce the algorithm
computational complexity we have employed the boundary
selection scheme to narrow down the range of the exhaustive
searching in range-based algorithms, and in range-free
algorithm we have used the local grid method to reduce time
and memory consumption. To collect as many useful data as
possible during the limited time interval, we have proposed
an efficient data dissemination and collection scheme.

4.3.1. Boundary selection for range-based
algorithms.

As described above, range-based algorithms use
intersecting circles to determine the possible cross-sectional
area, and then apply the exhaustive searching in the area
yielding the optimal location estimation on the resolution
that is sought. However, the exhaustive searching in a
large area with fine resolution is computational and time
consuming. In order to reduce the complexity and at the
same time to maintain sufficient accuracy, bounding the
searching area is necessary. The wider the area is bounded,
it is more likely to cover target’s position, but consumes
more time since the system needs to search over a larger
area. However, if the bounded searching area is too small,
computations can be reduced but there is a chance of
excluding the target’s position from the searching area.

Because of the antenna orientation effect [32], the
empirical relation between distance and RSSI has been
found by averaging the RSSI values sampled from four
different directions. Nonetheless, the mapped distance
found from empirical relation for circular overlapping may
induce potential error because of the exclusion of the real
orientation. As shown in Figure 9, in order to include all
the possible locations and at the same time to keep the
computation cost as low as possible we define a maximum
empirical relation as shown in Figure 6, which is constructed
by using the maximum RSSI values of the measurements on
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Figure 10. Boundary selection for range-based algorithms. (a)
With overlapping area. (b) Without overlapping area.

four antenna directions at each distance, and further filtering
out the points that violate the monotonically decreasing
trend. In this way, we can find the maximal possible distance
corresponding to certain RSSI to reduce the chance of
missing target’s location.

Consider using three anchors with their estimated
distances to generate three circles. If the three circles
are partly overlapping as shown in Figure 10(a), the
target has higher possibility of being in the overlapping
area. The searching range for b,on x-axis varies
from max{x; — dnax1, X2 — dmax2, X3 — dmax3} to min{x; +
dinax 1, X2 + dinax2, X3 + dmax3}, where, dp.x; 1s the distance
found from the maximum empirical curve. If the three
circles do not have a common overlapping area, as shown
in Figure 10(b), then we let b, to be ranging from
min{xi, x;, x3} to max{x;, x,, x3}. In this case without the
common overlapping area, we expand the estimation area
to increase the change that the potential target location is
included in the search area. The same procedure is applied
to find b,. Another consideration is the building structure, as
the selected boundary cannot exceed the physical dimension
of the building, which sets limit on the search area.

4.3.2. Local grid scanning for range-free
algorithm.

As previously proposed in Reference [24,25], the grid
scanning method have been employed to calculate the center
of gravity of the intersection area. In those works, the whole
testing area was divided into small grids, each of which
manipulates a counter. An important point missed there
was the scalability of the system. As the tracking area can
include large space or extend to several floors, it will be
extremely resource inefficient if we also store the grids
for the area far away from the target. Therefore, we have
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Figure 11. Local grids area selection.

considered a local grid method for using the range-free
algorithm for our tracking system. Rather than forming the
grids for the entire building plan and storing all of them
in the memory, we only record the grids that are useful for
locating the target, that is, only the area confined by the rings
or circles generated by the first n anchors are divided into
grids. The first n anchors refer to the anchors that receive n
biggest RSSI values from the target’s beacons among all
the deployed anchors. In our experiment, n takes 3. An
illustration is shown in Figure 11, where the grid area is
bounded by the rings of the anchor B, C and D, the three
anchors nearest to the target. And the rings of A and E only
partially affected the grid counters for the parts of the rings
lying within this grid area.

4.3.3. Data collection.

In our tracking system, the target (for both range-
based and range-free cases) broadcasts beacon packets
periodically. Especially for the range-based case, no anchor
but only the target sends beacons to reduce the total number
of beacons needed and to avoid signal strength being
affected by the anchors with different battery volumes.
When an anchor receives the beacon packet, it measures the
RSSI value, and unicasts the measurement to the computer,
on which the position estimation algorithm runs. To
meet the real-time requirement as discussed in Subsection
2.1, time for data collection needs to be minimized.
However, acquiring enough data is inherently required by
the positioning algorithms to use RSSI by smoothing out
the irregular values. According to our experience, 60 RSSI
values should be sufficient for each estimation. Shortening
the data collection time can be achieved by making beacon
packets sent out with higher frequency. However, as the
sensor devices use the contention-based MAC protocol, it
will increase the chance of packets collision, and may result
in high back-off time at each anchor, especially when a large
number of anchors are deployed within the radio range.
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Alternatively, we make each anchor buffer several RSSI
data and pack them into one packet instead of immediately
sending out the RSSI data just received. In this way, the total
number of the packets is reduced. At meanwhile, as several
RSSI data share the same packet header, the total number
of bits sent out by the anchors is also reduced, which is
particularly appreciated for the power constrained sensor
network.

5. TEST-BED SETUP, RESULTS AND
DISCUSSIONS

5.1. Test-bed Setup

5.1.1. Test-bed environment.

The test-bed has been built on the 19th floor of our faculty
building. The main part of the floor being used consists
of eleven office rooms and one (large) student room. The
dimension of an office room is 5 x 4 m, the student room is
5 x 12m. The corridor in the middle is 2 m wide.

We have conducted the experiments during the normal
working hours, when human activities have been involved
such as people moving around, opening and closing the
doors randomly. The target Tmote has been worn by a
person. In the experiments the person may move in the
corridor or change his stay among those twelve rooms.
We have compared the positioning accuracy under different
range-based algorithms and between range-based and
range-free algorithms. For deploying the anchor Tmotes,
we have considered two different patterns—triangular and
rectangular patterns with various distances (2, 4, and 8 m)
between the anchor Tmotes to evaluate the range-based
algorithms. For the range-free algorithm, the deployment of
the anchor Tmotes has been adopted a more random pattern.
The deployment patterns have been designed for shedding
light on the performance of the algorithms designed for
the positioning system. The deployment has been tested
independently for both range-based and range-free cases
with respect to various combinations to achieve the best
possible accuracy. We refer the results of the experiments
in Reference[33] for brevity. Based on the estimation
accuracy under different deployments, the ones with the
best performance are further implemented for the real-
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time location estimation. For the range-based case, all the
anchor Tmotes have been deployed in the corridor, with
the horizontal distance between any two closest anchors
being 4 m, as shown in Figure 12(a). For the range-free
case, the anchor Tmotes have been deployed in the rooms,
as illustrated in Figure 12(b).

5.1.2. Graphic user interface.

In order to visualize the real-time positioning of the
target Tmote, we have developed an application with
graphic user interface (GUI) to depict the floor plan of
the building in Java programming language. It displays the
person being tracked with a red dot, which is updated after
each estimation. Some GUI snapshots of the range-based
tracking system are shown in Figure 13 for example.

5.2. Results and Discussions

In this section, we present the experiment results of
many cases as well as some simulation results which are
relevant. Though there are many possible combinations
of deployment and comparisons, we have presented most
important ones among them in our opinion.

5.2.1. Comparison of range-based algorithms.

In this experiment, three range-based algorithms, C-
MMSE, M-MMSE, and W-MMSE have been compared
on our test-bed. The person with the target Tmote has
changed among 30 different positions in a static manner;
that is, at each position, the person stayed for a long time
(about 5 min), and when changing the target’s position, the
raw data during the transition time has been discarded for
estimation. All the 30 positions have been taken in the
corridor. Accordingly the estimation area of the algorithms
has been bounded inside the corridor area.

Figure 14 shows the cumulative distribution function
(CDF) of the estimation errors of those 30 positions. The
estimation error is defined as the absolute distance which
is the difference between the estimated target’s location
and the actual target’s location. In general, W-MMSE
outperforms all the algorithms and C-MMSE offers the
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Figure 12. Floor layout and anchor deployment. (a) Anchor deployment for range-based system. (b) Anchor deployment for range-free
system.
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Figure 13. Real-time tracking Java GUI.

lowest performance. For W-MMSE, 25% of the estimated
positions are within an absolute error distance of 0.6 m, and
75% estimations within the error of 1.7 m. The results show
that W-MMSE gives a better accuracy.

5.2.2. Evaluation and usage of the RSSI
generator.

The RSSI generator has been evaluated by comparing the
estimation results by using the field RSSI measurement (as
given in the previous section) and those using the simulated
RSSI values by the generator under the three models. The
anchor deployment for this evaluation follows Figure 12(a),
considering the RSSI values for the generator construction
have been collected under the LOS condition. With the same
reason the tested target positions are all in the corridor.
For each position estimation different number of generated
RSSI values has been used and compared.

The evaluation results of the real model based generator
(R-G) and statistical model based generator (S-G) under
three different range-based algorithms are shown in
Figures 15,16 and 17. In general, the results by using S-
G data are closer to that of the real RSSI measurement
from the test-bed, comparing to the results by using R-G
data. The reason is, R-G generates RSSI values according
to the empirical pmf obtained from the field measurement,
which cannot exclusively include all the possible RSSI
values regarding different transceiver pair placement, thus
it loses completeness. Whereas S-G employs the statistical
distribution, which not only is a best fit for the measurement,
but also adds the RSSI values that has not been observed
from the limited measurement samples, but are expected to
observe if changing the transceiver pairs placement. In this
way, the limitation of the RSSI measurement is alleviated
to some extent.

Another observation is that, while decreasing the number
of the generated RSSI values for position estimation, the
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Figure 14. Range-based algorithms comparison. Figure 15. RSSI generator evaluation with C-MMSE.
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Figure 16. RSSI generator evaluation with M-MMSE.

results have higher estimation error. However, they are
closer to the results based on the RSSI field measurement.
This reflects that the generators give optimal RSSI samples
than the real measurements in terms of giving more accurate
position estimation. One reason is that, the RSSI samples
for the generators have been collected while placing the
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Figure 17. RSSI generator evaluation with W-MMSE.
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sensors in the middle of the corridor, thus the RSSI values
have much less variation than those collected when the
transmitter and the receiver are randomly placed in any
part of the corridor, for example, close to the wall or
by the door of the office room. Another reason is that,
the generators have been constructed to emphasize the
statistical aspect of the RSSI measurement. As a result, by
averaging more samples, the dynamics of RSSI at certain
distance can be further minimized, which results in less
estimation error. Besides, when comparing the results by
using different MMSE algorithms, the W-MMSE gives the
most consistent results with regard to different generator
models and different number of samples. In other words, it
can best alleviate the impact of the dynamics of the RSSI
for position estimation.

The position estimation results by using the generator
with the simplified model are shown in Figures 18 and 19.
For this estimation, the confidence level used has been
fixed at 95%. Different B and sample values have been
compared under different range-based algorithms. First we
set Bg = 1, which is the actual degree of variation from
the measurement used to generate RSSI values. As shown
in Figure 18, less number of samples has been taken for
position estimation; the result is closer to that evaluated
using the RSSI field measurement. For the same reasoning
as explained previously, fewer samples make the generated
RSSI values more variable as in the field measurements.
Increasing Bg to 120%, 140%, and 160% to extend the
upper and lower boundary of the uniform distribution,
the estimation results do not have much difference under
different B as shown in Figure 19. The reason is that, when
using the generated RSSI values for position estimation, we
have taken the average of the generated RSSI values with
respect to number of samples, and used this average in the
algorithms. In this way, the averaging process counteracts
the randomness added on each generated RSSI value by
extending its range with the uniformly distributed random
value.

From the generator evaluation experiments, we see all
the generators can correctly reflect the relative performance
amongst the different algorithms as in the real world. W-
MMSE gives the better estimation results than C-MMSE
and M-MMSE. Among three generators, we would like to
say the statistical distribution based model can best reflect
the results from the RSSI field measurement.

5.2.3. Wall effects to range-based system.

To extend the target’s activity area from the corridor to
the office rooms, we have added a wall model in the range-
based algorithms. Because all the anchor Tmotes have been
deployed in the corridor, when the person enters the office
room the attenuation caused by the walls needs to be taken
into account in the estimation. A threshold has been defined
to distinguish if the target Tmote is in the corridor or in
the office rooms. Because the horizontal distance between
two closest neighbor anchors is 4 m, the biggest Euclidean
distance between the target Tmote and the nearest anchor
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Tmote is 2.5m as illustrated in Figure 20. According to
the calibration measurement, we take the smallest RSSI
value amongst four different antenna directions at 3 m as
the threshold. That is, if the corresponding distance of the
largest measured RSSI is longer than 3m, we consider
the target to be in one of the office rooms. According
to our measurement, for single wall, 3dBm attenuation
is accounted. Typically, if the target is estimated to be
inside the office room, 6 dBm is added to the RSSI value to
compensate the wall effect. This is due to the fact that on an
average two walls are present including the compartment
wall between the target and the anchor. It has been found
by many experiments that with 6 dBm attenuation the target
position is estimated with lesser error.

We tracked the person in real-time using W-MMSE with
the wall effect adjustment. The person has moved from one
position to another in a low speed, and recorded the position
at definite instants. Figure 21 shows the estimation results
obtained when the person was in the corridor and when
inside the office rooms. Totally, 36 experimental positions
have been recorded in the corridor experiment. Considering
the estimation results for all the 36 positions, 50% of the
estimations provide an accuracy of about 2m and 25% of
them about 1.5 m. For the cases of the person staying in the
office room, 16 experimental positions have been recorded.
Twenty five per cent of them have an accuracy of about
3.3m; and 50% of them were found to be within about
3.8 m. This error is less than the size of the office room. The
individual position estimation is able to point out, in most
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Figure 20. Biggest Euclidian distance estimation.
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cases, the exact room the person is currently staying. There
are some cases where it may be difficult to say which room
the person is in, at a moment, for example, if the person is
standing in between two rooms or standing in between two
rooms in the middle of the corridor. The conclusion in such
cases is hard to arrive at; however, continuous monitoring
of the position will result in a better understanding of
the context, which in turn will be used to conclude the
position. This aspect is out of the scope of this paper since
itinvolves a feedback loop between ‘context’ generator and
the positioning systems. We note here that, the possibility
of the cases discussed above is very few compared to the
persons being inside the rooms.

5.2.4. Comparison of different center of
gravity schemes for range-free algorithm.

As discussed previously in the range-free algorithm, the
estimated location of the target is the center of gravity of
the overlapped area, thus the accuracy is influenced by
the centering schemes. In the experiment, all the target
positions have been taken inside the rooms. Three schemes
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Figure 21. Real-time experiment performance by using W-
MMSE.
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Figure 22. Comparison with different gravity centering scheme
of the range-free algorithm.

have been compared, as shown in Figure 22. The ‘max-
3’ scheme gives the worst performance since it takes into
accounts too many grids with lower values. Those low
value grids overshadow the contribution from high value
grids, which carry the more reliable information, and thus
degrade the estimation result. The ‘max-1" and the ‘max-2’
schemes achieve similar accuracy. In some cases, ‘max-2’
outperforms ‘max-1" indicating that the proper amount of
adjustment from the ‘notsoreliable’ area can help to balance
the bias from the ‘highly reliable’ area. This bias comes
from the unreliable rings due to the unstable RSSI values.

5.2.5. Comparison of weighing schemes for
range-free algorithm.

For this comparison, we have used the ‘max-2’ center
of gravity scheme, but changed the power index of the
weighing parameter. According to the results depicted in
Figure 23, an index value of 0.5 gives the best performance,
and an index of 2.0 degrades the performance. The
difference in accuracy is quite obvious when the error
distance is large. In the best case, the mean error is 3.9 m.
the power index in the weighing scheme can be related to
the inverse exponential index in the propagation model, and
it can be deducted as:

%
[RSSI],; = —1081og (A) =d= < A ) (6)
d 10

10

do<< ! )‘g: (1 )‘1@ @
ssi wrr = S
10T " 10508

When we compare the simplified approximated
expression as in (5), n reflects 1 / B in this sense. As we
know from earlier studies on the propagation model, in the
indoor environment, § takes values from 1.6 to 1.8 [34] in
line-of-sight cases, and ranges from 4 to 6 when obstructed.
This may shed some light on the reason that n with value
0.5 gives the best performance.
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Figure 23. Comparison with different power index of the range-
free algorithm.
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Figure 24. Comparison of range-based and range-free systems.

5.2.6. Comparison of range-based and
range-free systems.

‘We have compared our range-free system with our range-
based system using W-MMSE algorithm. The comparison
of the in-room estimation is plotted in Figure 24. The result
shows promising enhancement in the accuracy for range-
free system. The improvement in the small error distance
case is noticeable. We note that the two systems taken here
for comparison were having different deployment patterns
(see Figure 12). However, this is a fair comparison since the
deployment pattern selected for each system provides the
best possible accuracy for that system.

6. CONCLUSION

In this work, we have presented design, implementation
and evaluation of our proposed indoor positioning system,
which is considered as an important auxiliary system for
providing location information as the input of various
context-aware applications. In the course of system design,
we have tried to leverage the trade-off between simplicity
and accuracy, and also taken into account the real-time
requirement from many context-aware applications.
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Based on the extensive study on the current indoor
positioning systems, we have chosen to the RSSI-based
positioning techniques by deploying simple wireless
sensors (Tmote Sky). We have developed and implemented
both range-based algorithm and range-free algorithm,
which are considered as the two main approaches of the
RSSI-based techniques, in our test-bed. Comparatively,
the range-free algorithm improves the scalability in that
it alleviates the laborious off-line work of database
creation and RSSI map measurement while maintaining
the accuracy. However, the range-based algorithm is less
power consuming because instead of all the anchors and
the target sending out beacon packets periodically, only the
target needs to do that, which is greatly beneficial for the
power limited sensors. The field test shows the satisfying
results. In 80% cases estimations in the corridor was within
the distance error of 2 m by using the range-based W-MMSE
algorithm. The room, in which the person stays can be
estimated correctly in most of the cases, with an error of
one neighboring room in a few cases, and with an error of
two neighboring rooms very rarely by both range-based and
range-free algorithms.

In addition, the RSSI characteristics of the sensor
platform in use have been explored. Three different RSSI
generator models have been proposed and evaluated. It
shows that, with the proper parameter settings, the RSSI
generator is able to simulate RSSI values, which is
comparable to the field measurements, and can be used
to evaluate different algorithms by avoiding the repetitive
experiment setup and data collection works.

From the design and implementation experience, we
envisage that a WSN-based positioning system are
applicable to—and will be very useful—to monitor the
moving targets (e.g., people, mobile devices), when the
movement is within people walking speeds. In the ambit of
the projects such as ‘MAGNET Beyond’ [35] and ‘Future
Home Network’ [5] emphasis is on many services that
take the location of the person as an important parameter.
The critical advantage is that the sensors that are usually
deployed can also be used for positioning purpose without
additional cost.

As our current test-bed is still relatively a small-scale
experiment, within a single floor of an office building, we
intend to extend the test-bed to several floors, thus three-
dimensional location estimation becomes feasible. Another
task which is worthy of exploration is to implant our person
tracking system into the location-aware applications to gain
more insights on its practical applicability. This is being
tested currently on the WPN implementation test-bed.
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