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Abstract: A sub-domain smoothed Galerkin method is proposed to integrate the advantages of mesh-free 9 

Galerkin method and Finite Element Method (FEM). Arbitrarily shaped sub-domains are predefined in problems 10 

domain with mesh-free nodes. In each sub-domain, based on mesh-free Galerkin weak formulation, the local 11 

discrete equation can be obtained by using the Moving Kriging (MK) interpolation, which is similar to the 12 

discretization of the high-order finite elements. Strain smoothing technique is subsequently applied to the nodal 13 

integration of sub-domain by dividing the sub-domain into several smoothing cells. Moreover, condensation of 14 

degree of freedom can also be introduced into the local discrete equations to improve the computational efficiency. 15 

The global governing equations of present method are obtained based on the scheme of FEM by assembling all 16 

local discrete equations of the sub-domains. The mesh-free properties of Galerkin method are retained in each 17 

sub-domain. Several 2D elastic problems have been solved based on this newly proposed method to validate its 18 

computational performance. These numerical examples proved that the newly proposed sub-domain smoothed 19 

Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high 20 

computational efficiency, good accuracy and convergence.  21 

 22 
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 25 

1. Introduction  26 

For several decades, Finite Element Method (FEM) has become one of the most popular numerical tools in 27 

solving practical problems in aeronautical, mechanical and civil engineering. However, the shape of element in 28 

FEM cannot be distorted too much due to the use of weak formulations that require mapping for the integration [1, 29 

2]. In order to avoid numerical problems related to element distortion encountered in FEM, the development and 30 

application of mesh-free methods has attracted much attention in the recent two decades. The key advantage of 31 

mesh-free method is that only nodal information is required and no element connectivity is needed, which leads to 32 

the versatility of mesh-free method for engineering problems with complex geometry [3, 4].  33 

The Element-Free Galerkin (EFG) method, which is originated by Belytschko et al. [5-8] based on Moving 34 

Least-Squares (MLS) interpolation, is one of the most widely used earlier mesh-free methods. The shape 35 

functions constructed by MLS interpolation, which do not have the property of Kronecker delta function, make it 36 

hard to treat the essential boundary conditions. Therefore, many special techniques have been proposed to impose 37 

essential boundary conditions, such as Lagrange multipliers, singular weighting functions and penalty method [4, 38 

9-11]. However, these methods still need additional efforts to enforce the essential boundary conditions. In order 39 

to fully eliminate the difficulties associated with EFG method for imposing essential boundary conditions, Liu and 40 
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Gu have developed the Point Interpolation Methods (PIM) by using polynomial basis or/and Radial Basis 1 

Function (RBF) [12-15]. Lei Gu has introduced the Moving Kriging (MK) interpolation-based mesh-free method 2 

for solving simple steady-state heat conduction problems [16]. In the PIM and MK interpolation, the shape 3 

functions with the Kronecker delta function property can be obtained, and the essential boundary conditions can 4 

be imposed directly as the FEM. A comparison between the Radial Point Interpolation Method (RPIM) and the 5 

Kriging interpolation is developed by Dai et al. for elastic problems [17]. They concluded that the RPIM 6 

interpolation is similar to the Kriging interpolation theoretically. Moreover, Lam et al. has introduced a Local 7 

Kriging (LoKriging) method for two-dimensional solid mechanics problems [18], and Li et al. has further 8 

developed the LoKriging method to be used in structural dynamics analysis [19]. Moreover, a moving Kriging 9 

interpolation-based element-free Galerkin method is developed by Bui et al. for static analysis, structural dynamic 10 

analysis and free vibration analysis of Kirchhoff plates [20-22].  11 

On the other hand, Gauss integration is commonly used in mesh-free Galerkin methods based on weak 12 

formulation, which increase the computational cost in simulation due to its complexity. Dolbow and Belytschko 13 

illustrated the error of Gauss integration by using the element-free Galerkin method, and developed integration 14 

cells which can reduce quadrature error [23]. Beissel and Belytschko proposed a direct nodal integration method 15 

that can eliminate the background mesh for integration in the element-free Galerkin framework [24]. However, 16 

direct nodal integration is usually numerical instability and of low computational accuracy. Bonet and Krongauz 17 

et al. found that the reason of low computational accuracy is caused by the violation of the integration constrain 18 

(IC) in the Galerkin weak formulations and an integral correction is introduced to improve the accuracy of nodal 19 

integration [25, 26]. Furthermore, Chen et al. introduced a strain smoothing technique into nodal integration for 20 

stabilization, which computes nodal strain by a divergence counterpart of spatial averaging of strain [27-29]. The 21 

nodal integration using strain smoothing technique for mesh-free Galerkin method shows high accuracy and 22 

convergent properties.  23 

For mesh-free methods based on nodal integration, the entire domain is still required to be discretized into cells 24 

based on the field nodes for the purpose of integration, such as Voronioi diagram. Liu et al. proposed a Smoothed 25 

Finite Element Method (S-FEM) by introducing the strain smoothing technique into the standard FEM framework, 26 

in which the cells for integration are divided based on elements [30-32]. The S-FEM of general n-sided polygonal 27 

elements has been formulated, and works particularly well for very heavily distorted mesh of arbitrary shaped 28 

elements [33]. Liu et al. also gave detailed theoretical aspects including stability, bound property and convergence 29 

about S-FEM [31]. Liu et al. extended the S-FEM for large deformation analysis [34]. Nguyen-Xuan et al. extend 30 

the S-FEM for plate problem by coupling with MITC4 element [35]. All these models have a common foundation 31 

of the so-called G space theory and fall into the category of weakened weak (W
2
) formulation [36, 37]. The S-32 

FEM is more efficient than mesh-free Galerkin methods that are based on nodal integration, because the 33 

predefined elements with node connectivity are used for interpolation, integration and assembling the global 34 

system equations in S-FEM. The local discrete equations based on element are one of the reasons to improve the 35 

computational efficiency in mesh-based method [38].  36 

However, as discussed above, the S-FEM is developed based on the standard FEM framework, the elements 37 

with node connectivity is not convenient and flexibility for the adaptive mesh refinement compared with mesh-38 

free method, because no element connectivity is required besides nodal information in discrete process of the 39 

mesh-free method. We note that the sub-domains divided from problem domain by domain decomposition 40 
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methods are usually used for isogeometric analysis [39] and parallel computing [40, 41]. The refinement methods 1 

can be applied to single sub-domain independently with no regard to other sub-domains in isogeometric analysis. 2 

For parallel computing, a complex large problem is also preferred to be solved in smaller sub-domains 3 

independently by exchanging overlap region data or information among conjoint sub-domains. In this paper, the 4 

sub-domains divided from the entire problem domain are used to integrate the advantages of mesh-free Galerkin 5 

method and FEM. The sub-domains are predefined in the problem domain with arbitrary shape as similar as the 6 

discrete process of FEM, but mesh-free nodes are distributed in sub-domains and the domain boundaries. Local 7 

discrete equation obtained by MK interpolation possess the properties of mesh-free method, but the scheme for 8 

assembling global system equations is similar to the FEM with high-order element. Finally, the nodal integration 9 

with strain smoothing technique and condensation technique can also be implemented into present method based 10 

on the sub-domains. Condensation technique is used to reduce the degree of freedom by transferring 11 

displacements of inner nodes to displacements of boundary nodes in system equations, which is usually used in 12 

FEM to improve the computational efficiency of problems with enormous number of degree of freedom [42, 43].  13 

The outline of this paper is as follows. The sub-domains with mesh-free nodes are described in Section 2. In 14 

Section 3, a brief summary of MK interpolation is given. The strain smoothing technique based on sub-domain is 15 

presented in Section 4. In Section 5, we present the elastic static formulations of sub-domain smoothed Galerkin 16 

method by integrating the strain smoothing technique and the condensation technique of degree of freedom. The 17 

Compatibility and Convergence of present method is also discussed in Section 5. In Section 6, some numerical 18 

examples are investigated and discussed to validate the performance of the present method. Finally, some 19 

conclusions are given in Section 7.  20 
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Figure 1. Sub-domains with nodes in problem domain  22 

2. Sub-domains with mesh-free nodes  23 

Considering a 2D problem with the domain of   and the boundary of  , as shown in Figure 1, the problem 24 

domain can be divided into sub-domains as similar as the discrete process in FEM. Then scattered nodes are 25 

distributed in sub-domains and their boundaries. If a sub-domain L  intersects with its adjacent sub-domain 26 

K , they connect each other with the intersection line I L  without overlapping. The intersection line can be of 27 

arbitrary morphology, such as straight, curve, polygonal line. The union of all sub-domains can cover the entire 28 

problem domain of  , which yields  29 
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1

M

L

L

   ，  1,2L M                                                            (1) 1 

and L  is the boundary of sub-domain L , it is combined by  2 

I t uL L L L
                                                                    (2) 3 

where M is the total number of sub-domains in the problem domain. tL  and uL
 

respectively denotes the part of 4 

natural boundary and essential boundary that intersects with sub-domain L . IL  is the intersection line between 5 

neighboring sub-domains. Scattered nodes at boundary L  are referred to as boundary nodes, and nodes in sub-6 

domain L  are referred to as inner nodes, as shown in Figure 1.  7 

In this paper, sub-domain smoothed Galerkin method is formulated based on mesh-free Galerkin method and 8 

implemented with the scheme of FEM. The essence of present method is as follows. (1) The local discrete 9 

formulation based on mesh-free Galerkin weak form is established over each sub-domain by using MK 10 

interpolation, in which nodes within the sub-domain are used for approximation. Then, local search of 11 

neighboring nodes for interpolation is implemented in each sub-domain. (2) Integration is performed on the basis 12 

of sub-domains. Each sub-domain may be further subdivided into several smoothing cells (SC). Then, a strain 13 

smoothing operation is performed for integration of each smoothing cell within the sub-domain. (3) Local discrete 14 

formulation based on sub-domains can be simplified by the condensation of degree of freedom, which transfers 15 

equations of inner nodes to equations of boundary nodes. The formulations of sub-domain smoothed Galerkin 16 

method are detailed in following sections.  17 

3. Moving kriging interpolation  18 

Considering a sub-domain L , which is the neighborhood of point x, is located in the problem domain  . 19 

MK interpolation for approximation of field variable u can be defined as [16]  20 

=1

( ) [ ( ) ( ) ] ( )
n

h

I I

I

u u   T T
x p x A r x B u x                                               (3) 21 

where n  is the total number of nodes for interpolation. ( )
I

 x  is the MK shape functions and is defined as  22 

1 1

( ) ( ) ( )
m n

I j jI k kI

j k

p A r B
 

   x x x                                                      (4) 23 

in which jIA  is the (j, I) element of matrix A, and kI
B  is the (k, I) element of matrix B. Matrixes A and B can be 24 

written as the following  25 

T 1 1 T 1( )  A P R P P R                                                             (5a) 26 

1( ) B R I PA                                                                 (5b) 27 

where I is a unit matrix. P is an nm matrix and represents the collected values of vector ( )p x  at the neighboring 28 

interpolated nodes of x. Vector ( )p x  is the polynomial with m basis functions  29 

 T

1 2( ) ( )  ( )    ( )mp p pp x x x x                                                   (6) 30 
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The quadratic basis functions 
2 2 T( ) [1     ]x y x y xyp x  are used for numerical computations in this work. And 1 

vector ( )r x  in Equation (3) is  2 

 T

1 2( ) ( , )  ( , )    ( , )nR R Rr x x x x x x x                                             (7) 3 

where ( , )
i

R x x  is the correlation function between the neighboring nodes xi and x, it belongs to the covariance 4 

of field value u(x). The correlation matrix R with size nn is given by  5 

1 2 1

2 1 2

1 2

1 ( , ) ... ( , )

( , ) 1 ... ( , )
[ ( , )]

... ... ... ...

( , ) ( , ) ... 1

n

n

i j

n n

R R

R R
R

R R

 
 
 
 
 
 

x x x x

x x x x
R x x

x x x x

                                        (8) 6 

Many different correlation functions can be used for R. In this paper, a Gaussian function is used  7 

2

( , ) ijr

i j
R e

x x                                                                    (9) 8 

in which 
ij i jr  x x ,  >0 is a correlation parameter. As studied in the previous work [16-19], the correlation 9 

parameter has a significant effect on the solution. In this work, 10.0   is employed.  10 

The partial derivatives of ( )
I

 x  against ix  can be obtained as following  11 

, , ,

1 1

( ) ( ) ( )
m n

I i j i jI k i kI

j k

p A r B
 

   x x x                                            (10) 12 

where the index following a comma is a spatial derivative.  13 

The accuracy of mesh-free methods depends on the number of nodes for interpolation. In the previous works by 14 

authors [5-8], the number of nodes for interpolation is determined in the entire problem domain by global 15 

searching of influence domain with a specified radius. The number of interpolated nodes may vary with the 16 

change of interest point x. In this paper, the number of nodes for interpolation is not a variable. It is only 17 

determined by the n nearest neighboring nodes of x in the same sub-domain L  with local searching. Thus, 18 

considerable CPU time can be reduced since the neighbor searching is localized in each sub-domain instead of the 19 

entire problem domain. On the other hand, in order to ensure the nodes for interpolation are sufficient in every 20 

sub-domain, the total number of nodes in each sub-domain and its boundary should be no less than the number of 21 

nodes for interpolation. It means that the number of sub-domains is restricted by the number of interpolation 22 

nodes, when the total number of nodes is not changed in the entire problem domain.  23 

4. Strain smoothing technique  24 

For 2D problems, as shown in Figure 2, a sub-domain L  with boundary L  is divided into a number of 25 

smoothing cells. The smoothing cells are constructed by linking the center of sub-domain L  with the midpoint 26 

of the lines of boundary L . If more smoothing cells are needed to be divided from the sub-domain L , 27 

smoothing cells can be further constructed by linking the center of smoothing cell 
k

L  with the midpoint of the 28 
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segments of boundary 
k

L , in which 
k

L  is the boundary of smoothing cell 
k

L .  1 

 2 

Figure 2. Smoothing cells of sub-domain L   3 

A strain smoothing operation proposed by Chen et al. [27] is performed for sub-domain 
L

  by  4 

     Ψ ;  d
L

h k h k

ij L ij Lε ε


  x x x x x                                                  (11) 5 

where 
h

ijε~  is the strain obtained from displacement by  6 

  2~
,,

h

ij

h

ji

h

ij uuε                                                                   (12) 7 

and   is a smoothing function. For simplicity, a piecewise constant function is applied  8 

  1
Ψ ;

0

k k

k L L

L k

L

A 
  



x
x x x

x
                                                    (13) 9 

where  
k
L

k

LA d  is the area of smoothing cell 
k

L  within the sub-domain L .  10 

Substituting Equations (12) and (13) into Equation (11) and applying the divergence theorem, the following 11 

equation is obtained  12 

   

 

1 Ψ ; d
2

1
d

2

1
d

2

L

k
L

k
L

hh
jh k ki

ij L L

j i

hh
ji

k

L j i

h h

i j j ik

L

uuε
x x

uu

A x x

u n u n
A







 
       

 
      

  







x x x x

                                        (14) 13 

It should be noted that the choice of constant function of   makes vanishing of area integration in smoothing cell 14 

k

L , and only line integration along the boundary 
k

L  of smoothing cell 
k

L  is needed in Equation (14).  15 
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boundary k
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L

  
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L
  
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Substituting Equation (3) into Equation (14)，which yields  1 

   
1

n
h k k

L I L I

I

 ε x B x u Bu                                                           (15) 2 

where IB  is smoothing strain matrix. For 2D problems  3 

T

11 22 122h h h hε ε ε   ε                                                                (16) 4 

 T

1 2I I I
u uu                                                                       (17) 5 

 
1

2

2 1

( ) 0

0 ( )

( ) ( )

k

I L

k k

I L I L

k k

I L I L

b

b

b b

 
 

  
 
  

x

B x x

x x

                                                         (18) 6 

     1
d

k
L

k

Ii L I ik

L

b n
A 

  x x x                                                       (19) 7 

In order to ensure the accuracy and convergence of introducing smoothing strain technique into mesh-free 8 

Galerkin formulation with nodal integration, integration constraints need to be satisfied, which has been discussed 9 

detailed in reference [27].  10 

For the evaluation of components ( )k

Ii L
b x  in ( )k

I LB x  by using Equation (19), a boundary integration of 11 

smoothing cell is needed. If one Gaussian point is used for line integration along each segment of boundary 
k

L , 12 

Equation (19) can be transformed to its algebraic form  13 

 
1

1
( ) ( ) 

CN
k km km km

Ii L I L i L Lk
mL

b n l
A 

 x x x                                                        (20) 14 

where 
km

Lx  is the midpoint (integration point) of segment of boundary 
k

L , whose length and outward unit normal 15 

are denoted as 
km

Ll  and ( )km

i Ln x , respectively. C
N  is the number of segment of boundary 

k

L .  16 

5. Sub-domain smoothed Galerkin method  17 

5.1 Basic formulations  18 

Considering a  2D problem with domain   and boundary  , its equilibrium equations can be  given as  19 

, 0ij j ib                                                                              (21) 20 

where ij
  is stress tensor, ib  is body force. The boundary conditions are given as follows  21 

i i i
n t    on t

                                                                 (22a) 22 

i i
u u   on u                                                                  (22b) 23 
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where iu  and it  are prescribed displacement and traction on essential boundary u  and natural boundary t
 , 1 

respectively. jn  is the outward unit normal to boundary  .  2 

Equilibrium equations and boundary conditions in Equations (21) and (22) should be satisfied in every sub-3 

domain. For the Lth sub-domain ( 1,2, , )L L M  , the local variational weak formulation of equilibrium 4 

equation can be obtained as  5 

t

d d d 0
L L L

ij ijkl kl i i i iD u b u t   
  

                                          (23) 6 

where ijklD  is the matrix of material constants. Because MK interpolation ensures the Kronecker delta property of 7 

shape functions [16], the essential boundary conditions do not need to enforce by Lagrange multipliers or penalty 8 

method in Equation (23).  9 

The local discrete equations can be obtained by substituting approximations of 
hu and 

hε  into weak form (23), 10 

which yields  11 

L L LK u f                                                                                  (24) 12 

where 
LK , 

Lu and 
Lf are stiffness matrix, nodal displacement and force vector of sub-domain L , separately, 13 

and are given by using nodal integration  14 

   

   

T

T

1

T

1

d

d

L

S

k
L

S

L

IJ I J

N
k k

I L J L

k

N
k k k

I L J L L

k

A








 

 









K B DB

B x DB x

B x DB x

                                              (25a) 15 

       T T

1 1

S SNb N

L n n n k k k

I I L L L I L L L

n k

s A
 

  f Φ x t x Φ x b x                                  (25b) 16 

where NS is the total number of smoothing cells in sub-domain L . NbS is the total number of segment on the 17 

natural boundary tL , which is produced by the smoothing cells in sub-domain L . 
n

Ls  is the weight associated 18 

with the specific segment on the natural boundary tL , which can be computed by the length of segments. D is 19 

the matrix of material constants.  20 

Equation (24) presents linear local discrete equations for the sub-domain L . Using Equation (24) for all M 21 

sub-domains in the entire problem domain, global system equations can be obtained by assembling all local 22 

discrete equations  23 

2 2 2 1 2 1t t t tn n n n  K u f                                                                 (26) 24 

where tn  is the total number of nodes in the entire problem domain.  25 

It should be noted that the assembling of global system equations based on sub-domains is the same with the 26 

scheme of FEM, the system stiffness matrix in the present method is symmetric and banded if the nodes are 27 

numbered properly by sorting sub-domains and coordinate direction. Then, as similarly discussed in FEM [1], the 28 

bandwidth of the global stiffness matrix should depend on the number of nodes in each sub-domain and the 29 
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difference of nodal number of nodes assigned to the sub-domains. The sub-domain that has the biggest difference 1 

of nodal number controls the bandwidth of the global stiffness matrix. The bandwidth can be changed even for the 2 

same model by changing the nodal number of the mesh-free nodes in sub-domains. It should be an interesting 3 

work in the future to improve the computational efficiency of present method by minimizing the bandwidth after 4 

meshing the problem domain with sub-domain and corresponding mesh-free nodes.  5 

5.2 Condensation of degree of freedom  6 

In order to improve the computational efficiency of present method, condensation technique of degree of 7 

freedom can be introduced to the local discrete equations (24). Discrete equations only involve expression of 8 

boundary nodes of sub-domains by transferring equations of inner nodes to equations of boundary nodes.  9 

Suppose P boundary nodes and Q inner nodes are included in the sub-domain L , local discrete equations (24) 10 

are numbered by sorting degree of freedom of boundary nodes and inner nodes, which yields  11 

conn conn

inn inn

P PPP PQ

QP QQ Q Q

    
    

        

q fK K

K K q f
                                                       (27) 12 

where  13 

 conn

1 2 ...
P P

u u uq                                                         (28a) 14 

inn

1 2 ...Q P P P Qu u u     q                                                    (28b) 15 

Using the second formulation of Equation (27), displacements of inner nodes can be expressed as  16 

inn 1 inn conn[ ]
Q QQ Q QP P

 q K f K q                                                           (29) 17 

Substituting Equation (29) into the first formulation of Equation (27), local discrete equations of sub-domain L  18 

are given by  19 

R conn R

P K q f                                                                        (30) 20 

where  21 

R 1

PP PQ QQ QP

 K K K K K                                                          (31) 22 

R conn 1 inn

P PQ QQ Q

 f f K K f                                                            (32) 23 

Using Equation (30) for all M sub-domains in the entire problem domain, global system equations with 24 

condensation of degree of freedom can be obtained by assembling all local discrete equations  25 

2 2 2 1 2 1b b b bn n n n  K u f                                                               (33) 26 

where bn  is the total number of boundary nodes of sub-domains in the entire problem domain.  27 

5.3 Compatibility and Convergence  28 

In the sub-domain smoothed Galerkin method, compatibility of displacements must be satisfied at the 29 

intersection line of adjacent sub-domains in 2D problems. If criterion of compatibility is satisfied, compatibility 30 

will be obtained in present method. In addition, if the criterion of completeness is also satisfied as compatibility is 31 

obtained, the computational convergence will be assured. Criterions of compatibility and completeness are 32 

described as follows, which are already proved in FEM.  33 
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Criterion of compatibility: In the equations of variational weak form, the highest order derivative of 1 

displacement function is m. Continuity, up to m-1 order derivative of displacement function, must be satisfied at 2 

the intersection line.  3 

Criterion of completeness: In the equations of variational weak form, the highest order derivative of 4 

displacement function is m. Complete polynomial of m order must be included in the approximation functions of 5 

displacement.  6 

For 2D elastic problems, the highest order derivative of displacement function in the weak form (23) is 1. In 7 

MK interpolation, adding complete polynomial of quadratic order can ensure reproduction of linear field. Then 8 

compatibility and completeness of present method will be satisfied. If continuity of higher derivatives are required 9 

in the problems of plate or shell, complete polynomial of higher order will ensures the compatibility and 10 

convergence of present method.  11 

5.4 Procedure of sub-domain smoothed Galerkin method  12 

The numerical procedure for present method is given as Table 1.  13 

Table 1. Procedure of sub-domain smoothed Galerkin method  14 

1. Loop over sub-domains L  of problem domain  .  

2. Loop over smoothing cells 
k

L  in sub-domain L , compute the area 
k

LA  of the smoothing cell 
k

L .  

3. Loop over midpoint (Gaussian point) 
km

Lx  of segment of boundary 
k

L .  

a. Check all nodes in sub-domain L  to determine the n nearest neighboring nodes of point 
km

Lx .  

b. Compute ( )( 1,2, , )km

I L I n x ,  km

Lin x  and 
km

Ll  at point 
km

Lx .  

4. Compute the matrix ( )k

I LB x  by using Equations (20) and (18).  

5. End midpoint of segment loop. 

6. Evaluate local discrete equations (24) or (30) of sub-domain L
  for sub-domain smoothed Galerkin method without or with 

condensation of degree of freedom.  

7. End smoothing cells loop. 

8. Assemble local discrete equations of sub-domain L  to obtain global system equations.  

9. End sub-domains loop.  

10. Implement essential boundary conditions.  

11. Solve the global system equations to obtain the nodal displacements.  

12. Evaluate strains and stresses at interested nodes.  

6. Numerical examples  15 

Numerical examples of 2D elastic problems are presented to analyze the performance of the proposed sub-16 

domain smoothed Galerkin method without or with condensation of degree of freedom. All simulations are 17 

performed on a computer with an Intel(R) Core (TM) i3-2100 CPU Processor (3.10 GHz, 3.49GB) in 18 

WINDOWSXP (32-Bit Edition) operating system. The computational cost in this paper is the CPU time in all the 19 

following analysis of computational efficiency.  20 

6.1 Cantilever beam  21 

A cantilever beam loaded by a tangential traction on the free end, as shown in Figure 3, is now discussed. The 22 
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problem has been solved for plane stress with 
73.0 10E   , 0.3  , 48.0L  , 12.0h   and 1000F   . 1 

Numerical results of present method are compared with analytical solutions that are given by Timoshenko and 2 

Goodier [44]  3 

     2

3
6 3 2 2

6 2
x

F h
u y L x x y hy

Eh
             

                                       (34a) 4 

  2 2 2 2 2

3
3 ( 2 0.5 ) 3 0.25(4 5 ) ( / 3)3

6
y

F
u y hy h L x x h x L x x

Eh
                                    (34b) 5 

For error analysis and convergence studies, error norms of displacement and energy are defined as following  6 

   
1

Num Exact Num Exact 21/ 2 D d
u

e


      u u u u                                             (35) 7 

   
1

Num Exact Num Exact 21/ 2 D d
e

e


      ε ε ε ε                                             (36) 8 

where 
Numu  and 

Numε  are the displacement and strain obtained by sub-domain smoothed Galerkin method, 
Exactu  9 

and 
Exactε  are those of analytical solutions.  10 

 11 

Figure 3. Cantilever beam  12 

   13 

   14 

(a) Distributed nodes without condensation  15 

   16 

   17 

(b) Distributed nodes with condensation  18 

Figure 4. Distributed sub-domains and nodes of cantilever beam  19 

For analysis of computational accuracy and efficiency influenced by the present method, 27(93), 85(175), 20 

175(257), 451(4111), 637(4913), 1105(6517) uniformly distributed nodes and 256, 1024, 2304, 6400, 9216, 21 

L 

x 

y 

F h 
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16384 quadrilateral smoothing cells are separately used in the entire problem domain, as shown in Figure 4(a), 1 

corresponding to 128, 128, 288, 800, 1152 and 2048 smoothing cells are used in each sub-domain. The number of 2 

nodes n=11 is used for MK interpolation based on sub-domains. Figure 4(b) shows the boundary nodes of sub-3 

domains in the cantilever beam. Error norms of displacement and energy with respect to the CPU time are plotted 4 

in Figure 5. The computational performances are compared among FEM with linear triangular elements, EFG 5 

method with MK interpolation [16] and present method with condensation, where the number of degree of 6 

freedom of FEM is 170, 1274, 3402, 8514, 10730 and 22154 and the distributed nodes of EFG method with MK 7 

interpolation are 27(93), 85(175), 175(257), 297(339), 451(4111) and 637(4913). It can be found that the 8 

present method can use less CPU time than the linear FEM and the method in reference [16] to achieve the same 9 

level of accuracy. On the other hand, when using the same CPU time, the present method achieves a better 10 

accuracy than the linear FEM and the method in reference [16].  11 
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(a) Error norms of displacement                                       (b) Error norms of energy  13 

Figure 5. Error norms with respect to CPU time obtained by different methods  14 

 15 

Table 2. The CPU time of present method with different number of nodes (Unit: s)  16 

Number of nodes 27 85 175 451 637 1105 

Without condensation 0.1774 0.7409 1.8491 7.3318 11.471 41.585 

With condensation 0.1665 0.7281 1.7961 6.7672 10.797 38.674  

 17 
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 18 

(a) Error norms of displacement                                           (b) Error norms of energy  19 

Figure 6. Convergence of error norms of displacement and energy  20 
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Table 2 shows the computational cost of present method with and without condensation under the different 1 

number of distributed nodes in Figure 4. It can be seen that the present method with condensation of degree of 2 

freedom can improve the computational efficiency by transferring equations of inner nodes to equations of 3 

boundary nodes.  4 

For convergence analysis of sub-domain smoothed Galerkin method, 1, 2, 4 and 8 uniform sub-domains 5 

corresponding to 40, 175, 451 and 1105 nodes are used in the entire problem domain, separately. Figures 6 shows 6 

the error norms of displacement and energy with respect to the number of sub-domains. It can be seen that good 7 

convergence can be obtained in present method with condensation of degree of freedom.  8 

6.2 Infinite plate with a hole  9 

The problem of infinite plate with a hole subject to a unidirectional tensile load of 1.0 N/m at infinity in the x 10 

direction, as shown in Figure 7, is studied for the analysis of the dependence of computational accuracy on the 11 

number of smoothing cells. The problem has been solved for plane strain with E=1.010
3
 N/m

2
, v=0.3, a=1.0m 12 

and S=5.0m. Due to the symmetry, only the upper right quadrant of the plate is modeled, and symmetry conditions 13 

are imposed on the left and bottom edges. The analytical solution for the infinite plate is [4]  14 

2 4

11 2 4

2 4

22 2 4

2 4

12 2 4

3 3
1 cos 2 cos 4 cos 4

2 2

1 3
cos 2 cos 4 cos 4

2 2

1 3
sin 2 sin 4 sin 4

2 2

a a

r r

a a

r r

a a

r r

   

   

   

     
 

     
 

     
 

                                              (37) 15 

where  ,r  are the polar coordinates and  is measured counterclockwise from the positive x-axis. Traction 16 

boundary conditions are imposed on the edges of x=5m and y=5m based on the analytical solution of Equation 17 

(37). The displacement components corresponding to the stresses are  18 

3

1 3

3

2 3

( 1)cos 2 ((1 )cos cos3 ) 2 cos3
8

( 1)sin 2 ((1 )sin sin 3 ) 2 sin 3
8

a r a a
u

a r r

a r a a
u

a r r

     


     


 
      

 
 

      
 

                           (38) 19 

where  is defined in terms of Poisson’s ratio v by 3 4v    for plane strain cases.  20 

  21 

Figure 7. Infinite plate with a hole  22 
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       1 

(a) 1 sub-domain                                                                  (b) 4 sub-domains  2 

       3 

(c) 8 sub-domains                                                               (d) 16 sub-domains  4 

Figure 8. Distributed sub-domains and nodes of infinite plate with a hole  5 
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 6 

(a) Error norms of displacement                                               (b) Error norms of energy  7 

Figure 9. Error norms with respect to CPU time obtained by different sub-domains  8 

In the entire problem domain, as shown in Figure 8, 441 distributed nodes are used. And 1, 4, 8, 16 sub-9 

domains corresponding to 400, 1600, 3200 and 6400 quadrilateral smoothing cells are divided, separately. Figure 10 

9 provides the error norms of displacement and energy with respect to the CPU time. Table 3 shows the 11 

computational costs of present method with different number of sub-domains and smoothing cells. It is observed 12 

that the more sub-domains in problems domain, the higher computational efficiency can be obtained in this case, 13 

and the present method with condensation can also improve the computational efficiency compared with those 14 

cases of without condensation. On the other hand, increasing the number of smoothing cells can improve the 15 

computational accuracy of present method, but error norms will tend to be saturated when the number of 16 

smoothing cells reaches a threshold. However, if the more number of smoothing cells for integration are used, it 17 

will consume more CPU time. Therefore, a proper number of smoothing cells is needed to balance the accuracy 18 

and efficiency of simulation. It should be further studied to understand the relationship between smoothing cells of 19 
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nodal integration and accuracy of results.  1 

Table 3. The CPU time influenced by the number of sub-domains and smoothing cells (Unit: s)  2 

 

Number of sub-domains 

Number of smoothing cells 

400 1600 3200 6400 

1 sub-domain Without condensation 6.591 24.473 48.793 96.531 

With condensation 6.132 23.901 46.889 93.803 

4 sub-domains Without condensation 0.830 2.386 4.452 8.577 

With condensation 0.571 1.882 4.168 8.134 

8 sub-domains Without condensation 0.532 1.529 2.837 5.714 

With condensation 0.410 1.380 2.706 5.274 

16 sub-domains Without condensation 0.421 1.172 2.322 4.234 

With condensation 0.334 1.105 2.179 4.160 

6.3 Stress distribution in a dam  3 

The stress analysis of a dam subjected to hydrostatic pressure on both sides of the dam, as shown in Figure 10, 4 

is studied for analysis of computational accuracy influenced by irregularly distributed sub-domains and nodes. The 5 

problems is solved for the plane strain case with E=30Gpa and v=0.15. In the dam studied, 8 irregularly 6 

distributed sub-domains with 521 distributed nodes are used for simulation, as shown in Figure 11. For nodal 7 

integration, 1120 smoothing cells are used in the entire problem domain. Numerical results of present method are 8 

compared with solutions from commercial FEM program (ANSYS), EFG method [5], RPIM method [4] and the 9 

method of reference [16]. For the purpose of comparison, the number of nodes are the same in all aforementioned 10 

methods. 1620 Gauss integration points are used for integration in EFG method, RPIM method and the method of 11 

reference [16], respectively, while 2238 midpoints (integration points) of segment of boundary 
k

L  are used in 12 

present method. The CPU time of present method with more integration points are used to investigate the 13 

computational efficiency compared with other methods.  14 
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Figure 10. Water dam subjected to hydrostatic pressure  16 
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                  1 

(a) Distributed nodes without condensation                 (b) Distributed nodes with condensation  2 

Figure 11. Irregularly distributed sub-domains and nodes of dam  3 
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 4 

Figure 12. Displacements x
u  at x=0  5 

The displacements at x=0 are plotted in Figure 12. The results obtained by the present method with irregularly 6 

distributed sub-domains and nodes are in good agreement with those obtained by ANSYS, EFG method, RPIM 7 

method and the method of reference [16]. The distribution of stress in the dam obtained by different methods are 8 

provided in Figure 13. It can be seen that the present method with condensation of degree of freedom can also 9 

obtain good accuracy of stress distribution compare with aforementioned commonly used numerical methods. It 10 

validates that the present method works particularly well for very irregular sub-domains.  11 
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(a) ANSYS                         (b) EFG method [5]                    (c) RPIM method [4]  13 
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(d) Reference [16]                     (e) Present method with condensation  15 

Figure 13. Distribution of stress xx  obtained by different methods (Unit: MPa)  16 

Figure 14 shows the CPU time of EFG method, RPIM method, method of reference [16] and the present 17 
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method with condensation of degree of freedom. It can be seen that the present method with 8 sub-domains has 1 

significantly improved the computational efficiency for about 16 times compared with EFG method, even though 2 

more integration points are used in present method.  3 

  4 

Figure 14. The CPU time of different methods (Unit: s)  5 

7. Conclusions  6 

In this paper, a sub-domain smoothed Galerkin method is proposed for 2D solid mechanics problems by 7 

integrating the properties of FEM and mesh-free Galerkin method, which is implemented based on the sub-8 

domains with mesh-free nodes. The advantages of mesh-free methods are still kept in every sub-domain based on 9 

MK interpolation. Nodal integration with strain smoothing is used to simplify the calculation of sub-domains 10 

based on smoothing cells, which does not need to evaluate the mapping of integration with coordinate 11 

transformation and works particularly well for very irregular sub-domains. The local discrete equations of sub-12 

domains are established with local search of neighbor nodes to improve the computational efficiency of MK 13 

interpolation. The global system equations are assembled with the scheme of FEM based on sub-domains.  14 

It can be concluded from the performance of the present method in numerical examples that the sub-domain 15 

smoothed Galerkin method proposed in this paper provides an efficient and powerful tool for computational 16 

mechanics. We note without celebration that the present method is also beneficial to adaptive refinement of nodes, 17 

crack propagation problems, parallel computations of large systems, 3D solid mechanics problems and etc., which 18 

should be interesting works in the future.  19 
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