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Abstract

We study the synthesis problem of an LQR controller when the matrix describing the control law is

constrained to lie in a particular vector space. Our motivation is the use of such control laws to stabilize

networks of autonomous agents in a decentralized fashion; with the information flow being dictated by

the constraints of a pre-specified topology. In this paper, we consider the finite-horizon version of the

problem and provide both a computationally intensive optimal solution and a sub-optimal solution that

is computationally more tractable. Then we apply the technique to the decentralized vehicle formation

control problem and show that the loss in performance due to the use of the sub-optimal solution is not

huge; however the topology can have a large effect on performance.

I. INTRODUCTION AND MOTIVATION

Control of dynamic agents coupled to each other through an information flow network has

emerged as a topic of major interest in recent years. Such a setting can be used to model many

real-life situations, such as air traffic control, satellite clusters, swarms of robots, UAV formations,

and potentially such applications as the Internet. Compared with the more traditional applications

of control theory, there are fundamentally new features introduced in this problem. The topology

of the information network can have many effects. On one hand, it might introduce instability

if the information being fed through the network adds on constructively to the disturbance at

a node; on the other, intuitively, it should serve as a means for better noise rejection for the

network as a whole.
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As a result of the above-mentioned properties, this problem has been garnering increasing

attention. Fax and Murray [13], [14] obtained a Nyquist-like condition for stability of a for-

mation using the individual plant transfer function and the Laplacian of the graph generated

by the topology of the information flow network. Chaves et al. [6] considered the case of

achieving a regular formation in vehicle networks for a milieu in which information is being

lost stochastically. Jadbabaie et al. [20] considered the coordination of a group of autonomous

agents when the graph topology changes over time and presented stability results for the case

when the switching rule satisfies certain properties. These results were expanded by Ren and

Beard [27]. Gupta et al. [17] and Olfati-Saber and Murray [29] presented a general framework for

decentralized analysis of stability of interconnected systems where the topology might potentially

be time-varying.

However, most of the work so far has centered on stability analysis of the formation assuming

certain control laws in place. A more general question is that of synthesis of the control law to be

used by the agents in such a formation, such that some cost function is optimized. The defining

feature of the problem is that while the cost function can involve all the individual agents in the

formation; the pre-specified topology of the formation imposes constraints on the form of the

control law by limiting the information available to various agents at any time. Thus, it is not

realistic to assume that an agent would know the state of all the other agents in the formation

at any given time and be able to use it to calculate the control input. These features make the

problem a decentralized control problem with arbitrary information flow patterns, which is, in

general, much harder to solve than the traditional optimal control problem.

Research in decentralized control has a long history. Witsenhausen [34], [35] showed that

under the decentralized information constraints, a linear controller might not be optimal and

also that the cost function need not be convex in the controller variables. A discrete equivalent

of Witsenhausen’s counter-example was given in [26] where it was also shown that the problem

of finding a stabilizing controller under the information pattern constraints is NP-complete. For

particular information structures, the problem has been solved, e.g., see [12]. Some researchers

have also studied this problem under the assumption of spatial invariance by using a multidimen-

sional approach (e.g., see [2], [8]). Rotkowitz et al. [28] gave certain invariance conditions under

which the problem retains the convex character. A different approach for solving the problem was
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inspired by the design of reduced-order controllers (e.g. [25]) and yielded numerical algorithms

for solving the optimal linear control with arbitrary number of free parameters for the infinite

horizon case as in [30], [33]. In [18], Gupta et al. explored this algorithm for the case of vehicle

formations and in particular proved that in this case, it was always possible to choose a feasible

initial point. A similar algorithm can be applied to the finite horizon problem, as described by

Anderson and Moore [1], but the computational difficulties were pointed out in [22]. The vehicle

formation problem was also considered in [10] where the H2 synthesis problem was posed as an

optimization problem and a sub-optimal solution presented. Bemporad et al [3] considered the

constrainted LQR problem and came up with a numerical algorithm for the optimal piecewise

affine controller. The algorithm was extended to the case of infinite-time horizon by Grieder et

al [16]. A convex approach towards synthesizing control laws for solving distributed averaging

problems was given in [36]. Receding horizon control for the problem was explored by Dunbar

and Murray [11] and also by Franco et al. [15]. A good survey of the attempts to solve the

related fixed order and the static output feedback problems can be found in [31], [5], [9] and

the references therein.

In this paper, we set up the LQR problem for the control of a network of autonomous agents

with a given information flow topology. Even if the dynamics of the agents are not coupled and

the only coupling present is due to the cost function, the optimal control law, in general, requires

every agent to use knowledge about every other agent. We impose the constraint of a linear

control law that satisfies a pre-specified topology in that any agent uses only the information

about a prespecified set of agents with which it can communicate. We solve for the optimal

control law for a finite time horizon under these constraints. We see that computation of the

optimal control is computationally prohibitive and provide a sub-optimal solution instead which

is computationally tractable. This algorithm is the chief contribution of this paper.

The outline of the paper is as follows. We address a few mathematical preliminaries in the

next section. Then we set up and solve the constrained controller synthesis problem. We see

that calculating the optimal solution is computationally intensive and hence propose a simpler

sub-optimal solution. Then we present examples to illustrate the concepts and the algorithm. We

see that the loss in performance by choosing the sub-optimal algorithm is not huge. We end

with conclusions and present some avenues for further work.
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II. MATHEMATICAL PRELIMINARIES AND NOTATIONS

By a network of interconnected dynamic agents, we mean a system of agents whose dynamics

are not coupled but in which every agent can use the information from a prescribed set of other

agents (called its out-neighbors) for calculating its control input. The flow of information is

thus described by identifying the set of out-neighbors for each agent and is referred to as the

information flow topology. Consider a network of n agents. Together with the information flow

topology, the network can be represented by a graph in which the agents are vertices and allowed

communication links are edges. We refer to the agents variously as vertices, nodes or vehicles

and the network as a graph or a formation.

Consider a graph with n nodes, the vertex set V = {vi}ni=1 and edge set E(G). The adjacency

matrix (see, e.g., [4] for more details) denoted by A is a square matrix of size n × n, defined

as follows

Aij =











1 vivj ε E(G)

0 otherwise.

If we denote the out-degree of node vi by Oi, then the degree matrix denoted by D is defined

to be a square matrix of size n× n, such that

Dij =











Oi i = j

0 otherwise.

We define the Laplacian of a graph by the following equation

L = D − A.

We denote the expectation of a random variable X by E[X]. The covariance matrix of a

random variable X with zero mean is defined by E [XX′]. It is always a positive semi-definite

matrix.

The trace of a square matrix X , denoted by trace(X), is defined as the sum of its diagonal

elements. It is known that the trace is also the sum of the eigenvalues of X . The trace operator

satisfies the following properties (assume X , Y and Z to be compatible matrices; v is a column

vector).

1) trace(X + Y ) = trace(X) + trace(Y ).

2) trace(XY Z) = trace(ZXY ).
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3) E[v′Wv] = E[trace(Wvv′)].

In the last equation if W is a constant matrix, the right hand side can be further rewritten as

trace(WE[vv′]).

We denote the transpose of a matrix X by X ′ or XT . For two matrices A and B, we write

A > B if A−B is a positive definite matrix. For a matrix m×n matrix X = [xij], the operation

vec(X) results in a mn× 1 column vector with elements

vec(X) =

































x11

x21

...

xm1

x12

...

xmn

































.

The operation A⊗B denotes the Kronecker product (also called the direct product) between two

matrices A and B (see [24] for details). It can be shown that for suitably dimensioned matrices

A, X and B,

vec(AXB) = (B ′ ⊗ A) vec(X). (1)

III. PROBLEM FORMULATION

Consider a formation of n agents, in which the i-th agent evolves according to the equation

xik+1 = Φxik + Γuik + wik,

where the control law uik is given by

uik = F i,1
k xik +

∑

all out-neighbors j

F ij,2
k

(

xik − xjk

)

.

Assume that the noise wi
k is zero-mean, Gaussian and white. On stacking the state xi of all the

agents, we can obtain the system state vector x, whose evolution is described by

xk+1 = (I ⊗ Φ)xk + (I ⊗ Γ)uk + wk (2)

uk = (diag(F i,1
k ) + Lgen,k)xk,
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where I is identity matrix of suitable dimensions and diag(F i,1
k ) is a block diagonal matrix

with F i,1
k ’s along the diagonal and zero matrices elsewhere. The vectors uk and wk are obtained

by stacking the control laws and the noises for the individual agents, respectively. Lgen,k is a

generalization of the Laplacian matrix of the graph and is formed as follows. Create the adjacency

matrix A for the network. Then replace each unity element that is at the (i, j)-th place by −F ij,2
k .

Replace the diagonal element in the i-th row by a matrix which is the sum of the matrices F i1,1
k ,

F i2,1
k , · · · , F i(i−1)

k , F i(i+1)
k , · · · , F in,1

k . Rest of the zero elements are replaced by zero matrices

of appropriate dimensions. Note that the topological constraints on the form of control law are

inherent in the structure of Lgen,k.

We make the following assumptions before proceeding further:

1) The topology of the network is fixed and given.

2) Moreover the topology is known by all the agents. If that is not the case, we might need

to run a broadcast algorithm to exchange the topology information among the nodes.

3) The communication links are ideal when they exist.

4) Finally, for simplicity, we assume that the full state of the agents is observed and trans-

mitted. The generalization to output feedback is easily done.

Note that if all the vehicles are not identical, equations similar to (2) can easily be obtained. The

matrices I ⊗ Φ and I ⊗ Γ will be replaced by block diagonal matrices diag(Φi) and diag(Γi),

but other details remain similar. We begin by discussing the questions of stabilizability and

controllability of the formation under a specified topology constraint.

A. Stabilizability

Two questions arise immediately:

• Is it possible to stabilize a formation using information from other vehicles when the vehicles

are individually not stable. In other words, if a vehicle is unstable, can the formation be

stabilized by the exhange of information between different agents?

• Are some topologies inherently unstable in that even if the agents are stable, the information

flow will always make it impossible to stabilize the formation?

We note the following result originally presented in [18].

Proposition 1. Consider a formation of interconnected dynamic agents as defined in section II.
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1) A formation is controllable if and only if each individual agent is controllable.

2) A formation is stabilizable if and only if each individual agent is stabilizable.

Proof: We use the notation introduced above. Let the matrix Φ be in R
m and there be n

agents in the formation. As can be seen from (2), for controllability of the formation, we want

the following matrix to have rank mn ([23])

M1 =
[

I ⊗ Γ (I ⊗ Φ)(I ⊗ Γ) (I ⊗ Φ)2(I ⊗ Γ) · · · (I ⊗ Φ)mn−1(I ⊗ Γ)
]

.

Using the standard property of Kronecker product

(a⊗ b)(c⊗ d) = ac⊗ bd,

we can rewrite M1 as

M1 =
[

I ⊗ Γ (I ⊗ ΦΓ) (I ⊗ Φ2Γ) · · · (I ⊗ Φmn−1Γ)
]

.

This matrix has rank mn if and only if the following matrix has rank m

M2 =
[

Γ ΦΓ Φ2Γ · · · Φmn−1Γ
]

.

Since Φ ∈ R
m, the equivalent condition is that the matrix

M3 =
[

Γ ΦΓ Φ2Γ · · · Φm−1Γ
]

,

be rank m. But M3 being rank m is simply the condition for the individual agent being

controllable. Thus the formation is controllable if and only if each individual agent is controllable.

This proves the first part. The second part also follows from the above proof. The subspace not

spanned by the columns of M1 is stable if and only if the subspace not spanned by the columns

of M3 is stable.

B. Designing the Control Law

From (2), it can be seen that the problem of designing a control law under the topological

constraints is equivalent to solving the control design problem for the system

xk+1 = (I ⊗ Φ)xk + (I ⊗ Γ)uk + wk (3)

uk = Fkxk,
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with the additional constraint that Fk should have those elements as 0 which correspond to zero

entries in the Lgen,k of the interconnection topology formed as above. Fk can then readily be cast

in the form diag(F i,1
k ) +Lgen,k and the matrices F i,1

k and F ij,2
k obtained. It is fairly obvious that

constraining the control Fk to have some elements zero forces us to consider only those matrices

Fk that live in a particular sub-space of the vector space of all matrices with the same dimensions

as Fk. It may be noted that since each node knows the topology, it knows the subspace within

which the matrix Fk should lie. Thus every node can carry the calculation of the control law by

any of the methods discussed later in parallel to obtain the control law for the whole system.

Then it can extract the control law that it needs to apply. We now define the cost function we

are aiming to minimize and solve the problem of finding the optimal control law.

IV. THE OPTIMAL CONSTRAINED CONTROL LAW

Denote A = I ⊗ Φ and B = I ⊗ Γ and rewrite (3) as

xk+1 = Axk +Buk + wk (4)

uk = Fkxk,

where the initial condition x0 is random and is Gaussian with zero-mean and covariance R0. The

noise wk is also random white zero-mean Gaussian with covariance Rw. In the above equations,

xk ∈ R
n is the state of the system and uk ∈ R

m is the control input. We wish to minimize the

cost function

JT = E

[

T
∑

k=0

{x′kQxk + u′kRuk}
]

+ E
[

x′T+1P
c
T+1xT+1

]

, (5)

where Q and R are positive definite. This is the classical LQR design problem. We can find the

optimal control law through solving the discrete-time Riccati recursion. Suppose we now wish

to additionally constrain the control law to lie within a space spanned by the basis vectors {Λj ,

j = 1, 2, . . . , N}. Thus the problem is to find a control law of the form

Fk =
N
∑

j=1

αjkΛ
j, (6)

where αjk’s are scalars, that minimizes the cost function (5).
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Remarks:

1) It is fairly obvious that the optimal constrained control law would not, in general, be the

projection of the optimal control law on to the sub-space we are interested in. This is

reminiscent of the fact that the optimal causal estimate for a random variable is not the

same as the projection of the general optimal estimate on to the causal sub-space [21].

2) Requiring apriori that the controller be linear might be a non-trivial assumption. But this

allows us to derive algorithms for solving the problem and leads to sharper results.

A. Preliminary Result

In this subsection we prove an intermediate result that we will use later. First note the following

lemma.

Lemma 2. Suppose W is positive semi-definite and P (K) denote any matrix-valued function of

the matrix argument K. If P (K) > P (K0), then trace (P (K)W ) ≥ trace (P (K0)W ).

Proof: Since P (K) > P (K0), we have P (K) − P (K0) > 0. Also W is positive semi-

definite, thus W
1

2 is defined. Hence we note that trace
(

W
T
2 (P (K) − P (K0))W

1

2

)

> 0 or

that trace ((P (K) − P (K0))W ) > 0. But this means trace (P (K)W ) > trace (P (K0)W ), which

proves the assertion.

Using this lemma we can prove the following.

Proposition 3. Consider the cost function

C = E































K1Y1 −X1

K2Y2 −X2

...

KnYn −Xn















′

W















K1Y1 −X1

K2Y2 −X2

...

KnYn −Xn































,

where Ki’s are arbitrary matrices while Yi’s and Xi’s are vectors of suitable dimensions such

that the cost function C is well-defined. Suppose that W can be written in the form

W =















W1,1 W1,2 . . . W1,n

W2,1 . . . W2,n

...
. . .

...

Wn,1 Wn,2 . . . Wn,n















,
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where the blocks Wi,j are of appropriate sizes so that the product X ′
iWi,jXj is well defined and

that W is symmetric and positive definite. Then the optimal Ki’s minimizing the cost function

are given by the solution to the coupled matrix equations

Kj = W−1
j,j

[

∑

i

Wj,iRXiYj
−
∑

i6=j

Wj,iKiRYiYj

]

R−1
Yj
, ∀j = 1, 2, · · · , n,

where RYiYj
= E

[

YiY
′
j

]

and RXiYj
= E

[

XiY
′
j

]

.

Proof: For each j, we can write the terms depending on Kj as

Cj = trace
(

KjRYj
K ′
jWj,j −KjΨ − Ψ′K ′

j

)

,

where

Ψ =

[

∑

i

RYjXi
Wi,j −

∑

i6=j

RYjYi
K ′
iWi,j

]

.

Thus Kj needs to be chosen so as to minimize Cj . The minimization is of the form

min
X

trace (XAX ′B +XC + C ′X ′) ,

where B is invertible and positive definite. This can be rewritten as

min
X

trace (XAX ′B +XC + C ′X ′) = min
X

trace
(

XAX ′B +XCB−1B + C ′X ′BB−1
)

= min
X

trace
(

XAX ′B +XCB−1B +B−1C ′X ′B
)

= min
X

trace
((

XAX ′ +XCB−1 +B−1C ′X ′
)

B
)

.

Now we use lemma 2. Thus our problem reduces to that of determining X such that XAX ′ +

XCB−1 +B−1C ′X ′ is minimized. We complete the squares to write

XAX ′ +XCB−1 +B−1C ′X ′ =
(

X +B−1C ′A−1
)

A
(

X +B−1C ′A−1
)′ −B−1C ′A−1C.

Thus the minimizing X = −B−1C ′A−1. Applying this to our original problem of determining

Kj , we see that

Kj = W−1
j,j

[

∑

i

Wj,iRXiYj
−
∑

i6=j

Wj,iKiRYiYj

]

R−1
Yj
.

This completes the proof.
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Note that for calculation of the Kj’s, we can use the identity (1). Thus we obtain for each

Kj , the equation

vec(Kj) = vec

(

W−1
j,j

∑

i

Wj,iRXiYj

)

−
∑

i6=j

[

(

RYiYj
R−1
Yj

)′

⊗
(

W−1
j,j Wj,i

)

vec(Ki)

]

.

We have one such equation for each Kj , j = 1, . . . , n. These equations can readily be solved to

obtain the values of vec(Kj) and from them the matrices Kj can easily be determined.

B. The Optimal Control Law

From (5) we see that the cost function to be minimized is

JT = E

[

T
∑

k=0

u′kRuk +
T
∑

k=0

x′kQxk

]

+ E
[

x′T+1P
c
T+1xT+1

]

.

Using the equation

xk = Akx0 +
k−1
∑

j=0

AjBuk−1−j +
k−1
∑

j=0

Ajwk−1−j

and the fact that the noise wk is white and zero-mean allows us to rewrite the cost function in

the form

JT = E [Γ′
FΓ + Γ′

GΛ + Λ′
G

′Γ + Λ′
HΛ] . (7)

In the above equation

Γ =
[

x′0 w′
0 w′

1 · · · w′
T

]′

is the vector of all the random variables involved. Similarly,

Λ =
[

u′0 u′1 · · · u′T

]′

is the control vector that is the optimization variable, and the matrices F, G and H are functions

of A, B, R, Q and P c
T+1. The additional constraint on Λ is that it has to be of the form

Λ =















u0

u1

...

uT















=















F0x0

F1x1

...

FTxT
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where the matrices Fi have some pre-specified elements zero. In particular, if we write

Fixi =















F 1
i xi

F 2
i xi
...

F n
i xi















where F j
i is the control law applied by the j-th agent at time step i, then those elements of F j

i

are zero that correspond to the elements in the state vector xi that the j-th agent does not have

access to. We can pull the constraints into the state vector and write

F j
i xi = Kj

i y
j
i ,

where Kj
i is now a matrix free of any constraints on its elements while the vector yji is a stacked

vector of the states of the agents that the j-th agent has access to. This allows us to write

Fixi =















K1
i y

1
i

K2
i y

2
i

...

Kn
i y

n
i















.

Thus Λ can be written as

Λ =















F0x0

F1x1

...

FTxT















=

























































K1
0y

1
0

K2
0y

2
0

...

Kn
0 y

n
0

K1
1y

1
1

...

Kn
1 y

n
1

...

K0
Ty

0
T

...

Kn
Ty

n
T

























































. (8)
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The nT matrices Kj
i are arbitrary and are the optimization variables. Now from (7), we see that

the cost function can be written as

JT = E [Γ′
FΓ + Γ′

GΛ + Λ′
G

′Γ + Λ′
HΛ]

= E
[

(

Λ +H−1G′Γ
)′
H
(

Λ +H−1G′Γ
)

]

+ E
[

Γ′
(

GH−1G′ + F
)

Γ
]

.

The choice of Λ only affects the first term. Thus the optimization problem is

min
Λ
E
[

(

Λ +H−1G′Γ
)′
H
(

Λ +H−1G′Γ
)

]

,

where Λ is of the form (8). But this optimization problem is exactly in the form of Proposition 3.

Thus we can optimize the value of the cost function. This solves the optimal control law problem.

Remarks:

1) The solution involves the calculation of second order statistic terms which can be calculated

off-line since the topology of the network is assumed to be known.

2) The procedure holds even for the case when the topology is time-varying, as long as all

the agents know the topology.

3) However note that we need to solve a total of nT coupled matrix equations. This is a

formidable computational burden. In the next subsection, we present a method that is

computationally more tractable at the expense of being sub-optimal.

C. A Sub-optimal Control Law Algorithm

Once again we note from (5) that the T -horizon cost function to be minimized is

JT = E

[

T
∑

k=0

u′kRuk +
T
∑

k=0

x′kQxk

]

+ E
[

x′T+1P
c
T+1xT+1

]

.

We need to choose u0, u1, · · · , uT that minimize JT . Following [19], we gather terms that

depend on the choice of uK and xK and write them as

ΥT = E [u′TRuT + x′TQxT ] + E
[

x′T+1P
c
T+1xT+1

]

= E





[

u′T x′T

]

∆





uT

xT







+ E
[

w′
TP

c
T+1wT

]

= ST +OT
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where

∆ =





R +B′P c
T+1B B′P c

T+1A

A′P c
T+1B Q+ A′P c

T+1A





ST = E





[

u′T x′T

]

∆





uT

xT









OT = E
[

w′
TP

c
T+1wT

]

.

In the above equation, we have used the system dynamics given in (4) and the fact that the plant

noise is zero mean. Thus we can write

JT = E

[

T−1
∑

k=0

u′kRuk +
T−1
∑

k=0

x′kQxk

]

+ ST +OT . (9)

We aim to choose uT to minimize JT . From (9), it is clear that the only term where the choice

of uT can make a difference is ST . On completing squares, ST can be written as

ST = E
[

(uT − ūT )′Rc
e,T (uT − ūT )

]

+ E [x′TP
c
TxT ]

where

Rc
e,T = R +B′P c

T+1B

P c
T = Q+ A′P c

T+1A− A′P c
T+1B

(

R +B′P c
T+1B

)−1
B′P c

T+1A

and ūT is the standard optimal LQ control given by

ūT = −
(

Rc
e,T

)−1
B′P c

T+1AxT .

If the controller had access to the entire state, it could simply use the standard optimal control

ūT . However, that is not possible now. Instead, the controller needs to calculate uT using the

information flow that satisfies the topological constarints and choose it to minimize ST . In other

words, we need to find uT = FTxT that minimizes ΥT where FT has certain elements zero. The

control problem thus reduces to an optimal estimation problem. Once again, we note that

uT =















u1
T

u2
T

...

unT















,
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where each uiT is the control law the i-th agent applies and it is a linear function of the

measurements the i-th agent has access to. Thus we can write

uiT = F i
TxT ,

where F i
T has those elements 0 that correspond to the elements in the state vector xT that the

i-th agent does not have access to. Pulling the constraints into the state vector, we can write

uiT = K i
Ty

i
T ,

where K i
T does not have any constraint while the vector yiT is a stacked vector of the states of

the agents that the i-th agent has access to. Thus the problem of choosing the control law uT

reduces to the problem of choosing K i
T ’s so as to minimize the criterion

E































K1
Ty

1
T − ū1

T

K2
Ty

2
T − ū2

T

...

Kn
Ty

n
T − ūnT















′

Rc
e,T















K1
Ty

1
T − ū1

T

K2
Ty

2
T − ū2

T

...

Kn
Ty

n
T − ūnT































.

This is exactly the optimization problem discussed in Proposition 3. Thus the matrices K i
T

can be easily obtained. Note that this involves solving only n coupled matrix equations and is

hence much less computationally expensive than the optimal control law calculation discussed

in section IV-B.

Denote the estimation error incurred due to the minimizing choice of uT by ΛT . We have

ST = ΛT + E [x′TP
c
TxT ] .

We can thus write the cost function as

JT = E

[

T−1
∑

k=0

u′kRuk +
T−1
∑

k=0

x′kQxk

]

+ ST +OT

= E

[

T−1
∑

k=0

u′kRuk +
T−1
∑

k=0

x′kQxk

]

+ ΛT + E [x′TP
c
TxT ] +OT

= JT−1 + ΛT +OT .

Thus we now need to choose control inputs for time steps 0 to T−1 to minimize JT . By scanning

the terms on the right hand side of the equation, we see that OT is independent of the choice of

control laws from time 0 to T − 1. However, unlike the standard case of control with imperfect
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observations [19], we note that apart from JT−1, the estimation error ΛT is also a function of

the state xT and hence of the (unknown) control law uT−1. Moreover it is a non-linear function

of uT−1. Thus the control uT−1 should be chosen to minimize the cost JT−1 + ΛT . Thus, the

separation principle does not hold in general. This is related to the fact that the information

pattern is not classical (see, e.g., [35]) because the previous control law is not known fully to

all the agents. We get across this problem by neglecting the estimation cost ΛT and optimizing

only JT−1. For this purpose, we note that our argument so far was independent of time index

T . Thus we can recursively apply the argument for time steps T − 1, T − 2 and so on.

Remarks:

1) We have enforced a separation principle artificially that says that the controller synthesis

problem can be separated into an estimation problem and the usual LQR control problem.

At every time step, every controller tries to estimate the optimal control law from the

information it has access to (in the sense of Proposition 3) and uses this estimate in the

optimal LQR control law.

2) This method is in general sub-optimal since the separation principle does not hold in

reality. However since this method replaces solution of nT coupled matrix equations by

solving n coupled matrix equations T times, this method saves a lot on computational

cost.

3) If needed, better performance can be achieved by including the estimation cost ΛT in

calculation of uT−1. It can be proved that this inclusion results in a convex problem

that can be solved efficiently. However this method would still not be optimal since for

calculation of uT−2, we need to consider JT−2, ΛT−1 and the cost incurred in imperfectly

minimizing ΛT . Thus the problem starts involving more and more terms to optimize over.

The extent of sub-optimality can be reduced by including more terms in the optimization.

4) Intuitively, the approximation can be thought of as follows. At any time, the optimal control

input of an agent will depend on the control inputs of other agents at the previous time

step. However the agent is not allowed to observe these. We get around this problem by

ignoring the direct dependence of the optimal control input on these terms. Instead, we

use the fact that these terms will soon show up in the values of the states of the neighbors

of the agent, which are being observed. Thus these terms will eventually be used in the
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calculation of control inputs.

V. EXAMPLES

We now consider two examples to illustrate the issues involved.

Example 1: Consider a network of four agents, each with single integrator dynamics. This

case is of interest since single integrator dynamics can be used to solve consensus problems.

Let the agents be designated as vi, i = 1, 2, 3, 4. The agent vi has dynamics

xik+1 = xik − 0.2uik + wik

uik = F i,1xik +
∑

all out-neighbors j

F ij,2(xjk − xik).

We denote xk to be the state of the whole system, where

xk =
[

x1
k, x

2
k, x

3
k, x

4
k

]′
.

Similarly denote uk to be the control vector obtained by stacking all the uik’s. Then the evolution

of the system is described as

xk+1 = xk − 0.2uk + wk

uk = F 1xk + F 2xk,

where F 1 is a diagonal matrix with F 1,1, F 2,1, F 3,1, F 4,1 as the diagonal elements; and the

(i, j)−th element of the matrix F 2 is given by

[F 2]i,j =























F ij,2 i 6= j and j is an out-neighbor of i

0, i 6= j and j is not an out-neighbor of i

−∑j F
ij,2, i = j.

The initial condition is random with zero mean and covariance as identity matrix. Similarly the

noise is white Gaussian with zero mean and covariance as identity matrix. The cost function

specified is

J =
T
∑

k=0

E [x′kQxk + u′kRuk] .
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We present results for T = 30. We take the weighting matrices to be as follows:

Q =















1.6158 1.6884 1.2138 0.563

1.6884 2.798 1.2843 1.2528

1.2138 1.2843 0.9645 0.5147

0.563 1.2528 0.5147 0.7501















R =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















.

First we note that if all the agents are communicating with one another, the sub-optimal and

optimal algorithm give the same cost and the control law matrix. We also consider a constrained

topology where we allow limited communication to happen. The topology is as follows. The

vehicle v1 can talk to v2, the vehicle v2 to v1 and v3, the vehicle v3 to v2 and v4 and v4 can talk

to v3. In this case, the evolution of the cost is shown in figure 1. We can see that the loss in

performance from the sub-optimal algorithm is not huge. The savings in computational time are

considerable, however. Note that at the intermediate time values, the sub-optimal algorithm is

performing better than the optimal algorithm. However, this can be easily explained by noting

that the optimal algorithm is optimal for a time horizon of 30 steps and there is no guarantee

that it is the optimal algorithm for a smaller time window as well.

In figure 2 we show the steady state cost for the ring topology for a time horizon of 100 time

steps for the ring topology as we introduce delay into the system. The ring topology involves

all communication links being present, except the v2v4 and v1v3 links. We assume that the state

information is passed with some delay as a multiple of sampling time of the system but the

agents calculate the control law assuming there is no delay. It can be seen that the cost slowly

increases and the system is reasonably robust to delay uncertainity. It becomes unstable only for

a delay equal to or greater than 5 time steps.

Example 2: In this example we use the dynamics of each agent as the dynamics of the Caltech

Multi Vehicle Wireless Testbed vehicles, as described in [7], [32]. The non-linear dynamics are
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Fig. 1. The loss in performance due to the sub-optimal algorithm is not huge. Cost considered is E [x′

kQxk + u′

kRuk].
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Fig. 2. The sub-optimal algorithm is robust to delays. Cost considered is E [x′

kQxk + u′

kRuk].
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given by

mẍ = −µẋ+ (FL + FR) cos(θ)

mÿ = −µẏ + (FL + FR) sin(θ)

Jθ̈ = −ψθ̇ + (FR − FL)rf .

FL and FR are the inputs, m = 0.749kg is the mass of vehicle, J = 0.0031kg m2 is the moment

of inertia, µ = 0.15 kg-s is the linear frictional coefficient, ψ = 0.005kgm2/s is the rotational

friction coefficient and rf = 0.089m is the distance from the center of mass of the vehicle to

the axis of the fan. On linearizing the dynamics about the straight line y = x at a velocity of

1ms−1 along the x and y axes, we obtain the equations

Ẋ = AX +BU

U = FX,

where

X =
[

x y θ ẋ ẏ θ̇
]′

A =



























0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0
−(Fnom

L +Fnom
R ) sin(θnom)

m

−µ

m
0 0

0 0
(Fnom

L +Fnom
R ) cos(θnom)

m
0 µ

m
0

0 0 0 0 0 −ψ

J



























B =



























0 0

0 0

0 0

cos(θnom)
m

cos(θnom)
m

sin(θnom)
m

sin(θnom)
m

−rf
J

−rf
J



























θnom =
π

4
F nom
L = F nom

R =
µ√
2
.
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We discretize the above equations with a step size h = 0.2. We consider 8 vehicles starting

from an octagonal formation and consider the topologies possible as the communication radius

of each vehicle is increased. It is apparent that by symmetry there are 5 distinct topologies

possible, with each vehicle talking to 0, 2, 4, 6 and 7 other vehicles respectively. The initial

covariance matrix R0 is the identity matrix. The cost function matrix R is also identity while

the matrix Q is randomly generated. The cost function horizon is T = 100 time steps. A typical

curve for the varying of the costs provided by the sub-optimal algorithm as the communication

radius is increased is given in figure 3. Following general conclusions can be drawn for the

0 1 2 3 4 5 6 7
4000

5000

6000

7000

8000

9000

10000

11000

number of neighbors being talked to

co
st

Fig. 3. As the communication radius is increased, the cost goes down. Cost considered is E [x′

kQxk + u′

kRuk].

example from the plot.

1) As more and more communication is allowed, the cost goes down.

2) The marginal utility of each communication link decreases as more and more links are

added. However this might simply be due to the fact that the edges added later bring the

data of far-away vehicles which is not so important for stabilization.

The difference in the performance between the sub-optimal and the optimal algorithms increased

as the communication topology became more and more sparse. Figure 4 shows another plot
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comparing the comparison of optimal and sub-optimal algorithms for a different value of the Q

matrix. It can be seen that even for the decentralized case, the error is of the order of only 30%.
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Fig. 4. As the communication radius is increased, loss in performance due to the sub-optimal algorithm decreases. Cost

considered is E [x′

kQxk + u′

kRuk].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, motivated by synthesis of optimal control laws for interconnected network

of agents, we considered the problem of synthesis of a LQR optimal control law which is

constrained to lie in a particular vector space. We constrained the controller to be linear. We

presented a computationally expensive method for the optimal finite time horizon control and

a computationally easier method to generate a sub-optimal control law. We presented examples

which illustrated that the loss in performance due to the sub-optimal algorithm is not huge and

that communication in general helps to bring down the cost.

The work can potentially be extended in many ways. The most obvious direction is to

consider the case when the nodes do not have an accurate or complete knowledge of the entire

network. It would be interesting if we could evaluate the cost if the nodes utilize the information
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corresponding only to the neighboring nodes. This would be especially useful in the case when

topology is time-varying. The issue of optimal topology is also an interesting one to explore.
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