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Abstract

Multivariate resultants generalize the Sylvester resultant of two polynomials and characterize the solvability
of a polynomial system. They also reduce the computation of all common roots to a problem in linear algebra.
We propose a determinantal formula for the sparse resultant of an arbitrary system of n+1 polynomials in n

variables. This resultant generalizes the classical one and has signi�cantly lower degree for polynomials that
are sparse in the sense that their mixed volume is lower than their Bézout number. Our algorithm uses a
mixed polyhedral subdivision of the Minkowski sum of the Newton polytopes in order to construct a Newton
matrix. Its determinant is a nonzero multiple of the sparse resultant and the latter equals the GCD of at most
n + 1 such determinants. This construction implies a restricted version of an e�ective sparse Nullstellensatz.
For an arbitrary specialization of the coe�cients there are two methods which use one extra variable and yield
the sparse resultant. This is the �rst algorithm to handle the general case with complexity polynomial in
the resultant degree and simply exponential in n. We conjecture its extension to producing an exact rational
expression for the sparse resultant.

Categories and Subject Descriptors: I.1.2 Algorithms (Algebraic algorithms, Analysis of algorithms). F.2.1
Numerical Algorithms and Problems (Computations on matrices, Computations on polynomials). F.2.2 Non-
numerical Algorithms and Problems (Computations on discrete structures, Geometrical problems and compu-
tations).

General Terms: Algorithms, Theory.
Additional Key Words and Phrases: Sparse elimination theory, multivariate resultant, Newton polytope,

mixed volume, polyhedral subdivision, e�ective Nullstellensatz, asymptotic complexity.

1 Introduction

The resultant of a system of n+1 arbitrary polynomial equations in n+k variables is a polynomial in k variables,
which characterizes the solvability of the system. In other words, for a particular specialization of the k remaining
variables, the resultant vanishes if and only if the given polynomial system has a nontrivial solution. As it allows
the elimination of n variables, the resultant is also called eliminant. The resultant of two univariate polynomials
is named after Sylvester, while for an arbitrary number of linear polynomials the resultant coincides with the
determinant of the coe�cient matrix.

Classical elimination theory and the classical multivariate resultant have a long and rich history, brie�y
sketched in section 2. The classical resultant characterizes the existence of common roots in projective space and
its degree depends on the Bézout bound on the number of common projective roots [vdW50, Zip93].

This article considers the sparse resultant, which generalizes the classical resultant and exploits the monomial
structure of the given polynomials. We shall formalize the notion of sparseness in section 3. In general, the sparse
resultant has smaller degree than its classical counterpart because its degree depends on the Bernstein bound on
the number of a�ne roots [Ber75]. Bernstein's bound is at most equal to Bézout's and, for sparse systems, it is
substantially smaller and often exact.

Our main contribution is to present historically the �rst general and e�cient algorithm to compute the sparse
resultant, by completing and expanding on the construction of [CE93]. The algorithm de�nes a matrix with
entries equal to the input coe�cients or zero, whose determinant is a nontrivial multiple of the sparse resultant,

�Computer Science Division, University of California at Berkeley, Berkeley, CA 94720, USA. E-mail: jfc@cs.Berkeley.edu.
yINRIA, B.P. 93, Sophia-Antipolis 06902 France. E-mail: emiris@sophia.inria.fr.

1



and from which the resultant can be recovered. The construction relies on a mixed polyhedral subdivision, and
yields a bound on matrix size in terms of Newton polytopes. This leads to a bound on the Newton polytopes
of the polynomials in the ideal membership formula, in other words an e�ective sparse Nullstellensatz. This
is historically the �rst algorithm with total complexity bounded by a polynomial in the resultant degree and a
simple exponential in n.

In general, matrices with the above properties are called resultant matrices. We introduce the terminology
Newton matrix to distinguish our matrix from other matrix formulae of the same resultant. Moreover, we wish
to emphasize the fact that a di�erent matrix is constructed for every distinct set of Newton polytopes. The
algorithm generalizes Sylvester's algorithm for two univariate polynomials, since it produces Sylvester's resultant
matrix in this case. For an arbitrary number of dense polynomials, the algorithm produces the classical Macaulay
matrix, discussed in the next section.

The rest of this section motivates resultant-based methods and sparse elimination, and concludes with an
outline of the article. Several variable elimination and system solving problems are most e�ciently solved by
resultants in general, and U -resultants in particular. Application areas include complexity theory, quanti�er
elimination, algebraic number arithmetic, and integration [Loo82, Ren92, Zip93, LM95], as well as robotics,
vision, geometric modeling and computational biology [Can88, BGW88, MC93, Emi97, RR95, EM99].

A speci�c example is given by the implicitization problem, of central importance in geometric and solid
modeling. Given a parametrized surface

(x; y; z; w) = (X(s; t); Y (s; t); Z(s; t);W (s; t));

where X;Y; Z and W are polynomials in the parameters s; t, the question is to �nd an implicit description of this
surface as the zero set of a single polynomial in x; y; z; w. This is achieved by eliminating the parameters s; t from
the system

wX(s; t)� xW (s; t) = wY (s; t)� yW (s; t) = wZ(s; t)� zW (s; t) = 0;

which is equivalent to computing the system's resultant. For a bicubic surface, methods based on customized
resultants exploiting sparseness have achieved a speedup of at least 103 in the running time over approaches
relying on Gröbner bases and the Ritt-Wu method [MC93].

Sparseness can lead to an important improvement over classical elimination methods in practice. To illustrate
the disparity between the classical Bézout bound and Bernstein's sparse bound, consider the problem of computing
all eigenvalues and eigenvectors of a generic complex n�nmatrix A. This reduces to solving a system of n equations
of the form

P
j Aijvj = �vi, 1 � i � n, and

P
i v

2
i = 1, for unknowns v1; : : : ; vn and �. The Bézout bound is

2n+1, though the number of solutions is only 2n, two opposite eigenvectors per eigenvalue. Bernstein's bound is
exact for this system.

Methods for the construction of resultants which exploit monomial structure had been ad hoc, for they relied
on the speci�c problem. Hence the need of a general algorithm, which is precisely the topic of this article.
One problem from computer vision is computing the structure of the environment from motion. Ignoring the
complexity of the initial o�-line phase, the average on-line running time is 0.2 seconds on an 80 MHz DEC
Alpha 3000, and results for most systems are accurate to 6 decimal digits. The running time and the accuracy
compare favorably to sparse homotopies exploiting the monomial structure; furthermore, the accuracy is higher
than that of least-square techniques, which require more information [Emi97].

The remainder of this article is organized as follows. The next section points to previous work and compares
it with ours. Section 3 introduces the basic notions of sparse elimination theory, and presents the mathematical
background necessary for our algorithm. Section 4 speci�es a mixed subdivision of the Minkowski sum of the
input Newton polytopes, and section 5 describes the construction of Newton matrix M , thus establishing an a
priori bound on the matrix size. The main properties of M , namely that det(M) is a multiple of the sparse
resultant and is not identically zero, are established in the following section. Some important properties on the
degree of the determinant in the coe�cients of the given polynomials are established in section 7, thus implying
that the sparse resultant equals the Greatest Common Divisor (GCD) of at most n+ 1 determinants. Section 8
demonstrates a restricted version of a sparse e�ective Nullstellensatz and states a conjecture for the general case.
Section 9 discusses two ways to compute the sparse resultant itself for arbitrary specializations. We illustrate the
algorithm in section 10. Sections 11 and 12 analyze the worst-case asymptotic bit complexity and randomization
complexity of constructing the Newton matrix and computing the sparse resultant, respectively. The article
concludes with a conjecture on generalizing Macaulay's exact rational formula to Newton matrices.
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The basic algorithm and the main results of sections 4 to 7 and of section 9 �rst appeared in preliminary form
in [CE93].

2 Related Work

Classical elimination theory considers systems of n homogeneous polynomials in n variables and k parameters or
coe�cients. The classical multivariate resultant is a single polynomial in the k coe�cients that vanishes for a
specialization of the coe�cients if and only if the specialized system has a common root in the projective space
over the coe�cient �eld, denoted Pn. The resultant degree in the coe�cients of polynomial fi is

nY
i=1;j 6=i

deg fj ; where deg fj is the total degree of fj :

This is Bézout's bound on the number of common projective solutions of the system fj = 0, j 6= i [vdW50].

One approach for the resultant of two homogeneous polynomials is named after Bézout and is based on discrete
di�erentials. This yields small matrices whose entries are polynomials in the input coe�cients. Its generalization,
the Bezoutian matrix, works in arbitrary dimension and does not require any genericity assumption on the
inputs [Mou97]. Another generalization is Dixon's matrix; see, for instance, [KS95].

A di�erent approach that also obtains determinantal expressions for the resultant stems from Sylvester's for-
mulation for n = 2. This is the determinant of a matrix of minimum possible size, where the entries are constrained
to be either zero or some polynomial coe�cient. For higher n, matrices whose determinant equals the resultant
do not exist in general, but Macaulay expressed the classical resultant as the quotient of a matrix determinant
divided by one of its minors [vdW50, Can88, Ren92]. Our approach generalizes this kind of matrices. Alternative
algorithms for computing the classical resultant, solving polynomial systems, and eliminating quanti�ers have
been proposed in [Laz81, CG84, Chi86, Gri86, GH91].

Sparse elimination theory exploits the fact that certain coe�cients are known to be zero a priori. The founda-
tions were laid in the late 1980's in the work of Gelfand, Kapranov and Zelevinsky [GKZ94]. The sparse resultant
was called the (A1; : : : ;An+1)-resultant, where Ai � Zn is the support of the i-th polynomial. Pedersen and
Sturmfels [PS93] gave a product formula of Poisson type for the sparse resultant, namely R0

Q
�2V (f1;:::;fn)

fn+1(�),

where the extraneous factor R0 is a rational function in the coe�cients of f1; : : : ; fn and V (f1; : : : ; fn) is the zero-
dimensional variety (or zero set) of f1; : : : ; fn. This construction is too costly to have any practical signi�cance.
The �rst constructive methods for computing and evaluating the sparse resultant were proposed by Sturmfels
in [Stu93], the most e�cient having complexity super-polynomial in the total degree of the sparse resultant and
exponential in n with a quadratic exponent.

A greedy variant of our algorithm has been proposed by Canny and Pedersen [CP93] which, based on a mixed
subdivision, typically constructs smaller matrices. This algorithm also removes a rather technical requirement
on the input supports, formalized in section 3. A second generalization has been proposed by Sturmfels [Stu94,
sect. 2, 3] for weakening the genericity requirement on the lifting functions used in our construction. An incre-
mental randomized algorithm has been proposed by Emiris and Canny in order to construct Newton matrices of
smaller size, which are optimal for all classes of polynomial systems where such matrices provably exist [EC95].
More recent work focuses on the structure of these matrices, which has been shown to generalize Toeplitz struc-
ture [EP97].

For solving systems of n polynomial equations in n unknowns, certain properties of the Newton matrix must
be established. One approach is that of [PS96], whereas a simpler proof, based on the present algorithm, which
reduces root-�nding to an eigenproblem is found in [Emi96]. This result extends older work in [AS88, MC93].
Observe that the exact sparse resultant is not necessary, since a Newton matrix su�ces. The computation of
solution sets with positive dimension has been undertaken in [KM95]. In practice, questions of degeneracy may
have to be addressed, as in [Man94, Mou98, Roj99].

A related problem of independent signi�cance is the computation of mixed volumes. Di�erent algorithms and
implementations have been suggested [HS95, EC95, VGC96]. Sparse homotopies have been proposed in order to
reduce the number of paths by relating their cardinality to Bernstein's bound rather than Bézout's [HS95, VGC96].
The mixed polyhedral subdivision constructed by our algorithm allows computation of the mixed volume and
speci�es a start system for these homotopies.
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Figure 1: The Newton polytope of polynomial c1y + c2x
2y2 + c3x

2y + c4x + c5xy. The dotted triangle is the
Newton polytope of the dense polynomial of the same total degree.

Di�erent notions of sparseness include straight-line programs [AHU74, GHMP95] and Khovanskii's fewnomi-
als [Kho91].

3 Sparse Elimination Theory

This section introduces the theory of sparse elimination and some necessary de�nitions for the study of polynomial
systems. For background on polynomial systems see [vdW50, Zip93], and for background on combinatorial
geometry and polytope theory [Sch93].

Sparse elimination theory generalizes several results of classical elimination theory on multivariate polynomial
systems by considering the structure of the given polynomials, namely their Newton polytopes. This leads to
stronger algebraic and combinatorial results. Assume the input polynomial coe�cients lie in complex space C .
By considering common roots in Pn; the classical theory accounts for several projective solutions that are useless
in physical applications and whose cardinality often dominates that of the a�ne roots. Being interested in a�ne
roots only, sparse elimination focuses on (C � )n where C � = C n f0g � C � P:

The main problem is, given n + 1 arbitrary polynomials f1; : : : ; fn+1 in n variables, to �nd a condition on
the coe�cients of the fi that characterizes the solvability of the system. For now, we regard the coe�cients
as indeterminates and concentrate on solutions � 2 (C � )n. Under this assumption, we can deal with the more
general case where fi is a Laurent polynomial, i.e.,

f1; : : : ; fn+1 2 C [x1 ; x
�1
1 ; : : : ; xn; x

�1
n ]:

We use xa to denote the monomial xa11 � � �xann , where a = (a1; : : : ; an) 2 Zn is an exponent vector.

To take advantage of sparseness we take into account the fact that certain coe�cients are known a priori to
be zero. Let �i be the number of nonzero coe�cients, then every polynomial is written as follows:

fi =

�iX
j=1

cijx
aij ; cij 6= 0; i = 1; : : : ; n+ 1: (1)

De�nition 3.1 The �nite set Ai = fai1; : : : ; ai�ig � Zn of all monomial exponents appearing in fi is the support
of fi, denoted supp(fi). Its cardinality is �i = jAij. The Newton polytope Qi � Rn of fi is the convex hull of
Ai. We shall assume that fai1; : : : ; aimi

g is the vertex set of Qi for mi � �i.

A polynomial system is unmixed if all supports Ai are identical, otherwise it is mixed. The example of
section 10 shows a mixed system. Figure 1 depicts the Newton polytope for a bivariate polynomial and compares
it with the Newton polytope of the dense polynomial with the same total degree, i.e., a polynomial in which
every coe�cient is nonzero. Clearly, Newton polytopes provide a more precise description than the total degree
does, and thus express the sparse structure of a given polynomial. Dealing with Laurent polynomials implies that
multiplying a polynomial by a monomial gives an equivalent polynomial. In other words, translates of a Newton
polytope are identi�ed.

Newton polytopes cast the problem in geometric terms, which calls for some de�nitions from polytope theory.
For arbitrary sets in Rn there is a natural associative and commutative addition operation which generalizes
vector addition and is called Minkowski addition.
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De�nition 3.2 The Minkowski sum A+ B of convex polytopes A and B in Rn is the set

A+B = fa+ b j a 2 A; b 2 Bg:

It is easy to prove that A+B is convex if A;B are convex [Sch93].

De�nition 3.3 Given convex polytopes A1; : : : ; An � Rn , there is a unique, up to multiplication by a scalar,
real-valued function MV (A1; : : : ; An), called the mixed volume of the given polytopes, which is multilinear with
respect to Minkowski addition and scalar multiplication, i.e., for �; � 2 R�0 and convex polytope A0

k � Rn ,

MV (A1; : : : ; �Ak + �A0
k; : : : ; An) =

�MV (A1; : : : ; Ak; : : : ; An) + �MV (A1; : : : ; A
0
k; : : : ; An):

To de�ne mixed volume exactly we require that

MV (A1; : : : ; A1) = n! Vol(A1);

where Vol(�) denotes n-dimensional Euclidean volume, such that it assigns unit volume to the the unit cube.

An equivalent de�nition [Sch93] is the following.

De�nition 3.4 For �1; : : : ; �n 2 R�0 and convex polytopes A1; : : : ; An � Rn , the mixed volume MV (A1; : : : ; An)
is precisely the coe�cient of �1�2 � � ��n in Vol(�1A1 + � � �+ �nAn) expanded as a polynomial in �1; : : : ; �n.

The Newton polytopes o�er a model of the sparseness of a polynomial system, in light of Bernstein's upper
bound on the number of common roots. This bound is also called the BKK bound to underline the contributions
of Kushnirenko and Khovanskii in its development and proof [Kus76, Kho78].

Theorem 3.5 [Ber75] Let f1; : : : ; fn 2 C [x1 ; x
�1; : : : ; xn; x

�1
n ]. The number of common zeros in (C � )n is either

in�nite, or does not exceed MV (Q1; : : : ; Qn). For almost all specializations of the coe�cients cij , the number of
solutions is exactly MV (Q1; : : : ; Qn).

The mixed volume is typically signi�cantly lower than Bézout's bound. Recall, for instance, the eigenproblem
presented in section 1, or see the system of section 10. The two bounds coincide for dense polynomials, because
then each Newton polytope is an n-dimensional unit simplex scaled by deg fi, thus, by de�nition, the mixed
volume of the dense system is

nY
i=1

deg fi MV (S; : : : ; S) =

nY
i=1

deg fi;

where S is the unit simplex in Rn .
The main object for the study and solution of polynomial systems will be the sparse resultant, which is a

necessary and su�cient condition for the given Laurent polynomials to have a common root. We use a simpler
de�nition than the one in [GKZ94], relying on an additional assumption on the genericity of the coe�cients [PS93].
We regard a polynomial fi as the following generic point:

(ci1; : : : ; ci�i) 2 P�i�1; i = 1; : : : ; n+ 1;

in the space of all possible polynomials with the given support Ai, after identifying scalar multiples. Then the
input system is the following point:

c = (c11; : : : ; c1�1 ; : : : ; c(n+1)1; : : : ; c(n+1)�n+1);

such that c 2 P�1�1 � � � � � P�n+1�1:

Let Z0 = Z0(A1; : : : ;An+1) be the set of all points c such that the corresponding polynomial system has a solution
in (C � )n, and let Z = Z(A1; : : : ;An+1) denote the Zariski closure of Z0 in the product of projective spaces. Z is
an irreducible algebraic set [PS93].
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De�nition 3.6 [PS93] With the above notation, the sparse resultant R(A1; : : : ;An+1) of system (1) is a polyno-
mial in Z[c]. If codim(Z) = 1, then R(A1; : : : ;An+1) is the de�ning irreducible polynomial of hypersurface Z. If
codim(Z) > 1, then R(A1; : : : ;An+1) = 1.

Observe that this de�nes R within a nonzero scalar factor.
It is assumed without loss of generality that the a�ne lattice generated by

Pn+1
i=1 Ai is n-dimensional. This

technical hypothesis is removed in [CP93]. This lattice is identi�ed with Zn possibly after a change of variables,
which can be implemented by applying Smith's normal form [Stu94]. Under this hypothesis the resultant's degree
can be speci�ed.

Proposition 3.7 [PS93] The sparse resultant is separately homogeneous in the coe�cients (ci1; : : : ; ci�i) of each
fi and its degree in these coe�cients equals the mixed volume of the other n Newton polytopes, denoted MV �i,
i.e.,

degfi R = MV (Q1; : : : ; Qi�1; Qi+1; : : : ; Qn+1) = MV �i; i = 1; 2; : : : ; n+ 1:

Consequently, the total degree of the sparse resultant is degR =
Pn+1

i=1 MV �i.
A crucial question in the complexity analysis of sparse elimination algorithms is the relation between mixed

volume and the volume of the Minkowski sum Q = Q1; : : : ; Qn+1 � Rn . We denote by e < 2:718 the exponential
base. A weaker version of the following result �rst appeared in [CE93].

Lemma 3.8 [Emi96] For unmixed systems with Newton polytopes Q1 = � � � = Qn+1,

Vol(Q1 + � � �+Qn+1) = �

�
en degR

n3=2

�
;

where degR is the total degree of the sparse resultant in the input coe�cients.

To model mixed systems we have to express their di�erence in shape and volume.

De�nition 3.9 [Emi96] Let the polytope of minimum volume be Q�, 1 � � � n+ 1, such that

Vol(Q�) = minfVol(Qi) j i = 1; : : : ; n+ 1g;

and the system's scaling factor s be the minimum value such that

9 �i 2 Rn : �i +Qi � sQ�; i = 1; : : : ; n+ 1:

Clearly, s � 1 and s is �nite precisely when the n-dimensional volume of every Newton polytope is positive.

Theorem 3.10 [Emi96] Given are polynomials with Newton polytopes Q1; : : : ; Qn+1 � Rn , such that Vol(Qi) > 0
for all i, and let s be the system's scaling factor. If degR denotes the total degree of the sparse resultant in the
input coe�cients, then

Vol(Q1 + � � �+Qn+1) = O

�
snen+1

n3=2
degR

�
:

4 Mixed Polyhedral Subdivisions

This section introduces some notation and de�nes a mixed polyhedral subdivision of the Minkowski sum of the
Newton polytopes; for geometric de�nitions and details refer to [BS92, Sch93].

Let Q denote the Minkowski sum of all input Newton polytopes

Q = Q1 +Q2 + � � �+Qn+1 � Rn :

Consider the following function expressing Minkowski addition.

� : (Rn )n+1 ! Rn : Q1 � � � � �Qn+1 ! Q : (p1; : : : ; pn+1) 7! p1 + � � �+ pn+1: (2)
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This is clearly a many-to-one mapping. We wish, for each q 2 Q, to de�ne a unique inverse (p1; : : : ; pn+1) in
Q1 � � � � �Qn+1.

To this end the following method is employed from [Stu94]. Choose n + 1 su�ciently generic linear lifting
homogeneous forms l1; : : : ; ln+1 2 Z[x1; : : : ; xn]. In other words, every li is of the form L1x1 + � � � + Lnxn, for
generic L1; : : : ; Ln 2 Z. We shall formalize below the genericity requirements on li; see [Stu94] for an approach
that weakens these requirements. De�ne the lifted Newton polytopes

bQi = fbpi = (pi; li(pi)) : pi 2 Qig � Rn+1 i = 1; 2; : : : ; n+ 1:

The �hat� notation implies lifting; note, however, that the lifted point is well-de�ned only when the corresponding
point in Rn is expressed as a sum of points in the Qi. The linearity of every li implies that the dimension of bQi

is the same as the dimension of Qi, even if the former lies in (n+1)-dimensional space. Similarly, the dimension
of every face of Qi does not change by lifting. Let the Minkowski sum of the lifted Newton polytopes be

bQ = bQ1 + � � �+ bQn+1 � Rn+1 :

De�nition 4.1 Given is a convex polytope in Rn+1 of positive (n + 1)-dimensional volume. Its lower envelope
(with respect to vector (0; : : : ; 0; 1) 2 Rn+1) is the union of all n-dimensional faces, or facets, whose inner normal
vector has positive last component.

Recall, from section 3, the hypothesis on the full-dimensionality of the lattice generated by the supports. It
implies that Q has dimension n, bQ has dimension n+ 1 (for a su�ciently generic lifting), and therefore its lower
envelope has dimension n. Let � : Rn+1 ! Rn : (p1; : : : ; pn+1) 7! (p1; : : : ; pn) denote projection on the �rst n

coordinates. Both bQ and its lower envelope project, under �, to Q, but the �rst mapping is many-to-one while the
second is one-to-one. Let h : Rn+1 ! R : (p1; : : : ; pn+1) 7! pn+1 denote projection on the (n + 1)-st coordinate,
thus expressing the �height� of a lifted point. The following function is now well-de�ned.

s : Q! bQ : q 7! bq 2 ��1(q) \ bQ; such that h(bq) is minimized:

The lower envelope of bQ is then s(Q). The genericity requirement on li is that every point bq on the lower envelope

can be uniquely expressed as a sum of points bq1+ � � �+ bqn+1 with bqi 2 bQi; this is quanti�ed in lemma 11.1. Hence,
we de�ne a unique inverse for function � over Q as follows.

��1jQ : Q! Q1 � � � � �Qn+1 : q 7! (q1; : : : ; qn+1); where s(q) = bq1 + � � �+ bqn+1 2 Rn+1 : (3)

By construction, the sum of the projections under � of these points is q = q1 + � � �+ qn+1 2 Rn .

De�nition 4.2 Let bq1 + � � � + bqn+1; with bqi 2 bQi, be the unique Minkowski sum that sums up to s(q). Then,
q1 + � � �+ qn+1; which sums up to q 2 Q; is the optimal (Minkowski) sum of q 2 Q. The optimal summands are
equivalently speci�ed by ��1jQ(q).

This de�nition is extended below to optimal sums expressing point sets of positive dimension. In the rest of
this article we sometimes refer to an optimal sum as the unique sum expressing a point (or point set) in Q.

The genericity condition is met in practice by picking, for every i, a random integer vector of coe�cients for
li. Each entry is independently and uniformly distributed. The probability of failure of this scheme is analyzed in
section 11. It is straightforward to check deterministically whether a particular choice of lifting functions satis�es
the genericity requirement when s(Q) is constructed.

De�nition 4.3 A polyhedral subdivision of a point set S is a collection of polyhedra whose union equals S,
such that each intersection of two polyhedra of the same dimension is another polyhedron in the subdivision of
lower dimension. The polyhedra of maximal dimension are called maximal cells or facets. We sometimes abuse
terminology and refer to maximal cells simply as cells; moreover, we refer to the collection of maximal cells as
the subdivision.

Consider the natural polyhedral subdivision of the lower envelope s(Q) of bQ into its faces. Let b� denote the

collection of lower envelope facets. It is easy to see that, in the same way that bQ is de�ned as the Minkowski
sum of the lifted polytopes, every one of its faces can be expressed as the Minkowski sum of n+1 faces from the
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Figure 2: Proof of geometric lemma 4.5.

corresponding lifted polytopes, namely bF1 + � � �+ bFn+1; where bFi a face of bQi. The sum of dimensions of all bFi,
for 1 � i � n+ 1, is larger or equal to the face dimension, which lies in f0; 1; : : : ; ng. The genericity requirement
on li implies the following property; the proof is found in [BS92].

dim bF1 + � � �+ dim bFn+1 = dim

n+1X
i=1

bFi:
Moreover, given a face in b�, the collection bF1; : : : ; bFn+1 is uniquely de�ned by ��1jQ.

The image of b� under � induces a polyhedral subdivision � of Q whose maximal cells have a unique expression
F1 + � � �+ Fn+1, where Fi is the face of Qi corresponding to bFi. When the lifting is generic, it is called a mixed
subdivision. By inducing a subdivision we extend de�nition 4.2 to the cells of �.

De�nition 4.2 (Continued) If a facet of b� is the Minkowski sum bF1+� � �+ bFn+1, where bFi is a face of bQi, then
the Minkowski sum F1+ � � �+Fn+1, which expresses the corresponding cell of �, is called the optimal Minkowski
sum of this cell.

For any q lying in a cell F1 + � � �+ Fn+1, its optimal summand points qi lie in Fi. Similarly, for bq lying on a

lower envelope facet bF1 + � � �+ bFn+1, every summand in the point's unique sum is in bFi.
Lemma 4.4 Consider any cell in �, of arbitrary dimension. If its optimal sum is F1 + � � �+ Fn+1, Fi a face of
Qi, then at least one of the Fi is zero-dimensional, i.e., a vertex. In particular, this holds for maximal cells as
well as points.

Proof Since the lifting is linear, it does not a�ect the face dimension. Therefore, for the optimal summands
Fi of a cell in �;

P
i dimFi =

P
i dim

bFi � n. Since dimension is a non-negative quantity, we have established
the lemma. 2

Lemma 4.5 (Geometric) Let bp be a point in the interior of some facet of the subdivision b� of the lower envelope

s(Q). By construction, bp has a unique optimal expression as a sum of points from bQ1; : : : ; bQn+1, and at least one

of these is vertex baij = (aij ; li(aij)). Then (bp� baij + bQi) \ s(Q) = bp.
Proof It su�ces to show that every other point bq 2 bp�baij + bQi lies above the lower envelope. It is easy to see

that bq is contained in bQ, because it is the sum of n+1 points, one from each lifted polytope. So bq is either on or
above the lower envelope.

Now displace both bp and bq by decreasing their (n+1)-st coordinate by the same amount, thus de�ning pointsbp0; bq0 2 Rn+1 , see �gure 2. The displacement should be small enough so that the line through bp0; bq0 intersects the
lower envelope in the facet that contains bp. This is always possible because bp lies in the interior of a facet. If bp00
is this intersection point, it is clear that bQ also contains bp00 � baij + bQi by the previous argument.

Consider bq � bp and bq0 � bp00 as vectors rooted at the origin. By convexity, vector bq0 � bp00 is smaller than bq � bp
and is also in the same direction, see �gure 2. Now bq � bp is contained in the convex set bQi � baij , which contains

the origin. It follows that bq0 � bp00 is also contained in bQi � baij , so bq0 2 bp00 � baij + bQi � bQ. We have found pointbq0 such that �(bq) = �(bq0) but h(bq0) < h(bq). Thus bq is not on the lower envelope. 2
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De�nition 4.6 A mixed cell of mixed subdivision � is a (maximal) cell which is optimally expressed as a sum
F1 + � � � + Fn+1 where exactly one Fi is a vertex. Thus the remaining Fj , for j 6= i, are edges. All (maximal)
cells that are not mixed are called non-mixed.

Lemma 4.7 [Stu94] Let � be a mixed subdivision of Q. From the multilinearity of mixed volume it can be shown
that the mixed volume of any n Newton polytopes is the sum of cell volumes, over all mixed cells with a vertex
from the (n+ 1)-st support in their optimal sum. In other words,

MV �i =
X

�=F1+���+Fi�1+aij+Fi+1+���+Fn+1

Vol(�); i = 1; : : : ; n+ 1;

where each Fk is an edge of Qk; and aij 2 Ai.

5 Newton Matrix Construction

Relying on the properties of mixed subdivisions, we shall de�ne a square Newton matrix M whose determinant
is a nontrivial multiple of the sparse resultant. Relevant background material can be found in [GLS93, Sch93].

Matrix M is constructed by assigning a special role to polynomial f1; any polynomial can assume this special
role and an analogous construction will de�ne the respective matrix. We say that f1 is distinguished or that M
is associated to f1.

We shall index the rows and columns of M by a subset of the integer lattice points in Q. In order to associate
a unique maximal cell to each point we perturb Q slightly so that each integer lattice point lies in the relative
interior of a maximal cell of �. Let � 2 Qn be a su�ciently small vector in su�ciently generic position; the
probability that a random � is valid is analyzed in section 11.

De�nition 5.1 Let E be the following set of integer lattice points or, equivalently, n-dimensional exponent vectors:

E = Zn\ (Q+ �); � 2 Qn :

This set is in bijective correspondence with a set of Laurent monomials in n variables. Let �� denote the subdi-
vision obtained by shifting all cells of � by �, which means

�� = f� + � : � 2 �g:

E will be the set that indexes the rows and columns of M . We shall denote by b�� the perturbed subdivision
of the lower envelope s(Q). We now de�ne our selection rule for the elements of M ; recall that mi denotes the
vertex cardinality of Qi.

De�nition 5.2 (Row content function) Let p 2 E lie in the interior of a cell �+F1 + � � �+Fn+1 of ��. The
row content function RC is de�ned as follows.

RC : E ! f1; : : : ; n+ 1g � N : p 7! (i; j); j 2 f1; : : : ;mig;

where i 2 f1; : : : ; n+1g is the largest integer such that Fi is a vertex, and Fi = aij 2 Ai for some j 2 f1; : : : ;mig.
In other words, RC(p) = (i; j) implies that dimFk > 0; for all k > i.

It is clear that j lies in f1; : : : ;mig, since the corresponding summand aij is a vertex. Given the input supports,
function RC can be computed as follows.

Algorithm 5.3 (RC Computation)
Input: Supports A1; : : : ;An+1 � Zn, lifting functions l1; : : : ; ln+1 2 Z[x1; : : : ; xn], and perturbation vector
� 2 Qn .
Output: Vertex sets of Newton polytopes Q1; : : : ; Qn+1 and the pair RC(p) 2 f1; 2; : : : ; n + 1g � N at every
p 2 E .
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Description The �rst stage constructs the vertex sets of Qi by repeated application of linear programming, as
discussed in [GLS93]. For a point aik in Ai = fai1; : : : ; ai�ig, we test whether there is a feasible solution to the
following system.

aik =

�jX
j=1;j 6=k

�jaij ;

�jX
j=1;j 6=k

�j = 1; �j � 0; j = 1; : : : ; �i:

Feasibility implies aik is not a vertex and can be dropped from the �rst sum above, for subsequent tests. Infeasi-
bility implies aik is a vertex of Qi.

Now assume Qi has vertex set fai1; : : : ; aimi
g for mi � �i. For a point p 2 E , p 2 � + � is equivalent to

p� � 2 �, for some (maximal) cell � of �� . We wish to �nd the optimal sum expressing p� � in terms of points
pi 2 Qi. If p� � lies in a mixed cell, exactly one pi will be a vertex, otherwise at least two of them are vertices.
To reduce to linear programming we introduce constraints

p� � =

n+1X
i=1

pi =

n+1X
i=1

miX
j=1

�ijaij ;

where

�ij � 0; for 1 � j � mi; and

miX
j=1

�ij = 1; i = 1; 2; : : : ; n+ 1:

The objective function must force the lifted point s(p� �) to lie on the lower envelope of bQ by requiring that

n+1X
i=1

miX
j=1

�ij li(aij) be minimized;

where the li are the generic lifting linear forms. For every i, the �ij that are positive in the optimal solution
correspond to vertices aij summing up to pi 2 Qi in the optimal Minkowski sum of p� �. For points in the same
cell � = F1 + � � � + Fn+1, every summand face Fi in the optimal sum of � is de�ned by all distinct vertices of
Qi appearing as summands in optimal sums of points in �. The maximum i such that Fi is a vertex aij ; de�nes
(i; j) = RC(p) for all p 2 �. 2

Finding all optimal sums o�ers a deterministic test for the genericity of � by the following argument. If there
exists a (non-maximal) cell � =

P
i Fi, where the Fi are computed by algorithm 5.3 and

P
i dimFi < n, then for

all p 2 �; p� � does not lie in the interior of any maximal cell. In this case, the chosen � is not su�ciently generic
and a new one must be chosen.

Lemma 5.4 p 2 E and RC(p) = (i; j) implies p� aij + aik 2 E, for all aik 2 Ai.

Proof Since p 2 E , we have p 2 � + �, for some cell � which can be expressed as a Minkowski sum F1 + � � �+
Fi�1 + aij + Fi+1 + � � �+ Fn+1, where Fk is a face of Qk. This implies that p� aij + aik lies in

� � aij + aik + � = F1 + � � �+ Fi�1 + aik + Fi+1 + � � �+ Fn+1 + �;

which is a subset of Q+ �, for any aik 2 Ai. 2

This lemma implies that a square matrix can be de�ned as follows.

De�nition 5.5 (Newton matrix) Assume the notation used so far for polynomial system (1). The Newton
matrix M is a matrix whose rows and columns are indexed by elements of E. The element of M at row p and
column q, for arbitrary p; q 2 E with RC(p) = (i; j), i 2 f1; : : : ; n+ 1g, j 2 f1; : : : ;mig, is

Mpq =

(
cik ; if q � p+ aij = aik 2 Ai; for some k 2 f1; : : : ; �ig;
0; if q � p+ aij 62 Ai:
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Therefore Mpp = cij , where (i; j) = RC(p), for every p 2 E . The row of M indexed by p 2 E is �lled in à la
Sylvester, or Macaulay, and represents the following monomial multiple of fi :

xp�aijfi; where (i; j) = RC(p):

This discussion leads to the following theorem.

Theorem 5.6 Newton matrix M is well-de�ned by de�nition 5.5 and can be constructed by algorithm 5.3, given
the input supports Ai, lifting functions li and perturbation �. M is square and has dimension jEj.

6 A Nonzero Multiple of the Resultant

First we prove that the determinant of M is a multiple of the sparse resultant and then, using properties of the
subdivision, that this multiple is not zero for almost all specializations of the coe�cients.

Regarding polynomial rings as vector spaces over the coordinate �eld, with respect to some �xed monomial
basis, has been a fruitful viewpoint in the study of resultants. An (n + 1)-tuple of polynomials can be written
as the concatenation of the n + 1 respective polynomial coe�cient vectors. Let M denote the endomorphism
represented by matrix M .

M : C jEj ! C jEj : (g1; : : : ; gn+1) 7! g = g1f1 + � � �+ gn+1fn+1; (4)

where g1; : : : ; gn+1; g lie in C [x1 ; x
�1
1 ; : : : ; xn; x

�1
n ], and the support of every gi is de�ned to be supp(gi) = fp�

aij j p 2 E ; RC(p) = (i; j)g. The support of gi coincides with the set of monomials that multiply fi in de�ning
the rows of M . This means there is a bijective correspondence, de�ned by function RC, between E and the
union of the supports supp(gi). Since these supports are disjoint, they partition E . Moreover, the support of g
corresponds exactly to the monomials indexing the columns of M and equals E . Endomorphism (4) is expressed
as premultiplication of M by a row vector indexed by E .

Lemma 6.1 If there exists � 2 (C � )n such that f1(�) = � � � = fn+1(�) = 0, then det(M) = 0.

Proof Assume that M is nonsingular. Then endomorphism M is surjective and we can choose polynomials
g1; : : : ; gn+1 such that g in expression (4) is a monomial. This monomial is the sum of all products gifi so it must
be zero at every solution �. This is impossible since � has no zero component. 2

Theorem 6.2 (Divisibility) The sparse resultant R divides the determinant of Newton matrix M .

Proof For de�nitions and facts from algebraic geometry see [vdW50, Zip93]. The above lemma implies that
det(M) = 0 on the set Z0 of specializations of cij such that the system has a solution in (C � )n. Hence the variety
of det(M) in the space of all coe�cients contains Z0 so it must also contain its closure Z; recall that a (algebraic)
variety is the set of common zeros of a set of polynomials. By Hilbert's Nullstellensatz, det(M) is in the radical
of the ideal generated by the resultant R(A1; : : : ;An+1). Since the resultant is irreducible [PS93] its ideal coin-
cides with the ideal's radical; such an ideal is called radical or self-radical. Therefore the ideal contains det(M),
which is equivalent to saying that det(M) is the product of R with some polynomial over the coe�cients cij . 2

To exclude the possibility that det(M) is identically zero, we show that it does not vanish under some family
of specializations of the coe�cients. We choose a parametrized specialization:

cij 7! tli(aij); i = 1; : : : ; n+ 1; j = 1; : : : ; �i; (5)

where li are the lifting functions of the previous section, �i = jAij and t is a new real indeterminate. Observe

that the Newton polytope of the specialized fi as a polynomial in C [x1 ; x
�1
1 : : : ; xn; x

�1
n ; t; t�1] is precisely bQi. Let

M(t) denote the matrixM under this specialization, and det(M)(t) denote its determinant, which is a polynomial
in t with integer coe�cients. We wish to show that this determinant does not vanish.

The Newton polytope of the polynomial in row p is bQi shifted so that its vertex baij lies on the lower envelope,
over p. Geometric lemma 4.5 essentially states that the rest of the polytope lies strictly above the lower envelope.
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Now de�ne a matrix M 0(t) by scaling the rows of M(t); recall that h(bp) is de�ned to express the (n + 1)-st

coordinate of any bp 2 bQ.
M 0

pq(t) = th(bp)�li(aij)Mpq(t); p; q 2 E ; where (i; j) = RC(p); bp = s(p� �):

In the language of lifted Newton polytopes, the row-scaling of M(t) by powers of t corresponds to translating the
Newton polytope of row p so that vertex baij touches the lower envelope at bp. With the current notation, the new
determinant is expressed as follows.

det(M 0)(t) = det(M)(t)
Y
p2E

th(bp)�li(aij): (6)

Lemma 6.3 For all nonzero elements M 0
pq(t) with p 6= q, deg(M 0

pq)(t) > deg(M 0
qq)(t) holds for the degrees in t.

Proof Let bp and bq be the points on the lower envelope s(Q) such that �(bp) = p � � and �(bq) = q � �. Let
(�; 
) = RC(q); then degMqq(t) = l�(a�
) is the diagonal entry's degree in t.

degM 0
qq(t) = h(bq)� l�(a�
) + degMqq(t) = h(bq):

Let Mpq = cik 6= 0; where (i; j) = RC(p); then q = p� aij + aik; for some aik 2 Ai. Let bq0 = bp� baij + baik.
�(bq0) = �(bp)� aij + aik = p� � � aij + aik = q � � = �(bq);

and
degM 0

pq(t) = h(bp)� li(aij) + li(aik) = h(bq0):
By geometric lemma 4.5, there is a unique point of minimum (n + 1)-st coordinate on the lower envelope over
q � �; namely bq; so bq0 cannot lie on the lower envelope, hence h(bq0) > h(bq). 2

Theorem 6.4 The lowest degree term in t of det(M)(t) is the product of the leading diagonal elements of M(t).
This term has unit coe�cient and integer exponent

P
p2E li(aij), where (i; j) = RC(p): Therefore det(M)(t) does

not vanish.

Proof The determinant of M 0(t) is

det(M 0)(t) =
X

�2S(E)

(�1)sign(�)
Y
q2E

M 0
�(q)q(t)

where S(E) is the symmetric group on E . For every � not equal to the identity, we have �(q) 6= q for some q, so
deg(M 0

�(q)q)(t) > deg(M 0
qq)(t) by the previous lemma. Thus

deg

0@Y
q2E

M 0
qq(t)

1A < deg

0@Y
q2E

M 0
�(q)q(t)

1A
for every permutation � other than the identity. This implies that the product of leading diagonal entries is a
unique lowest power of t. 2

In particular, expression (6) implies that the trailing terms in det(M 0)(t) and det(M)(t) are, respectively,Y
p2E

th(bp) : bp = s(p� �) and
Y
p2E

tli(aij ) : RC(p) = (i; j): (7)

Therefore there exists some su�ciently small value t0 > 0 such that for every t 2 (0; t0), the leading diagonal
product is not canceled.

Corollary 6.5 Matrix M is not singular for almost all coe�cient specializations.
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Proof There exists specialization (5) and an open interval for t between zero and a su�ciently small positive
value t0 so that det(M)(t) is nonzero by theorem 6.4. Hence det(M) is not identically zero. Consider the variety,
in the space of complex coe�cients, de�ned by det(M) = 0, where the latter is considered as a polynomial in the
coe�cients. We have proven that this variety is not full-dimensional, hence it has zero volume [vdW50, Zip93].
2

It has been shown that the Newton matrix determinant gives a nontrivial multiple of the sparse resultant.
The next question is how close this multiple is to the actual resultant.

7 The Determinant Degree

This section examines the degree of det(M) in the coe�cients of each input polynomial fi and compares it to the
respective degrees of the sparse resultant.

Given �xed integer vectors e1; : : : ; en 2 Zn, de�ne an n-dimensional half-open integral parallelotope HO :

HO = fr1e1 + r2e2 + � � �+ rnen j r1; : : : ; rn 2 [0; 1)g :

The point subset where ri = 0 constitutes a facet of HO, while for ri = 1 the opposite facet is de�ned, where HO
is open. The two facets are related by a displacement vector v = ei.

Lemma 7.1 The number of integer lattice points in a half-open integral parallelotope equals its volume Vol(HO).

Proof It follows from [Sta80, Remark, p.335] that the number of lattice points is n! Vol(S) where S is the
simplex with vertex set the origin and the endpoints of e1; : : : ; en. The volume of the parallelotope HO is known
to be n! Vol(S). 2

Proposition 7.2 For any � 2 Rn , the number of integer lattice points in HO + � equals Vol(HO).

Proof Imagine that HO is displaced by t� as t varies from 0 to 1. Observe that for each facet of HO that is
open or closed, the opposite facet is closed or open respectively, and that opposite facets are displaced from each
other by an integral vector v. Thus as HO moves, whenever a lattice point p enters HO, a corresponding point
at p+ v exits, and vice versa. Thus the number of lattice points inside HO remains constant. By lemma 7.1 this
number is the parallelotope's volume. 2

A mixed cell in �� is the Minkowski sum of n edges and a vertex, hence a parallelotope in Rn .

Lemma 7.3 The number of rows indexed by all integer points in a mixed cell equals the cell's volume.

Proof The perturbation by � guarantees that all integer points in E lie in the relative interior of a mixed cell,
hence the number of these points equals the number of integer points in the half-open parallelotope de�ned by the
n edges in the optimal sum of the cell. Since each point corresponds to exactly one row, proposition 7.2 implies
the lemma. 2

The degree of det(M) in the coe�cients of some fi equals the number of rows expressing multiples of fi.

Theorem 7.4 Suppose that Newton matrix M is constructed having assigned a special role to f1, i.e., with the
row content function of de�nition 5.2. The degree of det(M) in the coe�cients of f1 equals MV (Q2; : : : ; Qn+1),
which equals the degree of R(A1; : : : ; An+1) in the same coe�cients. Moreover, the degree of det(M) in the
coe�cients of fj, for j > 1, is at least as large as MV �j , which equals the respective degree of R(A1; : : : ;An+1).

Proof The row content function RC chooses f1 precisely at the mixed cells to which Q1 contributes a vertex.
By lemma 4.7, the total volume of these cells equals MV (Q2; : : : ; Qn+1). So the number of rows containing
coe�cients of f1 is precisely MV (Q2; : : : ; Qn+1).

For every fj , j > 1, the number of rows containing a multiple of fj is at least as large as the number of points
in the mixed cells to which Qj contributes a vertex, because for these cells RC has no choice but to pick a vertex
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in Aj . These cells have point cardinality MV �j . The correlation of MV �j and the respective resultant degree is
given by proposition 3.7. 2

In other words, the determinant degree is tight with respect to the distinguished polynomial, so the GCD of
n + 1 such determinants would give R. Before studying the computation of R in section 9, we examine certain
rami�cations.

8 Sparse E�ective Nullstellensatz

The Newton matrix construction directly implies a sparse version of the e�ective Nullstellensatz, albeit only
for ideals generated by at least n + 1 su�ciently generic polynomials. In other words, it is possible to bound
the Newton polytopes of the polynomial coe�cients in the ideal membership formula in terms of the Newton
polytopes of the ideal generators. Recall that Newton polytopes provide a more precise characterization of a
polynomial than total degree. For de�nitions and notation see [vdW50, Zip93].

Hilbert's Nullstellensatz is a fundamental result in algebraic geometry, and its e�ective version is crucial in
computational algebraic geometry. For the classical Nullstellensatz, the problem was settled by Brownawell and
Kollár.

Theorem 8.1 (Classical e�ective Nullstellensatz) [Bro87, Kol88] Suppose I = (f1; : : : ; fr) is an ideal in
polynomial ring K[x1; : : : ; xn], where K is an arbitrary �eld and deg fi � d, for i = 1; : : : ; r. Let h 2 K[x1; : : : ; xn]
have total degree degh. Polynomial h vanishes at the common zeros of I, i.e., h 2 p

I, if and only if there
exist polynomials g1; : : : ; gr 2 K[x1; : : : ; xn] such that 9 q � 2(d + 1)n : hq =

Pr
i=1 gifi, where deg(gifi) �

2(degh+ 1)(d+ 1)n; i = 1; : : : ; r: If I = (1) then

1 =

rX
i=1

gifi; where deg gifi � 2(d+ 1)n; i = 1; : : : ; r:

For the special case of sets of n+1 generic polynomials over C , matrix M is nonsingular by corollary 6.5 and
function (4) is surjective. In addition, ideal I equals the entire ring and the associated variety is empty. This
implies a restricted version of a sparse, or Newton, e�ective Nullstellensatz.

Theorem 8.2 Suppose f1; : : : ; fn+1 are generic Laurent polynomials in L = C [x1 ; x
�1
1 ; : : : ; xn; x

�1
n ] with Newton

polytopes Qi, and the generated ideal is I = L. Then there exist Laurent polynomials g1; : : : ; gn+1 2 L, with
Newton polytopes Q0

i, such that

1 =
n+1X
i=1

gifi : Q0
i � Q1 + � � �+Qi�1 +Qi+1 + � � �+Qn+1; i = 1; 2; : : : ; n+ 1:

Proof The surjectivity of M implies the existence of polynomials gi such that their image under M is 1,
possibly after translating some Newton polytopes Qi. By de�nition, the support of gi contains vector di�erences
of the form p� pi, where p 2 E and pi is a summand of p and a vertex of Qi. Therefore,

supp(gi) � Q1 + � � �+Qi�1 +Qi+1 + � � �+Qn+1:

This proves the result. 2

This result can easily be extended to arbitrary �elds K and to an arbitrary number of polynomials. A harder
step is considering the case where the Newton matrix construction does not apply, most importantly when the
common roots form a set of positive dimension.

Conjecture 8.3 (Sparse e�ective Nullstellensatz) Suppose f1; : : : ; fr, r � 1, are arbitrary Laurent polyno-
mials in L = K[x1; x

�1
1 ; : : : ; xn; x

�1
n ] with Newton polytopes Qi, where K is an arbitrary �eld and I = L is the

generated ideal. Then there exist Laurent polynomials g1; : : : ; gr 2 L, with Newton polytopes Q0
i, such that

1 =

rX
i=1

gifi : Q0
i � Q1 + � � �+Qi�1 +Qi+1 + � � �+Qr:

14



9 Sparse Resultant Computation

This section discusses e�cient ways for computing the sparse resultant from a set of Newton matrices. We wish
to compute the resultant of a specialized system, as opposed to the resultant of a generic system which has been
considered so far.

We �rst construct n+1 matrices M1; : : : ;Mn+1, where each Mi has the minimum number of rows containing
coe�cients of fi. These are obtained by modifying the row content function so that it returns (k; j), for k 6= i
and any j, whenever possible; equivalently, it returns (i; j), for some j, only at the corresponding mixed cells. Let
D1; : : : ; Dn+1 be the respective determinants, which are all multiples of the resultant. The GCD of D1; : : : ; Dn+1

has the correct degree in the coe�cients of every fi and, since the GCD is divisible by the resultant R, it must
be equal to R.

Unfortunately, this method does not always work because, although specialization commutes with addition
and multiplication, it does not commute with the GCD operation. This is a fundamental problem in computing
resultants for specialized systems, given a resultant matrix de�ned generically. The naive GCD approach can be
used after a suitable perturbation of the specialized system, but here we propose two economical methods based
on the approach of [Can88].

9.1 Division Method

Let g1; : : : ;gn+1 be the specializations of the given polynomials with coe�cients in an arbitrary coe�cient �eld.
The idea is to introduce some indeterminates that will guarantee that, in dividing out the extraneous factors,
denominators do not vanish. Then we compute with this smaller set of indeterminates and eliminate them at the
end.

First, we choose polynomials h1; : : : ; hn+1 with random integer coe�cients, such that hi has support Ai.
Then, the input to the matrix construction algorithm is f1; : : : ; fn+1 specialized to the following system:

g1 + u1h1; : : : ; gn+1 + un+1hn+1;

where each ui is a new indeterminate. Di(u1; : : : ; un) is the determinant of matrix Mi constructed so that
the number of rows corresponding to gi + uihi is minimal. Let bi(u1; : : : ; un) be the extraneous factor Di=R;
i = 1; 2; : : : ; n+ 1.

Lemma 9.1 The extraneous factor bi(u1; : : : ; un) in Di(u1; : : : ; un); with respect to the sparse resultant R(u1; : : : ; un);
does not depend on the coe�cients of the i-th polynomial, hence it is independent of ui, for any i 2 f1; : : : ; n+1g.
Therefore we can write

Di(u1; : : : ; un) = bi(u1; : : : ; ui�1; ui+1; : : : ; un)R(u1; : : : ; un):

Let R(j)(u1; : : : ; uj) be the coe�cient of the highest-degree term, when R is regarded as a polynomial in inde-

terminates uj+1; : : : ; un+1; for j = 1; 2; : : : ; n+1; lemma 9.3 elaborates on this notion. We de�ne D
(j)
i (u1; : : : ; uj)

and b
(j)
i (u1; : : : ; uj) analogously, for i = 1; 2; : : : ; n + 1. Each D

(j)
i is the determinant of Newton matrix Mi for

the following specialized system:

g1 + u1h1; : : : ; gj + ujhj ; hj+1; : : : ; hn+1:

Observe that R(n+1) = R;D
(n+1)
i = Di; and b

(n+1)
i = bi. Moreover, since bi is independent of ui; we must have

b
(i)
i = b

(i�1)
i .

De�nition 9.2 Suppose that a polynomial P (u1; : : : ; un+1) has maximum degree di in ui. Then P is said to be
rectangular if its support contains exponent vector (d1; d2; : : : dn+1).

Lemma 9.3 R(j); D
(j)
i ; and b

(j)
i are all rectangular polynomials, for i; j = 1; 2; : : : ; n+ 1.

Proof The degree of R in ui is MV �i by proposition 3.7. The coe�cient of
Q

i u
(MV

�i)
i in R is the sparse

resultant of system h1; : : : ; hn+1. To see this, consider what happens when the ui take arbitrarily large values.
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The resultant of the hi is nonzero for su�ciently generic hi because, in this case, the hi have no common roots,
and they have no zero coe�cients by construction. Hence R and R(j) are rectangular, for j = 1; 2; : : : ; n+ 1.

Similarly, each determinant Di is rectangular, because the coe�cient of the monomial with highest degree in
every ui is the determinant of the same Newton matrix for system h1; : : : ; hn+1. This implies bi is rectangular,

and the same argument extends to D
(j)
i ; b

(j)
i ; for j = 1; 2; : : : ; n+ 1. 2

It follows that D
(j)
i = b

(j)
i R(j) for all i and j; and, since b

(i)
i = b

(i�1)
i ; we can eliminate b

(i)
i :

R(i) =
D

(i)
i

D
(i�1)
i

R(i�1); i = 1; : : : ; n+ 1: (8)

R(0) is some nonzero scalar, which does not a�ect the computation of R. R = R(n+1); so setting u1 = � � � =
un+1 = 0 in R(n+1) will give the resultant of system g1; : : : ; gn+1. This computation requires 2n + 1 divisions,

because for i = 1; 2; : : : ; n + 1; we must compute b
(i�1)
i = D

(i�1)
i =R(i�1) and then R(i) = D

(i)
i =b

(i�1)
i ; except for

i = 1; where R(1) = D
(1)
1 =D

(0)
1 . However, the computation involves polynomials in u1; : : : ; un+1 and would be

practical only for small n. In what follows we reduce the number of indeterminates to one.
Observe that identity (8) is valid for any specialization of the ui indeterminates, as long as no denominator

vanishes. So we take u1 = u2 = � � � = un+1 = u. Lemma 9.3 still holds by an analogous proof, provided the hi
have no common roots. Hence, recurrence (8) establishes the following theorem.

Theorem 9.4 Suppose that the choice of h1; : : : ; hn+1 is su�ciently generic as speci�ed above. Then this method
constructs the sparse resultant from the Newton matrices associated to the n+ 1 polynomials after a sequence of
2n+ 1 exact divisions on univariate polynomials.

It is possible to detect failure of the condition on the hi deterministically, in which case new randomized
variables are chosen as the hi coe�cients. A bound on the probability of failure and the asymptotic bit complexity
are analyzed in section 12.1.

In the more favorable case that the gi polynomials are su�ciently generic, which means that no D
(j)
i vanishes,

we may compute D
(j)
i for u = 0; i.e., for specialized system g1; : : : ; gj ; hj+1; : : : ; hn+1:

9.2 GCD Method

We present a simpler method that strongly exploits the subdivision-based construction and applies to the case
that the specialized coe�cients are nonzero and chosen from some polynomial ring over Q. It is illustrated in the
example of section 10.

Again we choose polynomials hi with random integer coe�cients and supports Ai. Then, the specialized
system is as follows.

g1 + uh1; : : : ; gn+1 + uhn+1:

By Hilbert's irreducibility theorem [Zip93, sect. 19.3], the resultant R will remain irreducible over Q[u] for
su�ciently generic hi. This is a Las Vegas step in the sense that failure of the choices is detected deterministically;
the error probability is calculated in section 12.2. Let D1(u) be the determinant of M1 under this specialization,
and let b(u) be the extraneous factor de�ned by D1(u) = b(u)R(u).

Suppose, without loss of generality, thatM1 was de�ned using a linear form l1 which is so much larger than the
others that whenever a vertex a1j of Q1 appears in the optimal Minkowski sum of a point in E , this vertex must
be the one which minimizes l1. In other words, in every row containing coe�cients of f1, the leading diagonal
element will be c1j , with j such that

l1(a1j) = min fl1(a1k) : a1k 2 A1g :
Now consider the following system:

xa1j + uh1; g2 + uh2; : : : ; gn+1 + uhn+1;

and construct Newton matrix M 0
1 associated to the �rst polynomial. Let D0

1(u) be the determinant of M 0
1, with

D0
1(u) = b0(u)R0(u), where R0(u) is the sparse resultant of the new system and b0(u) is the extraneous factor.

R0(u) is irreducible for su�ciently generic hi.
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Figure 3: The Newton polytopes and the exponent vectors aij , each corresponding to the term with coe�cient
cij .

b0(u) does not depend on the �rst polynomial by lemma 9.1. The two systems have the same supports and
the last n polynomials are identical, hence the extraneous factors are equal to each other, i.e., b0(u) = b(u). Since
R(u) and R0(u) are irreducible, b(u) = GCD(D1(u); D

0
1(u)). Therefore

R(u) =
D1(u)

GCD(D1(u); D0
1(u))

;

and specializing u = 0 gives the resultant of g1; : : : ; gn+1.

Theorem 9.5 If the choice of h1; : : : ; hn+1 is su�ciently generic as speci�ed above, then the sparse resultant can
be computed by a GCD operation on univariate Newton matrix determinants, followed by an exact division on
univariate polynomials.

It is worth noting that the degree of b(u) is known in advance, namely it is the di�erence of the size of
M1 minus the total degree of the sparse resultant. Thus the GCD computation is branch-free and reduces to
calculation of the appropriate minors of the Sylvester matrix, or subresultants, of D1(u) and D

0
1(u) [Loo82]. The

complexity of the method is analyzed in section 12.2.
Once again, there is a more favorable case that simpli�es the situation. Namely, if the given polynomials gi

are generic enough, meaning that their sparse resultant is irreducible and the determinants D1(0) and D0
1(0) are

both nonzero, then R can be computed directly as D1(0)=GCD(D1(0); D
0
1(0)).

10 A Bivariate Example

The Newton matrix construction is illustrated for a system of 3 polynomials in 2 unknowns:

f1 = c11 + c12xy + c13x
2y + c14x;

f2 = c21y + c22x
2y2 + c23x

2y + c24x;

f3 = c31 + c32y + c33xy + c34x:

The Newton polytopes are shown in �gure 3. The mixed volumes are MV (Q1; Q2) = 4, MV (Q2; Q3) = 4,
MV (Q3; Q1) = 3, so the sparse resultant degree is 11. Compare this with the Bézout numbers of these subsystems:
8; 6; 12; hence the classical resultant degree is 26. Assume, without loss of generality, that the lifting functions
are l1(x; y) = Lx + L2y; l2(x; y) = �L2x � y; l3(x; y) = x � Ly; where L is a su�ciently large positive integer.
The three lifted Newton polytopes lie in three-dimensional space, the third coordinate being de�ned by the lifting
functions. The linearity of li implies that the lifted polytopes lie in a two-dimensional plane, as shown in �gure 4
from a perspective view. The �gure also depicts the lower envelope s(Q) of their Minkowski sum bQ constructed by
the convex hull program of [Emi98]. The program automatically triangulates all output facets; this triangulation
is immaterial in inducing a mixed subdivision of Q. This �gure, as well as �gure 5, are drawn by Geomview.

Figure 5 depicts the projection of the lower envelope, which lies in three-dimensional space, to the two-
dimensional Euclidean plane, thus yielding the Minkowski sum Q of the original Newton polytopes. The per-
spective view shows the bijective correspondence between facets of s(Q) and maximal cells of Q. Again, all cells
are triangulated as a side-e�ect of the convex hull code. Having computed the mixed subdivision of Q for the
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Figure 4: The lifted Newton polytopes and a triangulation of the lower envelope of their Minkowski sum.
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Figure 5: The lower envelope of the Minkowski sum of all lifted Newton polytopes and its planar projection.

19



11,32

11 11
11

32

33 33

34

23 23

22

11

22,33

11,23

3y

y2

y

1
x x43x x2

Figure 6: The mixed subdivision �� of Q + �, where � = (�3=8;�1=8). Each cell is labeled with the indices of
the Newton polytope vertices that appear in its optimal sum: ij denotes vertex aij .

given lifting, we apply a small perturbation in order to associate a unique sum of Newton polytope faces to each
maximal cell. The subdivision �� of Q+ � into maximal cells and the indices of the Newton polytope vertices in
the optimal sums are shown in �gure 6, for � = (�3=8;�1=8). Only mixed cells have a unique vertex associated;
for the other three, we pick the vertex maximizing the �rst index.

Matrix M , the Newton matrix associated to f1, appears below with rows and columns indexed by the integer
points in E ; and has dimension 15. For instance, the �rst row corresponds to point (1; 0) which lies in a maximal
mixed cell expressed uniquely as a11 + [a24; a23] + [a31; a34], where [a; a0] stands for a Newton polytope edge.
Since a11 = (0; 0), the polynomial �lling in the row is xf1 = c11x + c12x

2y + c13x
3y + c14x

2. M contains, by
construction, the minimum number of f1 rows, namely 4. The total number of rows is 4 + 4 + 7 = 15, i.e. the
determinant degree is higher than optimal by 1 and 3, respectively, in the coe�cients of f2 and f3.

2
6666666666666666666666664

1; 0 2; 0 0; 1 1; 1 2; 1 3; 1 0; 2 1; 2 2; 2 3; 2 4; 2 1; 3 2; 3 3; 3 4; 3

1; 0 c11 c14 0 0 c12 c13 0 0 0 0 0 0 0 0 0

2; 0 c31 c34 0 c32 c33 0 0 0 0 0 0 0 0 0 0

0; 1 0 0 c11 c14 0 0 0 c12 c13 0 0 0 0 0 0

1; 1 0 0 0 c11 c14 0 0 0 c12 c13 0 0 0 0 0

2; 1 c24 0 c21 0 c23 0 0 0 c22 0 0 0 0 0 0

3; 1 0 c24 0 c21 0 c23 0 0 0 c22 0 0 0 0 0

0; 2 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0 0 0

1; 2 0 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0 0

2; 2 0 0 0 0 0 0 0 0 c11 c14 0 0 0 c12 c13

3; 2 0 0 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0

4; 2 0 0 0 0 0 c24 0 0 c21 0 c23 0 0 0 c22

1; 3 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33 0 0

2; 3 0 0 0 c24 0 0 c21 0 c23 0 0 0 c22 0 0

3; 3 0 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33 0

4; 3 0 0 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33

3
7777777777777777777777775

To illustrate the computation of the sparse resultant we consider a specialization of the system to

g1 = �1 + 2xy � 3x2y � 5x;

g2 = 7y � 11x2y2 + 13x2y � 17x;

g3 = �19� 23y � xy + 3x:

In order to apply the GCD method of section 9.2, we choose random integer polynomials, with coe�cients
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uniformly and independently distributed in [0; 1000]:

h1 = 82 + 271xy + 698x2y + 564x;

h2 = 977y + 539x2y2 + 86x2y + 769x;

h3 = 922 + 410y + 656xy + 164x:

Then D1(u) and D1(u)
0 are both of degree 15 in u. Their GCD is

b(u) = 9483529600u4+ 355094440u3� 131557356u2+ 4710998u� 6877;

which gives R(u) as a u-polynomial of degree 11 and

R(0) = 541503745717:

This proves that there are no common solutions in (C � )2 for g1; g2; g3.
Section 13 states conjecture 13.1 on the existence of a submatrix M (nm) of M , de�ned by the points in

non-mixed cells, such that the quotient detM= detM (nm) equals the sparse resultant. In this example,

M (nm) =

2664
c23 0 0 0
0 c32 c33 0
c34 0 c32 0
0 0 0 c33

3775 ;
and detM= detM (nm) produces R(u) as above, for the specialized system gi + uhi; i = 1; 2; : : : ; n + 1; and the
correct sparse resultant, by setting u = 0. Hence the conjecture is veri�ed for this example.

11 Complexity of the Matrix Construction

This section analyzes the randomization and time complexity of constructing the Newton matrix, and combines
the two in estimating the overall complexity. The viewpoint is that of worst-case asymptotic bit complexity, in
the computational model of the bit-cost, or logarithmic-cost, RAM [AHU74, Ch. 1]. In complexity bounds we
sometimes ignore polylogarithmic factors in the parameters appearing in polynomial factors; this is denoted by
O�(�).

The �rst step is to bound the error probabilities in the two randomized steps, namely choosing li and �. Recall
that both steps are of the Las Vegas type.

Lemma 11.1 Let m be the maximum vertex cardinality of any Qi over all i 2 f1; : : : ; n + 1g. If all n(n + 1)
coe�cients of li 2 Z[x1; : : : ; xn] are chosen independently and uniformly from an interval of size 2Ll, where
Ll 2 Z>0, then the probability �l 2 (0; 1) that the lifting is not su�ciently generic is bounded as follows.

�l � 1

2Ll

1

2
mn+1(mn � 1); which implies Ll = O

�
n logm+ log

1

�l

�
;

Proof The li are not su�ciently generic if there exist two distinct sequences (p1; : : : ; pn+1) and (q1; : : : ; qn+1);
with pi; qi vertices of Qi, such that

P
i pi =

P
i qi and the sums of their lifted images are equal. We bound the

probability �l that
P

i li(pi) =
P

i li(qi).
Since the sequences are distinct, we can assume, without loss of generality, that p1 and q1 di�er in their �rst

coordinate. Fix all coe�cients in the n+ 1 lifting functions, except for the the �rst coe�cient of l1. Then there
is at most one integer value of this coe�cient for which the two sums of lifted points are equal. The probability
of picking the single undesired integer is 1=2Ll.

This probability must be multiplied by the number of distinct pairs ((pi); (qi)) whose respective sums are
equal in Rn . To obtain an upper bound suppose that all points in (pi) are chosen at will, in any of mn+1 ways.
Once q1; q2; : : : ; qn are chosen, qn+1 shall be determined. If the subsequences of n elements are identical, then
qn+1 = pn+1; which makes the complete sequences identical. Hence the two subsequences must di�er. There are
at most mn�1 valid choices for (q1; q2; : : : ; qn); given (pi). Since the two sequences are interchangeable, the total
number of possible pairs is at most mn+1(mn � 1)=2. 2

The following result, also known as Schwartz's lemma, shall be applied repeatedly.
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Lemma 11.2 [Sch80, lem. 1], [Zip93, prop. 98] Given is nonzero polynomial P in any number of variables, with
total degree degP . Consider a specialization of the variables, distributed independently and uniformly in a set of
S values. Then, the probability that the specialized polynomial vanishes is bounded by degP =S.

Let e < 2:718 denote the exponential base and s the scaling factor of the system as de�ned in de�nition 3.9.

Lemma 11.3 Assume that the entries of � 2 Qn have the numerators distributed uniformly and independently
in a set of 2L� integer values and the denominators are all equal to some su�ciently large integer. The total
probability of failure for the random choice of �; denoted �� 2 (0; 1); is bounded as follows.

�� � (jEjn!)2
2L�

; which implies L� = O

�
log jEj+ n logn+ log

1

��

�
:

Proof Every maximal cell boundary is comprised of cells in � of dimension n � 1; each being part of a
hyperplane in Rn . Therefore, every (n � 1)-dimensional cell is expressed as a subset of the roots of a linear
polynomial. The random choice for � is not generic if � lies in some (n� 1)-dimensional cell, which happens with
probability at most 1=2L� ; by lemma 11.2.

Now we have to bound the number of (n � 1)-dimensional cells in �. We know that each maximal cell has
volume at least 1=n! because it is de�ned by integer points. The volume of a convex polytope is asymptotically
equal to the number of integer lattice points in its interior, by Ehrart's theorem [Ehr67]. The number of maximal
cells is then O(jEjn!). Since every (n � 1)-dimensional cell can be de�ned as the intersection of two maximal
cells, the number of the former is at most O((jEjn!)2). We use Stirling's approximation [AHU74, Zip93] to bound
n! = O(n logn) in estimating L�. 2

Instead of applying Ehrart's theorem, we can bound the volume of Q by theorem 3.10 under the additional
hypothesis that all Qi have positive volume.

We now examine the complexity of constructing M . The change of variables that may be required to ensure
that

Pn+1
i=1 Ai generates Z

n involves the computation of a Smith normal form [HM91]. Its asymptotic complexity
is dominated so we ignore it in the sequel.

Identifying the vertices of all Newton polytopes may be reduced to linear programming. We can apply
any polynomial-time algorithm such as Khachiyan's ellipsoid method or Karmarkar's algorithm. In the case of
Karmarkar's algorithm [Kar84] the bit complexity for a linear program of V variables, C constraints and B bits
per coe�cient is

O�(C2V 5:5B2):

Let d be the highest degree of any input polynomial in a single variable and � = maxif�ig be the maximum
number of support points per polynomial. Recall that the vertex set of Qi has cardinality mi, mi � �i; and that
m = maxifmig.

Lemma 11.4 The bit complexity for computing all Newton polytope vertices is O(n3�6:5 log2 d).

Proof To compute the vertices of each Qi algorithm 5.3 applies linear programming with C = O(n) constraints
and V = O(�i) variables, where the maximum size of any coe�cient is log d. The bit complexity to decide whether
a support point is a vertex is O�(n2�5:5i log2 d). There are at most � tests for each of the n+1 polytopes. 2

The rest of algorithm 5.3 associates a unique optimal sum of points pi 2 Qi to every p 2 E .

Lemma 11.5 With the current notation, the total bit complexity for computing the optimal sum expression of
every p 2 E is

O�

�
jEjn9:5m5:5 log2 d log2

1

�l��

�
:

Proof Optimal sum expressions are computed in the second phase of algorithm 5.3 by linear programming.
Each linear program has C = O(n) constraints in V = O(nm) variables. The bit size of the coe�cients depends
on the bit size of �, of the points in Qi and of li(aij). By lemma 11.3 the �rst two give a total of O�(log jEj+n+
log(1=��) + log d). A lifted coordinate is a sum of n+ 1 products, each of a li coe�cient multiplied by an input
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point coordinate, hence of size O(logn+log d+Ll). By lemma 11.1, this is O�(log d+n logm+log(1=�l)). Hence
the coe�cient bit size is

B = O�

�
log jEj+ n logm+ log d+ log

1

���l

�
:

For simplicity, we use B = O�(log jEj+ n logm log d log(1=���l)); and the claim follows. 2

Given the optimal sum of every point in E ; Newton matrix M is completely speci�ed and can be represented
implicitly by the polynomials and the monomials which index its rows and columns. The overall complexity is
established in the next theorem, by combining the two previous lemmas. If an explicit dense representation is
required, then an additional cost of O(jEj2) must be included. For di�erent matrix representations, see [AHU74].

Theorem 11.6 Given polynomials f1; : : : ; fn+1, the algorithm computes an implicit representation of Newton
matrix M with worst-case bit complexity

O�

�
jEjn9:5�6:5 log2 d log2

1

�l��

�
;

where � is the maximum point cardinality of the n + 1 supports, d is the maximum degree of any polynomial in
any variable, and �l; �� 2 (0; 1) are the error probabilities for the lifting scheme and the perturbation, respectively.

Corollary 11.7 Assume the notation of the previous theorem. Let the system's scaling factor be s and the total
degree of the sparse resultant be degR. If all Newton polytopes have positive volume then the bit complexity is

O�

�
(se)n degR �6:5 log2

1

�l��

�
:

Proof The bound follows by applying Ehrart's theorem [Ehr67], which bounds jEj asymptotically by the
volume of Q. Then jEj = O(snen+1 degR=n3=2) by theorem 3.10. Moreover, since all Newton polytopes are
full-dimensional, jEj � d, so the logarithmic factor in d can be dropped. Similarly, the polynomial factor in n is
dropped because of (se)n. 2

This bound demonstrates the polynomial dependence of the complexity on the sparse resultant's total degree
and the simply exponential dependence on n. Note that s is typically a small constant.

12 Complexity of the Resultant Computation

This section analyzes the worst-case asymptotic bit complexity and randomization complexity of computing
the actual sparse resultant from a set of Newton matrices. First, the error probabilities are bounded for the
randomized steps and then the total bit complexity is asserted.

The computational model is again the bit-cost RAM. O�(�) indicates that we have ignored polylogarithmic
factors, and e denotes the exponential base. This section applies the current record asymptotic complexity for
matrix multiplication, namely O(N2:376) for N �N matrices [CW90].

In manipulating univariate polynomials, we shall use asymptotic bounds based on the Fast Fourier Transform
(FFT). The running time for the interpolation of a univariate polynomial of degree D from its values at D points
is O�(DB), where B stands for the bit size of the polynomial's coe�cients [AHU74, sect. 7]. Given two univariate
polynomials of degree at most D and with coe�cient size bounded by B, where one polynomial divides the other,
the computation of their quotient and product has bit complexity O�(DB) [AHU74, sect. 8].

12.1 Division Method

We consider the division method of section 9.1. First, we have to bound the probability that a particular choice

of a set of hi polynomials makes their sparse resultant vanish or causes D
(j)
i (u1; : : : ; uj) to drop degree, for some

i; j 2 f1; : : : ; n+ 1g. Both events reduce to the vanishing, under a specialization, of a nonzero polynomial in the
coe�cients of hi.
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Lemma 12.1 When the hi are specialized with each coe�cient having Lh bits, the probability �h 2 (0; 1) that this
choice is not su�ciently generic for our algorithm is

�h �
�
(n+ 1)2 + 1

� degR
2Lh

; which implies Lh = O

�
logn + log(degR) + log

1

�h

�
;

where degR is the total degree of the sparse resultant.

Proof The resultant of the hi has the same degree as the resultant of fi, since the two polynomial systems have

identical supports. Moreover, the degree is at least as high as that of any D
(j)
i , so the highest error probability

occurs for the resultant of the hi. This probability is bounded by degR= 2Lh , by lemma 11.2. The number of
distinct polynomials that may vanish is at most (n+ 1)2 + 1. 2

Theorem 12.2 Let b and Lh be the maximum bit length of the gi and the hi coe�cients respectively. Given the
2(n + 1) required Newton matrices, the computation of the sparse resultant of the gi by the division method has
bit complexity

O�
�jEj3:376 degR (b+ Lh)

�
;

where degR is the total degree of the sparse resultant.

Proof A straightforward approach is to evaluate the 2(n + 1) determinants at certain points, then multiply
and divide, as speci�ed by recurrence (8), the respective values pointwise. This produces the values of R(u)
at these points. Given degR values, we can interpolate R(u) in O((degR)2(b + Lh)) bit operations. As for
the complexity of the evaluation phase, there are O(n degR) determinant evaluations, each with bit complexity
O�(jEj3:376(b+ Lh)). The overall bound follows by applying degR � jEj. 2

Corollary 12.3 Consider the context of the previous theorem and assume that all n+ 1 input Newton polytopes
have positive volume. Let the system's scaling factor be s and let � be the maximum support cardinality. Then
the total bit complexity of constructing the required Newton matrices and computing the sparse resultant R for an
arbitrary specialization is

O�

�
(snen)3:376(degR)4:376 �6:5

�
log2

1

�l��
+ b+ log

1

�h

��
:

Proof Theorem 3.10 bounds jEj via Ehrart's theorem, Lemma 12.1 bounds Lh and corollary 11.7 bounds the
complexity of constructing each of the 2(n+ 1) Newton matrices. 2

12.2 GCD Method

In the GCD method of section 9.2, we pick the coe�cients of each hi uniformly and independently with Lh bits
each. To estimate the error probability we adapt a quanti�ed version of Hilbert's irreducibility theorem to our
case.

Proposition 12.4 [Zip93, prop. 133] Given polynomial R(ch; u), where ch is the vector of all hi coe�cients and
u a variable, such that R is irreducible over Q, we specialize ch to random integer values of absolute value bounded
by S > 0. Then the number of ch specializations for which R(u) is reducible, is bounded by DSjchj�1=2 logS,
where D is a function of the total degree degR.

For independently and uniformly chosen coe�cients, the probability of a choice that makes R(ch; u) reducible
is at most D logS=(2jchjS1=2). We make use of the following conjecture.

Conjecture 12.5 [Zip93, sect. 19.3] In the context of the last proposition, there exist absolute constants c; �, such
that D < c(degR)�.

24



Lemma 12.6 Assume the validity of the previous conjecture and suppose that the coe�cients of every hi are
independently and uniformly distributed, each with Lh bits. Then the probability �h 2 (0; 1) that they are not
su�ciently generic with respect to the GCD method is

�h � c(degR)�Lh
2n(2Lh=2 � 1)

; which implies Lh = O

�
log(degR) + log

1

�h

�
;

where c; � are the constants of the previous conjecture.

Proof The hi are su�ciently generic if the resultant of the system perturbed by these hi is irreducible. It
su�ces to guarantee that the resultant of the hi is irreducible. If we set S = 2Lh � 1 and jchj � n in proposi-
tion 12.4, the bound on �h follows. 2

Using the GCD approach reduces to computing the determinants of two Newton matrices by evaluation and
interpolation, then �nding their GCD by a subresultant polynomial sequence and, �nally, performing an exact
polynomial division.

Theorem 12.7 Assume the validity of conjecture 12.5. Let b and Lh be the maximum bit length of the gi and
the hi coe�cients respectively. Given Newton matrices M1 and M 0

1, the computation of the sparse resultant by
the GCD method has bit complexity

O�
�jEj4:376(b+ Lh)

2
�
:

Proof Interpolating D1, D
0
1 from the respective Newton matrices requires jEj evaluations, each reducing to the

computation of a numeric determinant with bit complexity O(jEj3:376(b + Lh)). Interpolating D1, D
0
1 from jEj

values, as well as the division of two univariate polynomials of degree jEj speci�ed by their coe�cients, all take
O�(jEj2(b + Lh)) bit operations. Computing the GCD of two univariate polynomials of degree at most jEj can
be accomplished, deterministically, in O�(jEj3(b+Lh)

2) bit operations [Loo82, sect. 5.7]. Combining the various
costs establishes the overall complexity. 2

The computation of D1 and D0
1 explicitly, as coe�cient vectors, is imposed by the fact that evaluation and

the GCD operation do not commute in general (as seen at the beginning of section 9). Faster probabilistic
interpolation techniques are surveyed in [Zip93, ch. 15].

Corollary 12.8 Consider the context of the previous theorem and assume that all Newton polytopes have positive
volume. Let the system's scaling factor be s and let � be the maximum support cardinality of the n + 1 Newton
polytopes. Then the total bit complexity of constructing the two required Newton matrices and of computing the
sparse resultant R by the GCD method is

O�

�
(snen degR)4:376�6:5

�
log2

1

�l��
+ b2 + log2

1

�h

��
:

Proof We eliminate jEj from the previous theorem by applying theorem 3.10. Lemma 12.6 bounds Lh and
corollary 11.7 bounds the complexity of constructing the two matrices M1 and M 0

1. 2

The GCD method for recovering the sparse resultant is more expensive than the division method due to the
GCD computation, which forces us to compute the coe�cients vectors of D1; D

0
1. It is also more prone to error;

on the other hand, it is simpler to implement. It is also clear that manipulating the Newton matrices in order to
compute the sparse resultant will typically dominate the complexity of constructing the matrices.

13 Research Directions

The main open question concerns the existence of an exact rational formula for the sparse resultant, in particular,
an expression as the quotient of two Newton matrix determinants, in the fashion of Macaulay.

Let M be the Newton matrix, with rows and columns indexed by the integer points in E . De�ne E(nm) � E to
be the subset of these points that do not lie in mixed cells, and denote by M (nm) the square submatrix of M that
includes all entries whose row and column indices lie in E(nm). Then the diagonal elements of M (nm) constitute a
subset of the diagonal elements of M; and the proof of theorem 6.4 implies that M (nm) is generically nonsingular.
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Conjecture 13.1 There exist perturbation vector � and lifting functions l1; : : : ; ln+1 for which the determinant
of matrix M (nm) divides exactly the determinant of Newton matrix M and, hence, the sparse resultant of the
given polynomial system is R = detM= detM (nm).

It is clear that the proposed rational expression has the same degree as R in the coe�cients of every polynomial
fi, so it would su�ce to prove divisibility. The conjecture clearly holds in the dense case: The choice of parameters
that yield a Newton matrix identical to Macaulay's matrix can be adapted to yield a submatrix M (nm) identical
to the submatrix de�ned by Macaulay [Can88].

For n = 2; 3 several empirical results con�rm the conjecture; one of those is analyzed in section 10. We
have experimented with di�erent systems and found that, for most choices of the perturbation and the lifting,
divisibility holds. For random � and li; about 90% of the choices lead to positive results.

Interestingly, there exist values of � and li that do not lead to a reducible rational expression. We conclude
with a negative example, where n = 2 and � = (�; �); for 1 � � > 0. The polynomials are completely dense and
have degrees 1; 2; 3 respectively; the bad lifting is

l1 = 104x1 + 103x2; l2 = 105x1; l3 = 102x1 + 10x2:
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