
A Style-Aware Architectural Middleware for
Resource-Constrained, Distributed Systems

Sam Malek, Marija Mikic-Rakic, and Nenad Medvidovic, Member, IEEE

Abstract—A recent emergence of small, resource-constrained, and highly mobile computing platforms presents numerous new

challenges for software developers. We refer to development in this new setting as programming-in-the-small-and-many (Prism). This

paper provides a description and evaluation of Prism-MW, a middleware platform intended to support software architecture-based

development in the Prism setting. Prism-MW provides efficient and scalable implementation-level support for the key aspects of Prism

application architectures, including their architectural styles. Additionally, Prism-MW is extensible to support different application

requirements suitable for the Prism setting. Prism-MW has been applied in a number of applications and used as an educational tool in

graduate-level software architecture and embedded systems courses. Recently, Prism-MW has been successfully evaluated by a

major industrial organization for use in one of their key distributed embedded systems. Our experience with the middleware indicates

that the principles of architecture-based software development can be successfully, and flexibly, applied in the Prism setting.

Index Terms—Software architecture, architectural style, middleware, Prism-MW.

�

1 INTRODUCTION

SOFTWARE systems are continuously growing in size and

complexity. In recent years, they have also increasingly

migrated from the traditional, desktop setting to highly

distributed, mobile, possibly embedded and pervasive

computing environments. Such environments present

daunting technical challenges: effective understanding of

existing or prospective software configurations; rapid

composability and dynamic reconfigurability of software;

mobility of hardware, data, and code; scalability to large

amounts of data, numbers of data types, and numbers of

devices; and heterogeneity of the software executing on

each device and across devices. Furthermore, software often

must execute on “small” devices, characterized by highly

constrained resources such as limited power, low network

bandwidth, slow CPU speed, limited memory, and small

display size. We refer to the development of software

systems in the described setting as programming-in-the-

small-and-many (Prism), both for exposition purposes and

also in order to distinguish it from the traditional software

engineering paradigm of programming-in-the-large (PitL) [7],

which has been primarily targeted at desktop computing.
Software engineering researchers and practitioners have

successfully dealt with the increasing complexity of PitL

systems by employing the principles of software architecture.

Software architecture provides design-level models and

guidelines for composing the structure, behavior, and key

properties of a software system [28]. An architecture is

described in terms of software components (computational

elements) [39], software connectors (interaction elements)

[21], and their configurations (also referred to as topologies)

[20]. A given system’s architecture will adhere to one or

more architectural styles. An architectural style codifies

architectural composition guidelines that are likely to result

in software systems with certain desired properties [28].

Examples of widely used styles are event-based, client-

server, pipe-and-filter, peer-to-peer, blackboard, etc.
Given the central role software architectures and

architectural styles have played in the PitL setting, we

expect that their importance will only grow in the even

more complex Prism setting. This is corroborated by the

preliminary results from several recent studies of soft-

ware architectural issues in embedded, mobile, and

ubiquitous systems [13], [18], [36]. In order for architec-

tural models and stylistic guidelines to be truly useful in

any development setting, they must be accompanied by

support for their implementation [17], [32]. This is

particularly important in the Prism setting: Prism systems

may be highly distributed, decentralized, mobile, and

long-lived, thus increasing the risk of architectural drift

[28] unless there is a clear relationship between the

architecture and its implementation.
This paper describes the design and evaluation of Prism-

MW, a middleware developed to support the implementa-

tion of software architectures in the Prism setting. We say

that the middleware is architectural because it provides

programming language-level constructs for implementing

software architecture-level concepts such as component,

connector, configuration, and event. The middleware is

tailorable to provide native implementation-level support

for arbitrary architectural styles. This allows software

developers to transfer directly architectural decisions into

implementations, thus distinguishing Prism-MW from

256 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

. S. Malek and N. Medvidovic are with the Department of Computer Science,
University of Southern California, 941 W. 37th Pl., Los Angeles, CA
90089-0781. E-mail: {malek, neno}@usc.edu.

. M. Mikic-Rakic is with Google Inc., 2644 30th Street, Santa Monica, CA
90405. E-mail: marija@google.com.

Manuscript received 30 Mar. 2004; revised 18 Feb. 2005; accepted 28 Feb.
2005; published online 20 Apr. 2005.
Recommended for acceptance by J. Kramer.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0053-0304.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

existing middleware solutions, including a previously
published version of our own work [24].

Another key contribution of Prism-MW is its modular
design that employs an extensive separation of concerns.
This has resulted in a middleware that is flexible, efficient,
scalable, and extensible. The middleware has been as-
sessed for flexibility in terms of its support for independent
selection, variation, and composition of implementation-
level concerns. The middleware has been assessed for
efficiency in terms of its size, speed, and overhead added to
an application. The middleware has been assessed for
scalability in terms of the numbers of components,
connectors, events, execution threads, and hardware
devices. Finally, the middleware has been assessed for
extensibility in terms of support for new development
concerns and situations in the Prism setting, including new
architectural styles.

These properties of Prism-MW have been successfully
evaluated using a series of example applications, bench-
mark tests performed both within our group and by
external users, and extensions that have been implemented
for a number of architectural styles for distributed systems
[10]. At the same time, our experience with and evaluations
of Prism-MW have suggested several areas of further study.

The rest of the paper is organized as follows: Section 2
presents our objectives. Section 3 briefly describes an
example application used to illustrate the concepts through-
out the paper. Section 4 presents the key aspects of Prism-
MW’s design and implementation. Section 5 then details
specific extensions constructed to date, in support of
various challenges posed by the Prism setting, while
Section 6 discusses Prism-MW’s support of different
architectural styles. Section 7 evaluates Prism-MW with
respect to our objectives. The paper concludes with over-
views of related and future work.

2 OBJECTIVES

Software development in the Prism setting presents a
number of challenges, some of which are unique, while
others are “inherited” from PitL. Devices on which Prism
applications reside may have limited power, network
bandwidth, processor speed, memory, and display size
and resolution. Constraints such as these demand highly
efficient software systems, in terms of computation, com-
munication, and memory footprint. The trade-offs made to
address the scarcity of computing resources directly result
in a highly heterogeneous computing environment. The
world of Prism is characterized by proprietary operating
systems (e.g., PalmOS, Symbian), specialized dialects of
existing programming languages (e.g., Sun’s Java KVM,
Microsoft’s Embedded Visual C++, or EVC++), and device-
specific data formats (e.g., prc for PalmOS, efs for Qual-
comm’s Brew). Modeling, analysis, simulation, and (semi)-
automated implementation of software systems are
problems on which researchers and practitioners have been
working actively for several decades. These problems are
only amplified in the highly distributed, heterogeneous,
and mobile world of Prism.

Our goal is to investigate the issues and address the
challenges highlighted above in the context of Prism-MW.

At first blush, a number of the challenges might seem quite
familiar to software developers of 30-40 years ago. The
resource-constrained nature of the Prism hardware plat-
forms and often-proprietary development infrastructures
on those platforms are reminiscent of the development
world of the 1960’s and 1970’s, especially in the arena of
embedded systems. At the same time, the sophistication
demanded of today’s software systems, their comparatively
much greater size and complexity, their much wider
distribution, their mobility, and their desired interoper-
ability across heterogeneous platforms demand major
advances over the solutions that were at the disposal of
engineers in the past.

One area from which we believe we can gain a lot of
leverage in tackling these challenges is software architec-
ture. Several aspects of architecture-based development
(component-based system composition, explicit software
connectors, architectural styles, upstream system analysis
and simulation, and support for dynamism [20], [21], [27],
[28]) appear to make it a good fit for the needs of Prism.
Software architecture indeed forms the centerpiece of our
approach:

Objective 1. Prism-MW should provide native support
for designing and implementing architectural abstractions
(components, connectors, events, and so on). Furthermore,
as recent studies (e.g., [1], [18]) have recognized, there is
currently a dearth of understanding of which architectural
styles are suitable for the Prism setting. For this reason,
Prism-MW should be configurable to accommodate system
development according to the rules of different styles,
possibly even in a single application.

Native support for software architecture in a middleware
platform is the primary objective of our research. It aims to
address the key term in the ”Prism” acronym (”program-
ming”) in a manner that leverages the best software
engineering practices: architecture-based design, compo-
nent-based implementation, and middleware-based distri-
bution. However, in order to be truly useful in the Prism
setting, the resulting solution must also address the other
two terms in the “Prism” acronym (“small” and “many”).
We do so via three additional objectives.

Objective 2. Prism-MW should impose minimal over-
head on an application’s execution. Our current goal is to
enable efficient execution of applications on platforms with
varying characteristics (e.g., speed, capacity, network
bandwidth). Our ongoing work is extending this support
to include efficient access to and sharing of hardware
resources (e.g., battery, peripheral devices).

Objective 3. Prism-MW should be scalable in order to
effectively manage the large numbers of devices, execution
threads, components, connectors, and communication
events present in Prism systems.

Objective 4. Prism-MW should be extensible and config-
urable in order to accommodate the many and varying
development concerns across the heterogeneous Prism
setting. These include multiple architectural styles (recall
Objective 1), but also awareness [8], mobility [4], [14],
dynamic reconfigurability [27], security [29], real-time
support [13], and delivery guarantees [5].

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 257

The discussion of Prism-MW and the extent to which it
satisfies these objectives is illustrated with the example
application introduced in the next section.

3 EXAMPLE APPLICATION

To illustrate the concepts throughout this paper, we use an
application for distributed deployment of personnel in
situations such as natural disasters, search-and-rescue
efforts, and military crises. The specific instance of this
application depicted in Fig. 1 was developed in cooperation
with a third-party organization and addresses distributed
military Troops Deployment and battle Simulations (TDS).
A computer at Headquarters gathers information from the
field and displays the current battlefield status: the
locations of friendly and enemy troops, vehicles, and
obstacles such as mine fields. The headquarters computer
is networked via secure links to a set of PDAs used by
Commanders in the field. The commander PDAs are
connected directly to each other and to a large number of
Soldier PDAs. Each commander is capable of controlling his
own part of the battlefield: deploying troops, analyzing the
deployment strategy, transferring troops between comman-
ders, and so on. In case the Headquarters device fails, a
designated Commander assumes the role of Headquarters.
Soldiers can only view the segment of the battlefield in
which they are located, receive direct orders from the
commanders, and report their status. Fig. 1 shows one
possible instance of TDS with single Headquarters, four
Commanders, and 36 Soldiers.

Through detailed analysis of TDS’s requirements and
inputs from domain experts, we identified the following
set of candidate software components. A Map component
maintains a model of the system’s overall resources:
terrain, personnel, tank units, and obstacles. These
resources are permanently stored inside a Repository
component. StrategyAnalyzerAgent, DeploymentAdvisor, and
SimulationAgent components, respectively, 1) analyze the
deployments of friendly troops with respect to enemy
troops and obstacles, 2) suggest deployments of friendly
troops based on their availability as well as positions of
enemy troops and obstacles, and 3) incrementally simulate
the outcome of the battle based on the current situation in
the field. StrategyAnalysisKB and SAKBUI components
store the strategy rules and provide the user interface
for changing these rules, respectively. ResourceManager,

CommanderManager, SoldierManager, and ResourceMonitor
components enable the allocation and transfer of resources
and periodically update the state of resources. Weather and
WeatherAnalyzer components provide weather information
and analyze the effects of weather conditions. Finally, a
RenderingAgent provides the user interface of the applica-
tion. An architect can select different subsets of these
components and compose them into different variants of
TDS, such as that shown in Fig. 8 and discussed below.

TDS helps to illustrate a number of Prism concepts.
Several aspects of TDS embody the notion of multiplicity
inherent in Prism (“many”). As will be discussed below,
TDS has been designed using a combination of four
architectural styles: client-server, pipe-and-filter, peer-to-
peer, and C2. We have implemented it, on top of Prism-
MW, in three dialects of two programming languages—Java
JVM, Java KVM, and EVC++. The devices on which TDS
has been deployed are of several different types (Palm Pilot
Vx and VIIx, Compaq iPAQ, HP Jornada, NEC MobilePro,
Sun Ultra, PC), running four OSs (PalmOS, WindowsCE,
Windows XP, and Solaris). TDS has been deployed onto
105 mobile devices and mobile device emulators running on
PCs, where a total of 245 software components interact via
217 software connectors. The dynamic size of the applica-
tion is approximately 1 MB for the Headquarters subsystem,
600 KB for each Commander, and 90 KB for each Soldier
subsystem.

4 MIDDLEWARE DESIGN

Prism-MW supports architectural abstractions by providing
classes for representing each architectural element, enabling
a direct mapping between an architecture and its imple-
mentation. Furthermore, Prism-MW employs a well-de-
fined extensibility mechanism for addressing emerging
development concerns. We discuss the middleware’s
structure, semantics, and extensibility in this section.

4.1 Prism-MW’s Core

Fig. 2 shows the class design view of Prism-MW. The
shaded classes constitute the middleware core, which
represents a minimal subset of Prism-MW required for
implementing and executing an architecture. Only the five
dark gray classes of Prism-MW’s core are directly relevant
to the application developer. Our goal was to keep the core
compact, which is reflected in the fact that it contains only
12 classes (four of which are abstract) and four interfaces.
Furthermore, we tried to keep the design of the core (and
the entire middleware) highly modular by limiting direct
dependencies among the classes via abstract classes,
interfaces, and inheritance as discussed below.

Brick is an abstract class that represents an architectural
building block. It encapsulates common features of its
subclasses (Architecture, Component, Connector, and Port).
Architecture records the configuration of its constituent
components, connectors, and ports, and provides facilities
for their addition, removal, and reconnection, possibly at
system runtime. A distributed application is implemented
as a set of interacting Architecture objects.

Events are used to capture communication in an
architecture. An event consists of a name and payload. An

258 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

Fig. 1. TDS application.

event’s payload includes a set of typed parameters for
carrying data and metalevel information (e.g., sender, type,
and so on). Two base event types are request for a recipient
component to perform an operation and reply that a sender
component has performed an operation.

Ports are the loci of interaction in an architecture. A link
between two ports is made by welding them together; the
link acts as a bidirectional communication channel between
the ports. A port can be welded to at most one other port.
Each Port has a type, which is either request or reply. An
event placed on one port is forwarded to the port linked to
it in the manner shown in Fig. 3a: Request events are
forwarded from request ports to reply ports, while reply
events are forwarded in the opposite direction.

Components perform computations in an architecture and
may maintain their own internal state. A component is
dynamically associated with its application-specific func-
tionality via a reference to the AbstractImplementation class.
This allows us to perform dynamic changes to a compo-
nent’s application-specific behavior without having to
replace the entire component. Each component can have
an arbitrary number of attached ports. Components interact
with each other by exchanging events via their ports. When
a component generates an event, it places copies of that
event on each of its ports of the appropriate type.

Components may interact either directly (through ports)
or via connectors. Connectors are used to control the routing
of events among the attached components. Like compo-
nents, each connector can have an arbitrary number of
attached ports. A component attaches to a connector by
creating a link between one of its ports and a single
connector port. Connectors may support arbitrary event
delivery semantics (e.g., unicast, multicast, broadcast). In

order to support the needs of dynamically changing
applications, each Prism-MW component or connector is
capable of adding or removing ports at runtime.

Each subclass of the Brick class has an associated
interface. The IArchitecture interface exposes a weld method
for attaching two ports together. The IComponent interface
exposes send and handle methods used for exchanging
events. Component provides the default implementation of
IComponent’s send method: Generated events are placed
asynchronously on all of the component’s ports of the
appropriate type. As will be detailed in Section 6, we
provide other implementations of this interface, including
synchronous sending of events. The IConnector interface
provides a handle method for routing events. The Connector
class provides the default implementation of IConnector’s
handle method, which forwards all request events to the
connector’s attached request ports and all reply events to
the attached reply ports. As will be detailed in Sections 6,
we have provided implementations of different routing
policies, including unidirectional broadcast, bidirectional
broadcast, and multicast. The IPort interface provides the
setMutualPort method for creating a one-to-one association
between two ports.

Finally, Prism-MW’s core associates the Scaffold class

with every Brick. Scaffold is used to schedule and queue

events for delivery (via the AbstractScheduler class) and pool

execution threads used for event dispatching (via the

AbstractDispatcher class) in a decoupled manner. Prism-

MW’s core provides default implementations of Ab-

stractScheduler and AbstractDispatcher: FIFOScheduler and

RoundRobinDispatcher, respectively. The novel aspect of our

design is that this separation of concerns allows us to

independently select the most suitable event scheduling,

queueing, and dispatching policies for a given application.

Furthermore, it allows us to independently assign different

scheduling, queueing, and dispatching policies to each

architectural element, and possibly even change these

policies at runtime. For example, a separate event queue

can be assigned to each component; alternatively, a single

event queue can be shared by a number of (collocated)

components. Additionally, dispatching and scheduling are

decoupled from the Architecture, allowing one to easily

compose many subarchitectures (each with its own sche-

duling and dispatching policies) in a single application.

Scaffold also directly aids architectural awareness [4] (also

referred to as reflection) by allowing probing of the runtime

behavior of a Brick via different implementations of the

AbstractMonitor class, as discussed in Section 5.
Prism-MW’s core has been implemented in Java JVM.

Large subsets of the described functionality have also been
implemented in Java KVM, C++, EVC++, Python, and
Brew; they have been used in example applications and in
evaluating Prism-MW. The implementation of the middle-
ware core is relatively small (under 900 SLOC), which can
aid Prism-MW’s understandability and ease of use.

4.2 Prism-MW’s Semantics

A distributed system implemented in Prism-MW consists of
a number of Architecture objects, each of which serves as a
container for a single subsystem and delimits an address

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 259

Fig. 2. UML class design view of Prism-MW. Middleware core classes

are highlighted.

space. Components within and across the different Architec-

ture objects interact by exchanging Events. The default

implementation of Prism-MW uses a circular array for

storing all events in a single address space. This allowed us

to optimize event processing by introducing a pool of

shepherd threads (implemented in Prism-MW’s Round-

RobinDispatcher class) to handle events sent by any

component in a given address space. The size of the thread

pool is adjustable. Since the event queue is of a fixed size

(determined at system construction-time), we also use a

producer-consumer algorithm to keep event production

under control and supply shepherd threads with a constant

stream of events to process.
Figs. 3b and 3c show event processing for two alternative

usage scenarios of Prism-MW. The figures show the base

case of event processing within a single address space. This

technique proved quite flexible and allowed us to support

distributed event processing in a similar manner, as shown

in Fig. 3d and further discussed in Section 5.1.
By default, Prism-MW processes events asynchronously.

A shepherd thread removes the event from the head of the

queue. In the scenario of Fig. 3b, the shepherd thread is run

through the connector attached to the sending component;

the connector dispatches the event to relevant components

using the same thread. If a recipient component generates

further events, they are added to the tail of the event queue;

different threads are used for dispatching those events to

their intended recipients. In the scenario of Fig. 3c, we use

direct connections between component ports, which allow

separate threads to be used for dispatching an event from

the queue to each intended recipient component (Steps 2a,

2b, 3a, and 3b in Fig. 3c). This increases parallelism, but also

resource consumption in the architecture.
This solution represents an adaptation of an existing

worker thread pool technique [34] that results in several

unique benefits:

1. By leveraging explicit architectural topology, an
event can be routed to multiple destinations. This
minimizes resource consumption since events need
not be tagged with their recipients, nor do the
recipients need to explicitly subscribe to events.

2. We further optimize resource consumption by using
a single event queue for storing both locally and
remotely generated events (depicted in Fig. 3d and
discussed in Section 5.1).

3. Since Prism-MW processes local and remote events
uniformly and all routing is accomplished via the
multiple and explicit ports and/or connectors,
Prism-MW allows for seamless redeployment and
redistribution of existing applications onto different
hardware topologies.

4.3 Extensibility Mechanism

One of Prism-MW’s key objectives is extensibility (recall
Section 2). The design of Prism-MW’s core is intended to
support this objective by providing extensive separation of
concerns via explicit architectural constructs and use of
abstract classes and interfaces. To date, we have built
several specific extensions to support architectural aware-
ness [8], real-time requirements [13], distributability,
security [29], heterogeneity, data compression, delivery
guarantees [5], and mobility [4], [14]. Furthermore, we have
been able to support directly multiple architectural styles,
even within a single application. In this section, we outline
the mechanism we have employed for supporting exten-
sibility in Prism-MW, depicted in Fig. 4. We detail how this
mechanism is applied to achieve specific extensions in
Sections 5 and 6. Our experience with the extensions we
have built to date indicates that others can be easily added
to the middleware in the manner presented here.

Our support for extensibility is built around our intent to
keep Prism-MW’s core unchanged. To that end, the core
constructs (Component, Connector, Port, Event, and Architec-
ture) are subclassed via specialized classes (ExtensibleCom-
ponent, ExtensibleConnector, ExtensiblePort, ExtensibleEvent,
and ExtensibleArchitecture), each of which has a reference to
a number of abstract classes (AbstractExtensions in Fig. 4a).
Each AbstractExtension class can have multiple implementa-
tions (Extension i,j in Fig. 4a), thus enabling selection of the
desired functionality inside each instance of a given
Extensible class. If a reference to an AbstractExtension class
is instantiated in a given Extensible class instance, that
instance will exhibit the behavior realized inside the
implementation of that abstract class. Multiple references

260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

Fig. 3. Event dispatching in Prism-MW. (a) Link between two ports. (b) Steps 1-7 are performed by a single shepherd thread. (c) Steps 1-3 are

performed by two shepherd threads, assuming the RenderingAgent is sending event E to both recipient components. (d) Event dispatching for the

remote scenario.

to abstract classes may be instantiated in a single Extensible

class instance. In that case, the instance will exhibit the

combined behavior of the installed abstract class imple-

mentations.1

5 SUPPORT FOR THE PRISM SETTING

As outlined in Section 2, the Prism setting imposes many

stringent requirements on software applications and appli-

cation developers. We have focused our attention on a

number of the resulting challenges and, in this section,

report on the facilities we have built into Prism-MW for

dealing with several of them.

5.1 Distribution

In order to address different aspects of interaction, the

ExtensiblePort class has references to a number of abstract

classes that support various interaction services. In turn,

each abstract class can have multiple implementations.

Fig. 4b shows five different port extensions we have

implemented thus far. Given the importance of distribution

to the Prism domain, in this section, we focus solely on the

distribution extensions. In Section 5.2, we will discuss other

aspects of interaction.

The AbstractDistribution class has been implemented by
two concrete classes, one supporting socket-based and the
other infrared port-based interprocess communication
(IPC). We refer to an ExtensiblePort with an instantiated
AbstractDistribution reference as a DistributionEnabledPort. A
DistributionEnabledPort can be instantiated in two modes of
operation: server or client. A DistributionEnabledPort oper-
ating in the server mode has a listening thread (e.g., socket
server) that is waiting for incoming connection requests on
a specified network port. A DistributionEnabledPort operat-
ing in the client mode does not have a listening thread and
is only capable of making connection requests to other
DistributionEnabledPorts.

Our implementation of AbstractDistribution allows a
DistributionEnabledPort to have an arbitrary number of
network connections to other remote DistributionEnabled-
Ports (i.e., one-to-many association between ports). When a
DistributionEnabledPort receives an event, it broadcasts the
event on all its network connections. Note that the one-to-
many association between DistributionEnabledPorts is a
deviation from the one-to-one semantics of a basic port.
As will be further discussed in Section 7, this deviation is
introduced for efficiency.

Fig. 5 shows three different usage scenarios of Prism-
MW’s DistributionEnabledPorts. The architectures in Figs. 5a
and 5b are semantically identical (in both cases, a request
from RenderingAgent will be sent to both recipient compo-
nents), although the architecture of Fig. 5b is more efficient

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 261

Fig. 4. Prism-MW’s (a) extensibility mechanism, and extensions to (b) ports, (c) events, (d) components, and (e) scaffolds.

Fig. 5. DistributionEnabledPort usage scenarios.

1. Since Prism-MW’s objective is to be arbitrarily extensible in principle,
the middleware places no restrictions on such combined behaviors. It is the
developers’ responsibility to ensure that such behaviors make sense.

as it uses one less DistributionEnabledPort. On the other
hand, the architecture in Fig. 5c allows the connector in
address space A1 to route an outgoing event either to
ResourceMonitor in A2 or DeploymentAdvisor in A3, or both.

Prism-MW uses the same basic mechanism for commu-
nication that spans address spaces as it does for local
communication: A sending component or connector places
its outgoing event on an attached port. However, instead of
depositing the event to the local event queue, in this case,
the DistributionEnabledPort deposits the event on the net-
work, as shown in Fig. 3d. When the event is propagated
across the network, the (server) DistributionEnabledPort on
the recipient device uses its internal thread to retrieve the
incoming event and place it on its local event queue. This
supports distribution transparency and allows a component
to be migrated between hosts with minimal impact on the
system. For example, the impact of moving ResourceMonitor
from A2 to A1 in Fig. 3d would be limited to replacing
two DistributionEnabledPorts (one attached to the conn
connector and the other to ResourceMonitor) with local Ports.

5.2 Communication Properties

As depicted in Figs. 4b and 4c, we have implemented
several port and event extensions, respectively, which
enable different aspects of communication beyond distribu-
tion. Below, we provide a brief description of each.

5.2.1 Security

The AbstractSecurity class (shown in Fig. 4b) is a port
extension that has several implementations performing
combinations of authentication, authorization, encryption,
and event integrity. These services have been implemented
using three major cryptographic algorithms: symmetric
(secret) key, asymmetric (public) key, and event digest
function [29]. We use the RSA asymmetric key algorithm for
establishing a connection between each two new users (i.e.,
their DistributionEnabledPorts) and for transmitting the
secret (session) key. The same session key and the more
efficient DES symmetric key algorithm is used for all
subsequent event exchanges. In order to prevent request
tampering, a message digest function is used in combina-
tion with RSA to generate the message signature. A
message digest is a kind of cryptographic checksum over
a message, used to verify data integrity.

5.2.2 Delivery Guarantees

AbstractDeliveryGuarantees and AbstractDeliveryGuarantee-
sEvt are port and event extensions, respectively, that
support event delivery guarantees. We have implemented
support for at most once, at least once, exactly once, and
best effort delivery semantics. Each Prism-MW event is
tagged with the delivery policy by the component’s
application logic, with best effort being the default. The
delivery policy of an event corresponds to the implementa-
tion of AbstractDeliveryGuaranteesEvt that is installed on the
event. Communicating DistributionEnabledPorts, with the
appropriate implementation of AbstractDeliveryGuarantees
installed on them, implement a “handshaking” protocol to
ensure proper event delivery across address spaces. If an
event does not have any delivery guarantee requirements or
if the port does not support the requested delivery

guarantee, the event is delivered with the default best
effort policy. In order to maximize the efficiency of the
delivery guarantee support in the same address space, we
make use of programing language (PL) exceptions (i.e., we
assume that, if no exception is raised, the event has been
delivered).

5.2.3 Real-Time Delivery

The AbstractRealTimeEvt class (shown in Fig. 4c) is used to
assign a real-time deadline to an event. We have imple-
mented this class to support both aperiodic and periodic
real-time events. In support of real-time event delivery, we
have provided two additional implementations of the
AbstractScheduler class (see Fig. 4e). EDFScheduler imple-
ments scheduling of aperiodic events based on the earliest-
deadline-first algorithm, while RateMonotonicScheduler im-
plements scheduling of periodic events via rate monotonic
scheduling [15]. Coupled with this, we have provided
PriorityDispatcher, which is a variant implementation of
AbstractDispatcher that supports threads with varying
priorities.

5.2.4 Data Conversion

In order to support communication across PLs, we have
provided the AbstractXMLConversion and AbstractXMLRe-
presentation extensions for port and event classes,
respectively. Prism-MW events with the installed XMLRe-
presentation (our default implementation of AbstractXML-
Representation) are encoded/decoded via ports with
XMLConversion (our default implementation of
AbstractXMLConversion).

5.2.5 Data Compression

Finally, we have provided the AbstractCompression exten-
sion for port with the goal of minimizing the required
network bandwidth for event dispatching. To this end, we
have implemented the Huffman coding technique [31]
inside the Compression class.

We have developed the above extensions over the past
several years as the need for them has arisen. Adding new
extensions to Prism-MW is relatively straightforward. For
example, addition of a new extension to ExtensiblePort
requires adding a reference to the appropriate abstract class
and invoking its methods inside ExtensiblePort’s handle
method. Such a change to an Extensible class is minimal,
averaging three new lines of code for each new extension.
The overhead introduced by this solution is that an
ExtensiblePort instance may have many null references,
corresponding to the extension classes that have not been
instantiated. The values of these references will be checked
each time ExtensiblePort’s handle method is invoked. An
alternative solution, which would trade-off the extensibility
for efficiency, is to subclass the Port class directly and to
have the references only to the desired extensions.

5.3 Awareness

To support various aspects of awareness (i.e., reflection),
Prism-MW supports metalevel components. Typically, a
metalevel component is implemented as an ExtensibleCom-
ponent, which contains a reference to the Architecture object
via the IArchitecture interface. The ExtensibleComponent class

262 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

can also have references to abstract classes that provide
specific (metalevel) functionality (see Fig. 4d). The role of
components at the metalevel is to observe and/or facilitate
different aspects of the execution of application-level
components. At any point, the developer may add
metalevel components to a (running) application. Metalevel
components may be welded to specific application-level
connectors to exercise control over a particular portion of
the architecture. Alternatively, a metalevel component may
remain unwelded and may instead exercise control over the
entire architecture via its pointer to the Architecture object.
The structural and interaction characteristics of metalevel
components are identical to those of application-level
components, eliminating the need for their separate treat-
ment in the middleware.

To date, we have augmented ExtensibleComponent with
three extensions. The implementation of the AbstractRunti-
meAnalysis class is used for analyzing the architectural
descriptions and assessing proposed architectural changes
during the application’s execution. We have implemented
several versions of this interface that encapsulate different
subsets of our DRADEL [19] environment. In the next
section, we discuss in detail the AbstractDeployment class,
which is used for performing component deployment and
mobility. Finally, AbstractComponentSynchronism is not
relevant to awareness and is discussed in Section 6.

5.4 Deployment and Mobility

A distributed architecture in Prism-MW is represented as a
configuration of components (and possibly connectors)
deployed onto a set of connected hosts. In such a setting,
component migration may be required to minimize the
need for remote communication, to increase the local
subsystem’s autonomy during disconnection, to perform
component upgrade, and so forth. Many existing ap-
proaches [11] have focused on providing support for
component mobility in the Prism setting. Our support for
mobility exploits Prism-MW’s explicit software connectors,
event-based interaction, and awareness. Below, we discuss
both stateless and stateful component mobility.

5.4.1 Stateless Mobility/Deployment

Prism-MW components communicate by exchanging appli-
cation-level events. Prism-MW also allows components to
exchange ExtensibleEvents, which may contain architectural
elements (components and connectors) as opposed to data.
Additionally, ExtensibleEvents implement the Serializable
interface (recall Fig. 2), thus allowing their dispatching
across address spaces.

In order to migrate the desired set of architectural
elements onto a set of target hosts, we assume that a
skeleton configuration is preloaded on each host. The
skeleton configuration consists of Prism-MW’s Architecture
object that contains an AdminComponent with a Distributio-
nEnabledPort attached to it. An AdminComponent is an
ExtensibleComponent with the Admin implementation of
AbstractDeployment installed on it (shown in Fig. 4d).

Since the AdminComponent on each device contains a
pointer to its Architecture object, it is able to effect runtime
changes to its local subsystem’s architecture: instantiation,
addition, removal, connection, and disconnection of

components and connectors. AdminComponents are able to
send and receive from any device to which they are
connected the ExtensibleEvents that contain application
components and connectors (referred to as migrant ele-
ments below).

The process of stateless migration can be described as
follows: The sending AdminComponent packages the mi-
grant element into an ExtensibleEvent. One parameter in the
event is the compiled image of the migrant element itself
(e.g., a collection of Java class files); another parameter
denotes the intended location of the migrant element in the
destination subsystem’s configuration. The AdminCompo-
nent then sends this event to its DistributionEnabledPort,
which forwards the event to the attached remote Distribu-
tionEnabledPorts. Each receiving DistributionEnabledPort de-
livers the event to its attached AdminComponent, which
reconstitutes the migrant elements from the event, and
invokes the IArchitecture’s add and weld methods to insert
the element into the local configuration.

5.4.2 Stateful Mobility

The technique described above provides the ability to
transfer code between a set of hosts. As such, the stateless
technique is useful for performing initial deployment of a
set of components and connectors onto target hosts. In cases
when runtime migration of architectural elements is
required, the migrant element’s state needs to be trans-
ferred along with the compiled image of that element.
Additionally, the migrant element may need to be dis-
connected and deleted from the source host. We provide
two complementary techniques for stateful mobility: serial-
ization-based and event stimulus-based.

The serialization-based technique relies on the existence
of Java-like serialization mechanisms in the underlying PL.
Instead of sending a set of compiled images, the local
AdminComponent possibly disconnects and removes the
(active) migrant elements from its local subsystem (using
the IArchitecture’s unweld and remove methods), serializes
each migrant element, and packages them into a set of
ExtensibleEvents, which are then forwarded by the Distribu-
tionEnabledPort. AdminComponents on each receiving host
reconstitute the architectural elements from these events
and attach them to the appropriate locations in their local
subsystems.

In cases where the serialization-like mechanism is not
available (e.g., Java KVM), we use the event stimulus-based
technique: The compiled image of the migrant element(s) is
sent across a network using the stateless technique. In
addition, each event containing a migrant element is
accompanied by a set of application-level events needed
to bring the state of the migrant element to a desired point
in its execution (see [25] for details of how such events are
captured and recorded). Once the migrant architectural
element is received at its destination, it is loaded into
memory and added to the architecture, but is not attached
to the running subsystem. Instead, the migrant element is
stimulated by the application-level events sent with it. Any
events the migrant element issues in response are not
propagated since the element is detached from the rest of
the architecture. Only after the migrant architectural
element is brought to the desired state is it welded and

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 263

enabled to exchange events with the rest of the architecture.
While less efficient than the serialization-based migration
scheme, this is a simpler technique, it is PL-independent,
and it is natively supported in Prism-MW.

5.5 Disconnected Operation

Highly distributed and mobile systems that are commonly
found in the Prism domain are challenged by the problem
of disconnected operation [41], where the system must
continue functioning in the temporary absence of network
connectivity. Ensuring the availability of a given system
during disconnection may, thus, require the system to be
redeployed such that the most critical interactions occur
either locally or over reliable network links.

Prism-MW’s support for disconnected operation le-
verages its support for the awareness and mobility
discussed above and requires runtime monitoring facil-
ities. In support of monitoring, Prism-MW provides the
AbstractMonitor class associated through the Scaffold with
every Brick (shown in Fig. 4e). This allows for autono-
mous, active monitoring of a Brick’s runtime behavior. We
have provided two implementations of the AbstractMo-
nitor class: EvtFrequencyMonitor records the frequencies of
different events the associated Brick sends, while Net-
workReliabilityMonitor records the reliability of connectiv-
ity between its associated DistributionEnabledPort and
other, remote DistributionEnabledPorts using a common
“pinging” technique.

To maximize the availability of a distributed system, we
leverage two implementations of the AbstractDeployment
class:

. AdminComponent, discussed in Section 5.4, is
capable of sending, receiving, and installing soft-
ware components via its reference to Architecture.
An AdminComponent is also capable of accessing
the monitoring data of its local components and
connectors (recorded in the associated implemen-
tation of the AbstractMonitor class) and forwarding
that data to interested remote hosts.

. DeployerComponent is an ExtensibleComponent with an
attached DistributionEnabledPort and the Deployer
implementation of AbstractDeployment installed on
it. The DeployerComponent has all the capabilities of
an AdminComponent (recall Fig. 4d) with the addi-
tional ability to calculate a new deployment archi-
tecture that improves the system’s availability based
on the monitored data [23]. Once an improved
deployment architecture is calculated, the Deployer-
Component orchestrates the system’s redeployment
by sending redeployment instructions to the Admin-
Components on each host.

6 SUPPORT FOR ARCHITECTURAL STYLES

In a complex, large-scale system, multiple architectural
styles may be required to facilitate different subsystems’
requirements [10], [28]. Therefore, a middleware platform
used to implement such architectures would need to
support multiple styles. Prism-MW’s design can be lever-
aged to support a number of distributed systems styles [10],

which are likely to be useful in the Prism setting [18]. In this

section, we describe how Prism-MW can be configured to

support different architectural styles using the mechanism

introduced in Section 4.3 and leveraged in the extensions

described in Section 5.
In order to effectively support architectural styles, Prism-

MW should be configured to provide the following:

1. the ability to distinguish among different architec-
tural elements of a given style (e.g, distinguishing
Clients from Servers in the client-server style);

2. the ability to specify the architectural elements’
stylistic behaviors (e.g., Clients block after send-
ing a request while C2Components send requests
asynchronously);

3. the ability to specify the rules and constraints that
govern the architectural elements’ valid configura-
tions (e.g., disallowing Clients from connecting to
each other in the client-server style, or allowing a
Filter to connect only to a Pipe in the pipe-and-
filter style); and

4. the ability to use multiple architectural styles within
a single application.

We have leveraged Prism-MW’s extensibility to sup-

port the above requirements. The following extensibility

properties of Prism-MW have been used to satisfy the

requirements:

. Brick has an attribute that identifies its style-specific
type. The value of this variable corresponds to a
given architectural style element, e.g., Client,
Server, Pipe, Filter, etc. The default value of
this variable is Null, corresponding to the “null”
style supported by Prism-MW’s core. The associa-
tion of Brick with its style-specific type satisfies our
first requirement by enabling identification of
different architectural elements.

. ExtensibleConnector has an associated implementa-
tion of the AbstractHandler class to support style-
specific event routing policies (see Fig. 6a). For
example, Pipe forwards data unidirectionally,
while a C2Connector uses bidirectional event
broadcast. This partially satisfies the second require-
ment by allowing tailoring of a connector’s style-
specific behavior.

. ExtensibleComponent has an associated implementa-
tion of the AbstractComponentSynchronism class to
provide synchronous component interaction (see
Fig. 6b). The default, asynchronous interaction is
provided by Prism-MW’s core. This partially satis-
fies the second requirement by allowing one to
tailor a component’s style-specific behavior (e.g., a
Client blocks after it sends a request to a Server

and unblocks when it receives a response).
. ExtensiblePort has an associated implementation of

the AbstractDistribution class to support interprocess
communication (see Fig. 6c). This partially satisfies
the second requirement by supporting architectural
styles that require distribution (e.g., a Server may
serve many distributed Clients).

264 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

. ExtensibleArchitecture has an associated implementa-

tion of the AbstractTopology class to ensure the
topological constraints of a given style (see Fig. 6d).

For example, in the client-server style, Clients can

connect to Servers, but two Clients cannot be

connected to one another. Each time an Extensible-

Architecture’s weld (or unweld) method is invoked, the

appropriate implementation of the AbstractTopology

ensures that the topological rules of a given style are

preserved. As a result, it either performs the weld (or
unweld) operation or raises an exception. This

satisfies the third requirement stated at the begin-

ning of this section by allowing for the specification

and modification of valid configurations of archi-

tectural elements. Note that, while invoking IArch-

itecture’s add method results in the addition of a

component/connector to the Architecture (or Extensi-

bleArchitecture) object, it does not affect the system’s
architectural style until it is welded. Similarly, the

component/connector cannot be removed before

AbstractTopology’s unweld method is called, which

ensures that the removal will not undermine the

system’s architectural style.
. ExtensibleArchitecture implements the IComponent

interface, thereby allowing hierarchical composition

of components (see Fig. 2). Each hierarchical

component is internally composed of subarchitec-

tures that can adhere to different architectural styles.
This satisfies the fourth requirement by allowing

combinations of different styles in a single system.

6.1 Support for Individual Styles

To produce a style-specific architectural element, the

developer instantiates the corresponding Extensible class

(recall Fig. 6) and sets the desired stylistic behavior by

installing the appropriate extensions on it. To simplify this

task, we have provided a StyleFactory utility class (shown

partially in Fig. 6e) that can automatically generate style-

specific architectural elements.
For illustration, we will discuss how we have developed

support for the client-server style. In this style, a client is a

triggering process; a server is a reactive process. Clients

make requests that trigger reactions from servers. Thus, a

client initiates activity at times of its choosing and, then,

blocks until its request has been serviced. On the other

hand, a server waits for requests to be made and then reacts
to them.

Both Client and Server in Prism-MW are represented
using an ExtensibleComponent. However, Client uses an
implementation of AbstractComponentSynchronism which
overrides the default nonblocking behavior of a component.
Clients make synchronous requests by blocking until the
corresponding acknowledgement reply comes back. An
acknowledgement reply indicates the completion of the
requested operation on the Server. A Client can have
one or more request ports through which it sends request
events to the Servers, but cannot have any reply ports. A
Server component can have one or more reply ports
through which it sends reply events back to the requesting
Clients. Prism-MW supports client-server applications
that reside in one or more address spaces.

Fig. 7 shows a simple client-server style architecture and
the corresponding code in Prism-MW. A client-server
architecture is composed of an ExtensibleArchitecture with
the ClientServerTopology implementation of the AbstractTo-
pology. ClientServerTopology enables welding of Clients

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 265

Fig. 6. Prism-MW’s support for architectural styles.

Fig. 7. Client-Server style example.

and Servers while enforcing the topological rules (e.g.,

disallowing the welding of two Clients).
We have implemented a number of additional styles (see

Fig. 6d) in a similar manner. Each style required, on

average, the addition of 80 new SLOC to Prism-MW.

Changes to Prism-MW were localized to new implementa-

tions of AbstractHandler and AbstractTopology classes. On

average, the described extensions for each style required

less than one person-hour of effort, including testing. As the

number of supported styles in Prism-MW grows, we expect

that implementing a new style would require even less

effort since existing style implementations (e.g., different

connector routing policies) may be reused.

6.2 Multiple Styles in a Single Application

In a complex, large-scale system, multiple architectural

styles may be required to facilitate different subsystems’

requirements. Prism-MW supports the use of multiple

architectural styles in a single application by leveraging

hierarchical composition. ExtensibleArchitecture implements

the IComponent interface (recall Fig. 2) and, therefore, allows

its instances to be used as hierarchical components. The

application architecture that contains multiple styles is then

composed as a configuration of several hierarchical compo-

nents (with their own internal architectures), each of which

may adhere to a different architectural style. We discuss an

example of this using the TDS application introduced in

Section 3.

TDS was initially designed in the C2 style and
implemented using an earlier version of Prism-MW [24].
Fig. 8 shows the initial architecture of TDS. It consists of
three subsystems: Headquarters, Commander, and Soldier,
each of which resides on a separate device and has an
internal architecture. We modified the overall TDS archi-
tecture such that the Soldier and Commander subsystems, as
well as Commander and Headquarters subsystems, engage in
client-server relationships. Different Commander subsystems
have also been rearchitected to communicate as peers. The
details of these modifications have been elided for brevity,
but can be found in [18], [24]. Another issue we faced was
that, in the original C2 design, the Clock component was
overwhelming the system by broadcasting tick messages to
all the components in the system, while only the application
logic of three components (Weather, ResourceMonitor, and
SimulationAgent) needed the delivery of the tick messages.
Thus, we moved the Clock and its three dependent
components into a separate pipe-and-filter style subarchi-
tecture. This modification resulted in over 60 percent
improvement of event round-trip time for some events
(e.g., events originating from the RenderingAgent component
that are being processed by the Map component).

7 EVALUATION

Prism-MW’s support for two of its objectives, system
implementation via architectural abstractions and extensi-
bility, have been discussed in depth in the preceding
sections. In this section we summarize our evaluation of
Prism-MW’s remaining two objectives, efficiency and
scalability (recall Section 2). Our goals have been to
1) provide empirical results of the performance trade-offs
that are associated with our design decisions and 2) demon-
strate the middleware’s efficiency and scalability in large,
possibly distributed systems with different structures.

In support of the first goal, we have evaluated two types
of performance trade-offs that were discussed earlier in the
paper:

. The trade-off between the two alternative configura-
tions of a local architecture (recall Fig. 3). We used
architectures in which a single component commu-
nicates with a varying number of identical compo-
nents, either through a single connector or via ports
that directly connect the components.

. The trade-off between the three alternative config-
urations of a distributed architecture (recall Fig. 5).
We considered a special case, where the connectors
broadcast events, which results in five semantically
identical configurations of a distributed architecture,
as detailed below.

In support of the second goal, we have measured the
overhead in application size caused by Prism-MW. We have
also evaluated the execution of large architectures with
different topologies and processing loads:

. The sensitivity analysis of the middleware’s perfor-
mance to the size of the architecture. We consider an
architecture configured in a manner similar to the
one depicted in Fig. 3a and execute it on different

266 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

Fig. 8. Architecture of TDS in the C2 style with single Headquarters,

Commander, and Soldier subsystems. Prism-MW Ports have been

elided for clarity.

platforms for varying numbers of events and
“bottom” components.

. The middleware’s scalability to large architectures
with different topologies.

Since we are interested in measuring the overhead
induced on an application by Prism-MW, the software
components used throughout the example scenarios contain
minimal application logic (e.g., counting the number of
events sent/received, forwarding events). Furthermore, all
the events exchanged between local and remote compo-
nents are simple events with no payload. We selected the
size of the thread pool and event queue based on the
expected load and the size of each architecture. Note that
Prism-MW allows for the specification of arbitrarily large
thread pools and event queues. In the case of most
benchmarks, we kept a constant size thread pool and event
queue to simplify the assessment of the middleware’s
performance under varying loads.

The environment set-up consisted of 1) mid-range PCs
with Intel Pentium IV 1.5 GHz processors and 256 MB of
RAM running JVM 1.4.2 onMicrosoft Windows XP, 2) PDAs
of type Compaq iPAQ H3870 with 200 MHz processors and
64 MB of RAM running Jeode JVM on WindowsCE 2002,
and 3) a dedicated network leveraging a dual-band wireless
2.4 GHz router.

7.1 Middleware Size

Memory usage of Prism-MW’s core (mw mem), recorded at
the time of architecture initialization, is 2.3 KB. The
overhead of a “base” Prism-MW component (comp mem),
without any application-specific methods or state, is
0.12 KB, while the overhead of a “base” connector
(conn mem) is 0.09 KB. The memory overhead of a “base”
port (port mem) is 0.04 KB, while the overhead of an
ExtensiblePort is 0.2 KB. The memory overhead of each
connection object is 8 KB, which leverages Java’s imple-
mentation of socket-based TCP/IP communication proto-
col. The memory overhead of a DistributionEnabledPort that
contains a single connection instance is 8.5 KB. The memory
overhead of creating and sending a single event (evt mem)
can be estimated using the following formula, obtained
empirically:

evt memðin KBÞ ¼ 0:04þ 0:01 � num of parameters:

The formula assumes that the parameters do not contain
complex objects, but may contain simple objects (e.g., Java
Integer or String).

As an illustration, the memory overhead induced by
using Prism-MW in the largest instantiation of the TDS
architecture (recall Fig. 8), which consisted of a single
Headquarters subsystem, four Commander subsystems, and
100 Soldier subsystems can be closely approximated as
follows:

num arch � ðmw memþ ðq size � evt memÞÞ

þ num comps � comp memþ num conns � conn mem

þ num ports � port memþ num distports
� dist port mem

¼ 105
� ð2:3þ 25

� ð0:04þ ð0:01 �
1ÞÞÞ þ ð245 �

0:12Þ

þ ð217 �
0:09Þ þ ð875 �

0:04Þ þ ð109 �
0:5Þ ¼ 511:5KB:

The above formula uses the average size of the event
queue for each Architecture object (25) and average number
of parameters for TDS events (one). The formula also
assumes that each event queue is full (which we have never
observed during actual execution of TDS). Recall from
Section 3 that the approximate dynamic size of the Head-
quarters subsystem is 1 MB, of each Commander subsystem
600 KB, and of each Soldier subsystem 90 KB, resulting in
the total application size of 12.5 MB. Therefore, Prism-MW
induced at most a 4 percent overhead on the application’s
dynamic memory consumption.

Our measurements of the memory overhead for the
awareness, deployment, mobility, and disconnected opera-
tion support (recall Section 5) showed that, on average, the
Java implementation of the Prism-MW skeleton configura-
tion (AdminComponent, DistributionEnabledPort, and Prism-
MW’s core) occupies around 14 KB. The AdminComponent
itself occupies 4 KB of memory.

7.2 Middleware Performance in a Local Setting

The performance of Prism-MW’s core (i.e., local architec-
tures with no extensions) is comparable to solutions using a
plain programming language (PL). Each Prism-MW event
exchange causes five PL-level method invocations (typically
highly optimized in a PL) and a comparatively more
expensive context switch if the architecture is instantiated
with more than one shepherd thread.2 Analogous function-
ality would be accomplished in a PL with two invocations
and, assuming concurrent processing is desired, a context
switch. It should also be noted that it is unlikely that a plain
PL could support a number of development situations for
which Prism-MW is well suited (e.g., asynchronous event
multicast) and due to which it introduces its performance
overhead in the first place.

To empirically evaluate Prism-MW’s core, we use an
architecture where one component is communicating with
a varying number (n) of identical recipient components
via a connector (Fig. 3b shows such an architecture with
two recipient components). Thus, all the components in
this architecture are part of the same Architecture object
and reside in a single address space. For this architecture,
we use a pool of 10 shepherd threads and a queue of
1,000 events (q size).

Table 1 shows representative benchmark results. A
maximum of 100,000 simple (parameter-less) events were
sent asynchronously by the single sender component to a
maximum of 100 recipient components (resulting in
between 100 to 10,000,000 invocations of component handle
methods) for the application running on a PC. The
10 million events are processed in under 3 seconds on the
PC. The bottom portion of Table 1 shows the results
obtained on a PDA, a comparatively much less capacious
and performant platform: a maximum of 10,000 events are
sent to a maximum of 50 components (resulting in up to
500,000 invocations of component handle methods).

In addition to the above “flat” architecture, another
series of benchmarks we ran involved a “chain” of n
components communicating either directly through ports or

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 267

2. The five method invocations involve traversing the ports, placing the
event in the queue, and dispatching it to the recipient component.

via n� 1 intervening connectors. For example, the total

round-trip time for a single event in the case where the

architecture involved 100,001 components and 100,000

connectors was 1.1 milliseconds on a PC. In addition to

demonstrating Prism-MW core’s efficiency, these bench-
marks also served to highlight its scalability.

To evaluate the performance trade-off between two
alternative usage scenarios of Prism-MW (recall Fig. 3),

we employed two variations of the “flat” architecture. In the

first variation, discussed above, the communication takes

place through a single connector, while the second variation

employs direct links between component ports. Each one of

the n components was implemented with a fixed event

handling delay of 50 msec to simulate application-specific

processing (comp proc time) and to utilize the benefits of

parallel processing.
The results of the benchmark are shown in Table 2. One

parameter-less event was sent asynchronously by the

single sender component to all the recipient components,

resulting in n events being handled. The results demon-

strate that a higher degree of parallelism and, therefore,

better performance, can be achieved by using direct

connections among components. On the other hand, the
use of a connector resulted in lower memory consumption

since each outgoing event is not replicated n times. Finally,

note that the total processing time in the case of direct

communication (illustrated in the bottom half of Table 2)

can be approximated using the following formula, where

numComps represents the number of components and

numThreads represents the number of shepherd threads in

an architecture:

total proc time � comp proc time;

if numComps < numThreads

total proc time�comp proc time�numComps=numThreads;

if numComps � numThreads:

7.3 Middleware Performance in a
Distributed Setting

While Prism-MW’s DistributionEnabledPorts are in principle

independent of the employed communication protocols

(recall Section 5.1), their performance is directly impacted

by the underlying implementations of those protocols. The

results presented here are based on DistributionEnabledPorts

that leverage Java’s implementation of TCP/IP sockets. In a

large number of benchmarks involving architectures of

varying sizes, topologies, and communication profiles, we

268 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

TABLE 1
Benchmarking Prism-MW on a PC and a PDA

TABLE 2
Components Communicating through a Connector versus Directly via Ports

compared the performance of a DistributionEnabledPort with

a “pure” Java implementation of TCP/IP. Our results

indicate that a Prism-MW DistributionEnabledPort adds no

more than 2 percent in performance overhead to Java’s

implementation of TCP/IP.
In Section 5.1, we identified three different ways of

instantiating a distributed architecture with identical event

routing semantics. In fact, when the routing policy is event

broadcast (i.e., no filtering is performed by connectors), five

semantically equivalent ways of instantiating a distributed

architecture are possible. To study their performance, we

created five example scenarios, comprising three distribu-

ted Architecture objects with five components each, that

were configured as follows:

. Scenario 1. Each component communicates directly
to every other component via a separate Distributio-
nEnabledPort (see Fig. 5a).

. Scenario 2. Each component on the requesting
device uses a single DistributionEnabledPort to com-
municate directly to every other component (see
Fig. 5b, where the requesting device corresponds to
address space A1).

. Scenario 3. Each component on the requesting
device uses a local bidirectional broadcasting con-
nector to communicate with remote components.
The connector has a separate DistributionEnabledPort
for each remote component (see Fig. 5c).

. Scenario 4. This is similar to the architecture of
Scenario 3, with the exception that the connector has
only a single DistributionEnabledPort to communicate
with all of the remote components.

. Scenario 5. Local bidirectional broadcasting con-
nectors with single DistributionEnabledPorts are
used to mediate the communication in all three
architectures.

Table 3 shows the performance measurements under

each of the scenarios described above, with different event

loads sent by the requesting architecture. The measure-

ments reflect the time elapsed before the requesting

architecture receives all the reply events from the remaining

architectures. Given that the ports and connectors used in

this example broadcast the events, each event sent by one of

the five requesting components (i.e., between 5 and

500 events sent in the scenarios depicted in Table 3) results

in a total of 10 replies returned (i.e., between 50 and 5,000
events returned).

We make the following two observations from the results
of Table 3: First, architectures with lower numbers of
DistributionEnabledPorts have lower memory footprints and
faster running times. This is expected since each Distribu-
tionEnabledPort adds overhead both in terms of memory and
execution. Therefore, in response to this issue, Prism-MW
allows multiple connections to be associated with a single
DistributionEnabledPort. More significantly, architectures
with lower numbers of network connections have much
lower memory footprints and faster running times. This is
expected since each network connection has its own
internal thread that reads/writes events from/to the net-
work link. To minimize the number of network connections,
one may leverage Prism-MW’s connectors. For example, in
Scenario 5, the usage of connectors in all the three
architectures resulted in the most efficient configuration,
in which a total of only three DistributionEnabledPorts and
four connections are instantiated.

8 RELATED WORK

Our work on Prism-MW has been primarily influenced by
two research areas: architectural styles and middleware.
Architectural styles were discussed in Sections 1 and 6.
Below, we discuss three related approaches in the archi-
tectural middleware arena. Additionally, we describe
several representative commercial and research middle-
ware technologies and present a comparison of these
technologies with Prism-MW.

ArchJava [2] is an extension to Java that unifies software
architecture with implementation, ensuring that the im-
plementation conforms to architectural constraints. Arch-
Java currently has several limitations that would likely limit
its applicability in the Prism setting: Communication
between ArchJava components is achieved solely via
method calls, ArchJava is only applicable to applications
running in a single address space, it is currently limited to
Java and its efficiency has not yet been assessed.

Aura [36] is an architectural style and supporting
middleware for ubiquitous computing applications with a
special focus on user mobility, context awareness, and
context switching. Aura is thus only applicable to certain
classes of applications in the Prism setting. Similarly to
Prism-MW, Aura has explicit, first-class connectors. Aura

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 269

TABLE 3
Distributed Architecture Scenarios

also provides a set of components that perform manage-
ment of tasks, environment monitoring, context observing,
and service supplying. This suggests that the Aura style
could be successfully supported using Prism-MW augmen-
ted with a set of Aura-specific extensions. This would
eliminate the need for performing optimizations of Aura’s
current implementation support, which has to date only
been tested on traditional, desktop platforms.

AGILE [3] is an on-going project whose aim is to develop
an architectural approach in which mobility aspects will be
modeled explicitly and mapped onto the physical distribu-
tion and communication topology. AGILE comprises
several different facets, such as its primitives for explicitly
addressing mobility within architectural models based on
CommUnity [9] and algebraic models of the evolution
processes that result from system reconfiguration caused by
component mobility. Of particular interest to this paper is
AGILE’s Open KLAIM [3], an experimental kernel pro-
gramming language based on tuple-spaces, for modeling
and programming distributed concurrent applications with
code mobility. Unlike Prism-MW, in which network
connectivity is implicit in its use of DistributionEnabledPorts,
Open KLAIM provides constructs for explicitly modeling
connectivity between network nodes and for handling
changes in the network topology. At the same time, Open
KLAIM lacks support for explicit architectural constructs
(components and connectors) and focuses instead on
processes as units of mobility. The two projects thus appear
to be complementary from this perspective.

While we have found only the above three related
approaches in the software architecture literature, we have
performed a comparison of Prism-MW with several
representative middleware solutions with respect to the
objectives identified in Section 2. The cross-section of the
selected middleware technologies covers commercial
(Orbix/E [12] and .NET [22]), research (ACE [33], XMID-
DLE [16], RCSM [42], Lime [14], and MobiPADS [6]), as
well as open-source solutions (JINI [37] and JXTA [30]).
Bellow, we provide a comparison of these technologies
with Prism-MW.

Architectural Abstractions. TAO, Orbix/E, .NET, and
MobiPADS provide partial support for architectural ab-
stractions in the form of explicit components. However,
none of these middleware solutions support multiple,
explicit, and/or tailorable software connectors. Further-
more, none of them support explicit architectural styles,
thus clearly distinguishing Prism-MW from them. The
styles in all of the surveyed technologies are implicit and
mostly fall within the distributed objects category.

Efficiency. We were unable to locate information on the
performance of several of the studied middleware plat-
forms. In this section, we report on those whose speed and
size have been discussed in literature. The studied middle-
ware platforms employ different optimization strategies
and, as a result, achieve different levels of efficiency.
Efficiency in Orbix/E is achieved by providing the ability to
choose a subset of features for a given application.
However, even the minimal Orbix/E configuration still
requires 95 KB of memory. TAO has recently undergone a
major redesign to improve its efficiency; however, the

minimal configuration of TAO still requires over 500 KB of
memory, while its commercialized version for real-time
CORBA [26] requires over 1.7 MB of memory. JXTA
introduces relatively high payload overheads on each event
(1KB). Its’ protocols are XML-based, resulting in both
message composition and processing overhead. .NET’s
efficiency is mainly hampered due to its reliance on the
underlying Windows platform. For example, compared to
Unix and Linux, spawning a new process on Windows is a
relatively time-consuming operation, which decreases
.NET’s performance. Our measurements indicate that
Prism-MW introduces lower memory and performance
overheads than all of the surveyed middleware solutions.

Scalability. TAO and Orbix/E support application
scalability, but do so at the expense of the middleware
size. This is primarily due to the fact that both middleware
solutions were initially targeted for capacious desktop
platforms and, therefore, their designs were not tailored to
mobile and resource constrained devices. Most of the
surveyed middleware technologies implicitly support the
distributed objects style and their scalability is ultimately
hampered by their reliance on a single connector (ORB).
On the other hand, peer-to-peer solutions such as JINI
address scalability through federations of groups or
communities. However, JINI’s lookup service has issues
with scalability due to its lack of hierarchical organization
of lookup servers. As discussed in Section 7, Prism-MW
scales well in the numbers of components, connectors,
events, and hosts.

Extensibility. Different middleware platforms support
different aspects of extensibility, including mobility,
reconfigurability, awareness, security, and delivery guar-
antees. For example, Jini supports mobility and reconfigur-
ability via Java object serialization, .NET and XMIDDLE
support mobility and reconfigurability using XML to
describe units of mobility, and dynamic class loading and
object serialization to perform code migration. RCSM
focuses on supporting device mobility and ensuring that
components on each mobile device can communicate, but
does not support code mobility or software reconfigur-
ability. MobiPADS supports mobility and reconfigurability
in the form of facilities known as mobilets, which are
configured as chained service objects that provide aug-
mented services to the underlying mobile applications.
LIME supports mobility in the form of agents. JINI,
XMIDDLE, LIME, and MobiPADS support location aware-
ness. XMIDDLE, JINI, and MobiPADS extend the notion of
awareness beyond location to other system properties such
as resource availability, battery power, etc. Several tech-
nologies (OrbixE, TAO, JXTA, .NET, RCM) support
security to a significant extent. Security is highly important
in the context of Prism systems, in which possibly
untrusted components and hosts may enter the system at
any time. For example, .NET supports security via
encryption and digital signatures and provides security
enforcement at the level of application users and mobile
code. TAO provides extensive support for event delivery
guarantees, including at most once, at least once, and
exactly once delivery semantics, while Orbix/E provides
event storage and playback in order to support reliable

270 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

event delivery. Other surveyed techniques do not support
event delivery guarantees.

9 CONCLUSIONS AND FUTURE WORK

This paper has presented the design, implementation, and
evaluation of Prism-MW, a middleware targeted at applica-
tions in highly distributed, resource constrained, hetero-
geneous, and mobile settings. The described design and
implementation are a result of close to ten years of research
into effective techniques for implementing software archi-
tectures [17], [24], [27], [40]. The key properties of Prism-
MW are its native and flexible support for architectural
abstractions (including architectural styles), efficiency,
scalability, and extensibility. These properties were enabled
by Prism-MW’s extensive separation of concerns that spans
several dimensions:

. By adopting an explicit architectural perspective,
Prism-MW has inherited the separation of computa-
tion (handled by components) from interaction
(handled by ports and connectors) intrinsic to
software architectures.

. By providing a simple mechanism for supporting
multiple architectural styles (possibly in a single
application), Prism-MW allows system developers to
separate cleanly a system’s design from its imple-
mentation; Prism-MW’s style extensions automati-
cally ensure all relevant architectural relationships
and properties.

. Prism-MW’s extensive use of abstract classes and
interfaces, as well as minimized dependencies
among its classes, allow tailoring implementation-
level concerns (e.g., the ability to select different
schedulers independently of dispatchers or to
compose distribution, XML encoding, and compres-
sion facilities for network-based interactions).

. Finally, Prism-MW completely separates an appli-
cation’s conceptual architecture from its realization.
For example, each component in an architecture
may be implemented in multiple PLs; those
implementations are fully interchangeable if
ExtensiblePorts with the appropriate implementa-
tions of the AbstractXMLConversion class are used.

In turn, this separation of concerns across multiple
dimensions enables easy selection and tailoring of the exact
middleware features needed for each development situa-
tion in the Prism setting.

Our experience with Prism-MW has been very positive
thus far. We have used it in the context of graduate-level
classes on software architectures and embedded systems
at the University of Southern California and in collabora-
tions with three external software development organiza-
tions. It has also been successfully used by a team of
researchers in the field of mobile communication and
ad hoc networks [38]. At the same time, we recognize that
a number of pertinent issues remain unexplored. Our
future work will span issues such as adding configuration
management support to Prism-MW and automatically
generating an optimized version of the middleware given
a desired set of features (i.e., eliminating the need to store

and check abstract class references even when they are not
used in a given Prism-MW class implementation). Another
alternative we are considering to address this problem is
to parameterize Prism-MW’s variation points instead of
using abstract classes and interfaces. We are not aware of
any comparable attempts at parameterizing middleware to
this extent and consider this to be a very interesting
research challenge.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
detailed and thoughtful reviews. They wish to acknowledge
R. Banwait, N. Beckman, M. Bhachech, V. Jakobac, V.
Kudchadkar, C. Mattmann, A. Rampurwala, E. Sanchez, V.
Viswanathan, and students from USC’s CSCI 578 and 589
courses who contributed to the development of Prism-MW
and various applications on top of it. They thank G.
Sukhatme for the many discussions on the subject of
handheld, mobile, and embedded computing. Finally, they
especially thank B. Boehm and R. Taylor for their generous
support in obtaining the initial equipment used in the
described research. The work described in this paper was
supported by an equipment grant from Intel. This material
is based upon work supported by the US National Science
Foundation under Grant Numbers CCR-9985441 and ITR-
0312780, Jet Propulsion Laboratory, US Army TACOM, and
DARPA under agreement number F30602-00-2-0615.

REFERENCES

[1] G. Abowd, “Programming Environments. . . Literally: Ubicomp’s
Grand Challenge for Software Engineering,” Proc. SIGSOFT Symp.
Foundations of Software Eng., Nov. 2002.

[2] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: Connecting
Software Architecture to Implementation,” Proc. Int’l Conf. Soft-
ware Eng., pp. 187-197, May 2002.

[3] L. Andrade, P. Baldan, H. Baumeister, R. Bruni, A. Corradini, R.
DeNicola, J.L. Fiadeiro, F. Gadducci, S. Gnesi, P. Hoffman, N.
Koch, P. Kosiuczenko, A. Lapadula, D. Latella, A. Lopes, M.
Loreti, M. Massink, F. Mazzanti, U. Montanari, C. Oliveira, R.
Pugliese, A. Tarlecki, M. Wermelinger, M. Wirsing, and A.
Zawlocki, “AGILE: Software Architecture for Mobility,” Proc.
16th Int’l Workshop Algebraic Development Techniques, pp. 1-33, 2003.

[4] C. Mascolo, L. Capra, and W. Emmerich, “Middleware for Mobile
Computing (A Survey),” Advanced Lectures on Networking—Net-
working 2002 Tutorials, pp. 20-58, May 2002.

[5] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, “Design and
Evaluation of a Wide-Area Event Notification Service,” ACM
Trans. Computer Systems, vol. 19, no. 3, pp. 332-383, Aug. 2001.

[6] A. Chan and S. Chuang, “MobiPADS: A Reflective Middleware
for Context-Aware Mobile Computing,” IEEE Trans. Software Eng.,
vol. 29, no. 12, pp. 1072-1085, Dec. 2003.

[7] F. DeRemer and H. Kron, “Programming-in-the-Large versus
Programming-in-the-Small,” IEEE Trans. Software Eng., vol. 2,
no. 2, pp 321-327, June 1976.

[8] W. Emmerich, “Software Engineering and Middleware: A Road-
map,” Proc. Conf. Future of Software Eng., pp. 117-129, 2000.

[9] J.L. Fiadeiro and T. Maibaum, “Categorical Semantics of Parallel
Program Design,” Science of Computer Programming, vol. 28, nos. 2-
3, pp. 111-138, Apr. 1997.

[10] R. Fielding, “Architectural Styles and the Design of Network-
Based Software Architectures,” PhD thesis, Univ. of California,
Irvine, June 2000.

[11] A. Fuggetta, G.P. Picco, and G. Vigna, “Understanding Code
Mobility,” IEEE Trans. Software Eng., vol. 24, no. 5, pp. 342-361,
May 1998.

[12] IONA Orbix/E Datasheet, http://www.iona.com/whitepapers/
orbixe-DS.pdf, 2004.

MALEK ET AL.: A STYLE-AWARE ARCHITECTURAL MIDDLEWARE FOR RESOURCE-CONSTRAINED, DISTRIBUTED SYSTEMS 271

[13] E.A. Lee, “Embedded Software,” Advances in Computers,
E. Zelkowitz, ed., vol. 56, 2002.

[14] LIME, http://lime.sourceforge.net/, 2004.
[15] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-

programming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, Jan. 1973.

[16] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich,
“XMIDDLE: A Data-Sharing Middleware for Mobile Computing,”
Personal and Wireless Comm., vol. 21, no. 1, pp. 77-103, 2002.

[17] N. Medvidovic, N.R. Mehta, M. Mikic-Rakic, “A Family of
Software Architecture Implementation Frameworks,” Proc. Work-
ing IEEE/IFIP Conf. Software Architecture, vol. 224, pp. 221-235,
Aug. 2002.

[18] N. Medvidovic, M. Mikic-Rakic, N.R. Mehta, and S. Malek,
“Software Architectural Support for Handheld Computing,” IEEE
Computer, pp. 66-73, Sept. 2003.

[19] N. Medvidovic, D.S. Rosenblum, and R.N. Taylor, “A Language
and Environment for Architecture-Based Software Development
and Evolution,” Proc. Int’l Conf. Software Eng., pp. 44-53, May 1999.

[20] N. Medvidovic and R.N. Taylor, “A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guages,” IEEE Trans. Software Eng., vol. 26, no. 1, pp. 70-93, Jan.
2000.

[21] N.R. Mehta, N. Medvidovic, and S. Phadke, “Towards a
Taxonomy of Software Connectors,” Proc. Int’l Conf. Software
Eng., pp. 178-187, June 2000.

[22] Microsoft.NET, http://www.microsoft.com/net/, 2004.
[23] M. Mikic-Rakic and N. Medvidovic, “Support for Disconnected

Operation via Architectural Self-Reconfiguration,” Proc. First Int’l
Conf. Autonomic Computing (ICAC-04), pp. 114-121, May 2004.

[24] M. Mikic-Rakic and N. Medvidovic, “Adaptable Architectural
Middleware for Programming-in-the-Small-and-Many,” Proc.
ACM/IFIP/USENIX Int’l Middleware Conf., vol. 2672/2003,
pp. 162-181, June 2003.

[25] M. Mikic-Rakic and N. Medvidovic, “Increasing the Confidence in
Off-the-Shelf Components: A Software Connector-Based Ap-
proach,” Proc. 2001 Symp. Software Reusability (SSR 2001), pp. 11-
18, May 2001.

[26] Object Computing Inc., http://www.theaceorb.com, 2004.
[27] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson,

N. Medvidovic, A. Quilici, D.S. Rosenblum, and A.L. Wolf, “An
Architecture-Based Approach to Self-Adaptive Software,” IEEE
Intelligent Systems, vol. 14, no. 3, pp. 54-62, May 1999.

[28] D. Perry and A.L. Wolf, “Foundations for the Study of Software
Architecture,” ACM SIGSOFT Software Eng. Notes, vol. 17, no. 4,
pp. 40-52, Oct. 1992.

[29] L.L. Peterson and B.S. Davie, Computer Networks. Morgan
Kaufmann, 2000.

[30] Project JXTA, http://www.jxta.org/, 2004.
[31] D. Salomon, Data Compression: The Complete Reference. Springer

Verlag, Dec. 1997.
[32] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik,

“Abstractions for Software Architecture and Tools to Support
Them,” IEEE Trans. Software Eng., vol. 21, no. 4, Apr. 1995.

[33] D. Schmidt, “ACE,” http://www.cs.wustl.edu/schmidt/ACE-
documentation.html, 2004.

[34] D.C. Schmidt, S. Mungee, S. Flores-Gaitan, and A. Gokhale,
“Software Architectures for Reducing Priority Inversion and Non-
Determinism in Real-Time Object Request Brokers,” J. Real-Time
Systems, vol. 21, pp. 77-125, 2001.

[35] D. Schmidt, “TAO,” http://www.cs.wustl.edu/schmidt/
TAO.html, 2004.

[36] J.P. Sousa and D. Garlan, “Aura: An Architectural Framework for
User Mobility in Ubiquitous Computing Environments,” Proc.
Working IEEE/IFIP Conf. Software Architecture, pp. 29-43, Aug. 2002.

[37] Sun Microsystems, JINI(TM) Network Technology, http://
wwws.sun.com/software/jini/, 2004.

[38] V. Sankhla, “SMART: A Small World Based Reputation System for
MANETs,” master’s thesis, Dept. of Electrical Eng., Univ. of
Southern California, Oct. 2004.

[39] C. Szyperski, Component Software—Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1998.

[40] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. Whitehead Jr.,
and J.E. Robbins, “A Component- and Message-Based Architec-
tural Style for GUI Software,” IEEE Trans. Software Eng., vol. 22,
pp. 390-406, June 1996.

[41] Y. Weinsberg and I. Ben-Shaul, “A Programming Model and
System Support for Disconnected-Aware Applications on Re-
source-Constrained Devices,” Proc. Int’l Conf. Software Eng. (ICSE
2002), pp. 374-384, 2002.

[42] S.S. Yau and F. Karim, “Context-Sensitive Middleware for Real-
Time Software in Ubiquitous Computing Environments,” Proc.
Int’l Symp. Object-Oriented Real-Time Distributed Computing, p. 163,
May 2001.

Sam Malek received the MS degree in computer
science from the University of Southern Califor-
nia in 2004 and the BS degree from the
University of California, Irvine, in 2000. Cur-
rently, he is a PhD student in the Computer
Science Department at the University of South-
ern California. His research interests are in the
design, construction, and adaptation of large-
scale distributed software systems. He is a
member of ACM and ACM SIGSOFT.

Marija Mikic-Rakic received the PhD degree in
2004 from the University of Southern California.
She works as a software engineer at Google,
Inc. Her research interests are in the area of
software architectures, with specific focus on
architecture-based software development sup-
port for highly distributed, mobile, and resource
constrained environments. She is a member of
ACM and ACM SIGSOFT.

Nenad Medvidovic received the PhD degree in
1999 from the University of California, Irvine. He
is an associate professor in the Computer
Science Department at the University of South-
ern California. He is a recipient of the US
National Science Foundation CAREER award.
His research interests are in the area of
architecture-based software development. His
work focuses on software architecture modeling
and analysis; middleware facilities for architec-

tural implementation; product-line architectures; architectural styles; and
architecture-level support for software development in distributed,
mobile, resource constrained, and embedded computing environments.
He is a member of the ACM, ACM SIGSOFT, and IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

272 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 3, MARCH 2005

