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SERIE B � INFORMATIK

A Subexponential Algorithm for Abstract

Optimization Problems�z

Bernd G�artner

B �����
May ����

Abstract

An Abstract Optimization Problem �AOP� is a triple �H����� where H is a �nite
set� � a total order on �H and � an oracle that� for given F � G � H� either reports
that F 	 min�fF

� � Gg or returns a set F � � G with F � � F 
 To solve the problem
means to �nd the minimum set in H
 We present a randomized algorithm that solves

any AOP with an expected number of at most e�
p
n�O� �

p
n ln n� oracle calls� n 	 jHj


In contrast� any deterministic algorithm needs to make �n � � oracle calls in the
worst case

The algorithm is applied to the problem of �nding the minimum distance between two
n�vertex �or n�facet� polyhedra in d�space� and to the computation of the smallest
ball containing n points in d�space for both problems we give the �rst subexponential
bounds in d

KEYWORDS� computational geometry� smallest enclosing ball� minimum distance
between polyhedra� local optimization� randomized algorithm
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� Introduction

Three geometric optimization problems� Recently	 Sharir 
 Welzl �SW� have described an
abstract class of problems � socalled LP�type problems � that are e�ciently solvable by a simple
randomized algorithm� The typical LPtype problems are geometric optimization problems	 in
spirit related to the �master� problem of Linear Programming�

�LP� Given a polyhedron P	 speci�ed by n halfspaces in dspace	 and a dvector v	
�nd a point p � P extreme in direction v�

The geometric formulation is chosen in order to keep notation consistent with another important
LPtype problem	 namely �nding the minimum distance between polyhedra�

�POLYDIST� Given two polyhedra P and Q	 speci�ed by n points �or n half
spaces� in dspace	 �nd points p � P	 q � Q with jjp� qjj � dist�P�Q��

The minimum spanning ball problem looks somewhat di�erent	 but nevertheless �ts into the
LPtype framework�

�MINIBALL� Given n points in dspace	 determine the center and radius of the
smallest ball containing all the points�

LPtype problems can be solved in a local optimization fashion	 i�e� if a proposed solution is not
optimal yet	 one can locally improve on it �by solving a �small� subproblem�� This basic property
underlies the algorithm of �SW�� as shown in �MSW�	 its combinatorial time complexity �i�e� in
the unitcost model� is subexponential in d for LP� This is due to the fact that � at least under
certain standard assumptions � the small instances �n � d� �� can easily be solved in polynomial
time� For POLYDIST and MINIBALL	 however	 the small problems become an issue	 and all
known combinatorial bounds are exponential in d	 so that the analysis of �MSW� does not carry
over to these problems�

In this paper we will show that the subexponential bound for LP is actually induced only by
the local optimization property and does not rely on additional convenient features of the small
instances� Consequently	 POLYDIST andMINIBALL can be solved as e�ciently as LP by our
method� The tool is the framework of the Abstract Optimization Problems �AOPs� that captures
the spirit of local optimization in a generic setting�

Basically	 an AOP consists of a �nite set H with a total order on �H and an oracle that answers
the following queries� for given F � G � H	 does there exist a set F � � G with F � � F � If the
answer is yes	 such a set is returned as a witness� To solve the problem means to �nd the minimum
set in the total order	 and we want to bound the number of oracle queries needed to do this for
any given AOP�

The algorithm we develop is randomized	 i�e� the expected number of oracle queries is averaged
over internal coin �ips performed by the algorithm and is independent of the input� Moreover	
randomization is crucial� if information about the linear order � can be obtained from the oracle
only	 no deterministic algorithm can beat the trivial bound of �jHj � � oracle queries in the worst
case� Although this does not mean much for a speci�c instance of an AOP	 it gives evidence that
randomized algorithms may be potentially more powerful than deterministic ones in this situation�

The paper is organized as follows� in the rest of the introduction we give a brief survey on results
concerning the combinatorial complexity of the LP	 POLYDIST and MINIBALL problem� in
Section � we will discuss Sharir 
 Welzl�s LPtype problems and point out why the subexponential
bound for LP established in �MSW� does not hold for POLYDIST and MINIBALL� In Section
� we formally introduce our abstract framework and state the main result of the paper that
implies the subexponential bounds for POLYDIST and MINIBALL� Section � contributes the
more technical part� it proves the deterministic lower bound and the randomized upper bound by
presenting an algorithm for the abstract framework� Section � provides a concluding discussion�
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Linear Programming� LP problems are probably the bestunderstood optimization prob
lems� There exists a vast amount of literature� the reader is referred to �Sch� for an introduction�
There are several methods to solve LPproblems that are e�cient in practice � the most popular
one being the simplex algorithm that was introduced by Dantzig �Dan� in �����

The simplex algorithm	 however	 is of a heuristic nature	 i�e� it behaves much better in practice
than what one can prove� For a long time it was even open whether LPproblems can be solved in
polynomial time �in the number d of variables and the number n of constraints�� This was settled
by Khachiyan �Kha� and Karmarkar �Kar�	 but their algorithms are not combinatorial	 i�e� they
do not only depend on d and n but also on the size of the coe�cients de�ning the input� It is still
open whether there exists a combinatorial algorithmwith polynomial complexity� In particular	 the
simplex algorithm was shown to be exponential in d in the worst case for many pivot rules �KM��

Nevertheless	 there has been substantial progress on the worst case complexity of combinatorial
algorithms for Linear Programming over the last years� Megiddo �Meg� was the �rst to show that
LP can be solved in time linear in the number of constraints� For improvements in the dependence
on d see �Dye��	 �Cla��	 �Sei�	 �CM��

The currently best randomized algorithm combines the recent subexponential results inde
pendently obtained by Kalai �Kal� and Matou�sek	 Sharir 
 Welzl �MSW� with an algorithm by
Clarkson �Cla��� This gives a subexponential bound of

O�d�n� eO�
p
d log d���

Note that the best deterministic algorithm is obtained by �derandomizing� Clarkson�s algorithm
and has runtime O�dO�d�n�	 which is still exponential in d �CM��

Minimum Distance between Polyhedra� This problem � and the important special case
that one polyhedron is a single point � has applications e�g� in motion planning �collision testing�	
and there are heuristics for it without time analysis �see e�g� Wolfe �Wol� for the special case	
Sekitani 
 Yamamoto �SY� for the general case�� A �rst nontrivial randomized time bound of
O�nbd��c� was given by Clarkson �Cla�� �provided the polyhedra are speci�ed by n points�� Apply
ing the algorithm in �SW�	 this can be improved to give the so far best bound of O�d��dn�	 which is
linear in n but still exponential in d� Our algorithm will establish the same subexponential bound
as stated above for Linear Programming�

Minimum Spanning Ball� It was observed early that MINIBALL �which is a prototype
problem in facility location� has a structure similar to LP and thus can also be solved in time
linear in the number of points by the techniques in �Meg� and �Dye�� �with the same dependence
on d as in the case of LP�� As observed by Welzl �Wel�	 the LP algorithm of Seidel �Sei� also applies
to MINIBALL	 and the same holds for the algorithms of Clarkson and Sharir 
 Welzl� As in
the case of POLYDIST	 subexponential runtime could not yet be shown but will be established
in this paper�

� Basics and Terminology

LP�type problems� To begin with	 let us brie�y review the concept of the LP�type problems
introduced in �SW�	 where the reader can also �nd how LP itself �ts into the framework� Consider
the MINIBALL problem �rst	 and let H be a set of n points in dspace� For G � H denote by
w�G� the radius of the smallest ball containing the points in G� It is well known that this ball is
unique and that for e � H	 w�G� � w�G� feg� if and only if e lies outside the ball determined by
G� From this it is easily seen that the following two properties hold for all F � G � H�

�i� w�F � � w�G��

�ii� If w�F � � w�G�	 then w�F � � w�F �feg�� w�G� � w�G�feg�	 for all e � H�

In general	 any pair �H�w� satisfying �i� and �ii� is called an LPtype problem� A basis is a
set B � H with w�B�� � w�B� for all B� � B� A basis of G � H is a basis B � G such that
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Figure �� The POLYDIST problem

w�B� � w�G�� The combinatorial dimension of �H�w� is the maximum cardinality of any basis� In
this framework	MINIBALL has combinatorial dimension at most d� �	 because any minimum
ball spanned by a set G � H is already determined by at most d�� points of G on the boundary�

POLYDIST gives rise to an LPtype problem as follows� we assume for the rest of the paper	
that polyhedra P and Q are given by point sets P and Q	 P � Q � 		 jP �Qj � n� So P and Q
are actually polytopes with P � conv�P ��Q � conv�Q� �the case where P and Q are speci�ed by
halfspaces is similar but requires more technicalities��

For P � �Q� � P �Q	 let
w�P � �Q�� �� dist�conv�P ��� conv�Q����

For P � or Q� empty	 w is set to
� Now properties �i� and �ii� �for w�F � � w�G� �
� hold for the
pair �P�Q�w�	 but with ��� and ��� replaced by ��� and ���	 respectively� Property �i� is obviously
satis�ed	 and property �ii� easily follows from the following fact� assumew�P ��Q�� � �� � � � �
�
Then there exists a unique pair hP � � hQ� of parallel supporting hyperplanes of distance � which are
perpendicular to any vector p� q with p � conv�P ��	 q � conv�Q�� and jjp� qjj � ��

Denote by h�P � and h�Q� the closed halfspaces containing P � and Q�	 respectively� For a point

e � P � P � �Q � Q�� we have w�P � � Q� � feg� � w�P � � Q�� if and only if e does not lie in h�P �

�h�Q� � �Figure ���
It is a straightforward exercise to show that the following holds�

Lemma � In the LP�type framework� the combinatorial dimension of POLYDIST de�ned by
polytopes P and Q in d�space satis�es � � d� � �if P and Q are disjoint� � � d� ���

Here is the main result of �MSW���

Theorem � Let �H�w� with jHj � n be an LP�type problem of combinatorial dimension �� and
denote by tsmall the time necessary to compute a basis of G and its value w�G� for jGj � � � ��
Then a basis of H and w�H� can be computed in time

O�tsmall ne
�
p
� lnn��

�The bounds are actually slightly better and more complicated� than what we cite here�
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As the theorem shows	 the time bound for an LPtype problem crucially depends on the com
plexity of the �small� instances	 and it is not clear that solving them is a substantially easier task
than solving the whole problem� For ddimensional LP	 the small problem basically consists of
solving a linear program with d� � constraints	 which can easily be done in time polynomial in d
by observing that the solution is always determined by exactly d of the constraints �provided	 the
problem is bounded�	 so that it su�ces to test all dsubsets of the constraint set for optimality �for
details see �MSW���

In case of POLYDIST and MINIBALL	 the small problems are

�SMALL POLYDIST� Given two polyhedra P and Q	 speci�ed by at most d��
points P �Q in dspace	 determine their minimum distance and a basis	 i�e� a minimal
subset P � �Q� determining the same distance�

and

�SMALL MINIBALL� Given a setH of at most d�� points in dspace	 determine
the radius of the smallest ball containing H and a basis	 i�e� a minimal subset B
determining the same ball�

In contrast to LP	 it is no longer true that a basis has �xed cardinality	 even in the generic
situation� in case of POLYDIST	 a basis of P �Q may consist of any number of points between
� and d� �� Consequently	 straightforward checking of every candidate basis as in the case of LP
may require the examination of ���d� subsets just to solve SMALL POLYDIST	 which gives
nothing better than an exponential algorithm for the whole problem� The same di�culty arises in
theMINIBALL problem� a minimum spanning ball may be determined by any number of points
between � and d�� on its boundary	 so again SMALL MINIBALL is not e�ciently solvable by
the trivial method� By embedding SMALL POLYDIST into the AOP framework we will be able

to solve it in time eO�
p
d�	 and the same complexity will be achieved for SMALL MINIBALL	

which will turn out to be a special case of SMALL POLYDIST� Plugging this into Theorem �
will give subexponential bounds also for the corresponding �large� problems�

� Abstract Optimization Problems

Let us repeat the de�nition of an AOP in a formal way in order to have the accurate terminology
available�

De�nition 	 An AOP is a triple �H����� where H is a �nite set� � is a total order on �H � and
� is a mapping

� � H � H� H �� f�F�G� j F � G � Hg
with the following property�

��F�G� � F if and only if F � min
�
fF � � Gg�

G  ��F�G� � F otherwise�

For G � H let opt�G� denote min�fF � Gg� Solving the AOP means to �nd opt�H��

We achieve the following results �proofs are postponed to the following technical section��

Theorem 
 �Deterministic lower bound� For any deterministic algorithm A that solves all
AOPs on a set H� jHj � n� there exists an AOP �H����� that cannot be solved by A with less
than �n � � oracle queries�

Theorem � �Randomized upper bound� There exists a randomized algorithm that solves any
AOP on a set H� jHj � n� with an expected number of at most e�

p
n�O� �

p
n ln n� oracle queries�
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Figure �� The POLYDIST oracle

Using the terminology from the previous section	 we will now demonstrate how POLYDIST
de�ned by point sets P and Q �ts into the AOP framework� the ground set H is P �Q	 and the
total order � on �H is de�ned as follows� the bases �in the LPtype sense� are ordered by their
wvalues with ties broken arbitrarily	 and any nonbasis is larger than any basis� This de�nition
ensures that opt�H� indeed is a basis of P �Q and the nonbases are not of interest�

It remains to describe the oracle �� � will only be called on pairs �F�G� where F is a basis
and will deliver only bases� We need some more terminology� for a point p and P � � P with
p � conv�P �� �equivalently for q�Q�� let f�p� P �� � P � be inclusionminimalwith p � conv�f�p� P ����
For F � � P ��Q� � P �Q let �pF � � qF �� be a pair of points realizing the minimumdistance between
the a�ne hulls of P � and Q�	 i�e� jjpF � � qF � jj � dist�a��P ��� a��Q���� �note that in general neither
this point pair nor f is unique�� The open region between the two parallel hyperplanes hP � � pF �

and hQ� � qF � perpendicular to the vector pF � � qF � is called the slab of F �	 denoted by slab�F ��
�see Figure � �a���

Now we can implement the oracle ��F�G�� its idea is to start with points p and q realizing
w�F �� provided that one can improve on F at all �which is the case if and only if the slab of F
contains a point of G�	 a loop is performed in which p and q move along straight lines � thereby
decreasing jjp� qjj � until a stable position	 i�e� a new basis	 is obtained� In the generic step of
the loop there are points p� q and sets P �� Q� such that p � conv�P ��� q � conv�Q��� By de�nition	
jjp�qjj � jjpF ��qF � jj	 where F � � P ��Q�	 so by moving p and q simultaneously along straight lines
towards pF � and qF � 	 respectively	 their distance decreases in a monotone fashion� The movement
stops if either the destination points are reached �in which case F � is a new basis� or one of p and
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q hits the boundary of conv�P �� or conv�Q��	 respectively� in this case	 the loop continues after
setting P � to f�p� P �� and Q� to f�q�Q�� which decreases jP � � Q�j by at least one �Figure � �b���
Here is the pseudocode� for the procedure just described�

��F�G� �F basis	F � P � �Q� � P �Q � G
� �p� q� �� �pF � qF � �F basis � pF � qF � conv�P ��� conv�Q��
� for all e � G� F
� do if e � slab�F �
� then case e of
� � P � P � � P � � feg
 � Q � Q� � Q� � feg
! loop F � � P � �Q�

" �p�� q��� �p� q� � ���pF � � qF �� � �p� q��
� 	� maxf� j p� � conv�P ��� q� � conv�Q��g
�� if 	 � �
�� then return F �

�� �p� q�� �p�� q��
�� �P �� Q��� �f�p� P ��� f�q�Q���
�� return F

From the discussion above	 termination of the procedure follows� As far as the correctness is
concerned	 there is one subtlety� it is not hard to see that only if in some stage of the loop the
pair �pF � � qF �� happens to be nonunique	 line �� may not return a basis� In this case however	
pF � can be chosen arbitrarily from an in�nite line at least and can therefore be determined to lie
outside conv�P ��	 which implies that the procedure does not enter line �� in this case� It should
be mentioned that jjp� qjj strictly decreases at least during the �rst iteration of the loop	 so the
basis �nally returned has smaller wvalue than F �

We are interested in the runtime of this oracle	 when called on a �small� problem	 i�e� jGj � d���
The following bound is rather bruteforce� the interesting fact is that it is polynomial�

Lemma � Let G be a set of at most d�� points in d�space� The oracle ��F�G� can be implemented
to run in time O�d���

Proof The �rst phase �checking whether an improvement on F is possible� amounts to the com
putation of one scalar product per point e � G�F and therefore can be done in time O�d��� The
loop is executed no more than d � � times� in each iteration	 points pF � 	 qF � can be computed
in time O�d�� by solving a system of linear equalities� In order to �nd 		 we have to intersect
two lines with the bounding hyperplanes of conv�P �� and conv�Q��	 respectively� From the fact
that F was a basis it follows that these polytopes are simplices	 so there are no more than d� �
bounding hyperplanes per polytope	 and each intersection can be computed in time O�d�� again�
This process also gives f�p� P �� and f�q�Q�� as a byproduct�

Observe that by arbitrarily choosing two vertices in the beginning	 one from each polytope	 we
get an initial basis for the oracle� Now Theorem � states that a SMALL POLYDIST problem

can be solved in time eO�
p
d�	 and together with Theorem � this gives

Theorem � The minimum distance between two n�vertex polytopes in d�space can be computed in

time O�ne���o�����
p
d ln n���

�The variant we use here is adapted from the book Introduction to Algorithms by T� H� Cormen� C� E� Leiserson
� R� L� Rivest� The MIT Press� 	��




"

We remark that the same result holds for two nfacet polyhedra� Note that the contribution
from the small problem is hidden in the o��� term of the exponent�

We get the same bound forMINIBALL�

Theorem � The smallest enclosing ball of a set of n points in d�space can be computed in time

O�ne���o�����
p
d ln n���

For this it su�ces to show that a SMALL MINIBALL problem can be solved as e�ciently
as SMALL POLYDIST	 and as it turns out	 both problems are strongly related� the following
correspondence can be found e�g� in �Raj��

Theorem � Let P be a set of d � � a	nely independent points in d�space with circumcenter q��
The center q� of the smallest ball containing P is the point in conv�P � with minimal distance to
q��

Thus	 in order to solve SMALL MINIBALL on d � � points	 compute � by solving d � �
SMALL POLYDIST problems with one polytope being a single point � all the smallest balls
spanned by d � � of the points	 and compare their radii� In case the input consists of d points
or less	 the problem reduces to the a�ne hull of the points� Note that the circumcenter of d � �
points can be computed in time O�d���

� Bounds for Abstract Optimization Problems

This section contains proofs of Theorem � and Theorem �� The deterministic lower bound follows
from an adversary argument� For the randomized upper bound we present an algorithm along with
a careful analysis� Let us start with the lower bound�

��� The Deterministic Lower Bound

Let H be an nelement set and suppose we have a deterministic algorithm to solve any AOP
�H������

We start the algorithm on a problem �H������� with �� and �� not yet determined	 and we
argue that an adversary answering the oracle queries can construct �� and �� �online� in such a
way that the algorithm is forced to step through at least �n � � queries� When supplied with a
query pair �F�G�	 the adversary will output an answer F � � ���F�G� according to two simple
rules�

�i� the answer F � is consistent with the previous ones	 i�e� there exists an AOP such
that the current and all previous queries have been answered correctly with respect to
this AOP�

�ii� F � � F if and only if there is no other consistent answer�

It is easy to see that the adversary always has a consistent answer	 so the algorithm steps
through a sequence of queries with pairs �F�G� and �nally stops� Suppose that less than �n � �
queries have been performed� Then there are two sets F� and F� which have never been the �rst
component of a query pair� We will show that it is consistent with all answers to assume that
F� � opt�H�� The same holds for F�	 so whatever the algorithm outputs	 there is an AOP that is
not correctly solved� Hence the adversary can force the algorithm to step through at least �n � �
queries	 which means that it performs that many queries on the AOP that has implicitly been
constructed by the adversary�

We are left to prove that F� � opt�H� is consistent� Clearly	 this choice can fail only if some
answer has revealed the existence of a smaller set� Since there was no query pair �F�� G�	 the only
remaining possibility for this to happen is that some query �F�G� with F� � G has been answered
by F 	 thus establishing F � F�� But in the �rst query of this type	 F� was not bounded from
below yet	 so it could have been returned instead of F 	 a contradiction to rule �ii��
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��� The Randomized Upper Bound

We present a randomized algorithm that solves any given AOP �H����� on an nelement set H
with an expected number of at most e�

p
n�O� �

p
n lnn� calls to the oracle �� Up to an O�n� overhead

caused by set operations	 the actual runtime of the algorithm will asymptotically be dominated by
the time spent on the oracle calls	 so this is a reasonable measure of complexity� The algorithm
will eventually output opt�H�	 but the generic step in the recursive procedure is the computation
of opt�G� for G � H� Together with G	 a set F � G is maintained� F can be viewed as an
�estimate� for the solution that will be improved over and over again until it coincides with the
desired minimum� Our algorithm combines ideas of both Kalai�s and Matou�sek	 Sharir 
 Welzl�s
subexponential LP algorithms and substantially generalizes their applicability�

The section proceeds in stages� in a �rst stage we introduce a trivial algorithm and the basic
terminology� the second stage presents an algorithm that � although it works only modulo a
hypothetic subroutine � features the heart of the �nal algorithm and its subexponential analysis�
Stage three describes a �working� algorithm that will be obtained by �approximating� the subroutine
to a reasonable extent�

Getting Started� Just to get acquainted	 let us write down the obvious deterministic method
to obtain opt�G� in presence of an estimate F �

Aop Det�F�G�
� repeat F � � F
� F � ��F�G�
� until F � F �

� return F �

In order to solve the problem on G	 Aop Det has to call the oracle �jGj times in the worst
case	 and as we have seen in the previous section	 it shares this exponential behavior with any
algorithm that is deterministic or calls the oracle only on pairs of the form ��� G�� Consequently	
the method we will describe now is randomized and uses oracle queries of the form ���� G�� for
certain subsets G� � G� It will have one very intuitive property in common with Aop Det� the
better the estimate F 	 the faster the algorithm for G� A natural measure for the quality of F in
this context is the rank of F with respect to G	 de�ned by

rank�F�G� �� #fF � � G j F � � Fg�
A somewhat coarser but related measure is the dimension of a pair �F�G��

De�nition �� For F � G� an element e � G is enforced in �F�G� if F � opt�G�feg�� Otherwise
it is free� The domain of �F�G� is the set of free elements� i�e�

D�F�G� �� fe � G j �F � � G� feg� F � � Fg�
Finally� the dimension of �F�G� is the size of its domain�

dim�F�G� �� jD�F�G�j�
As an example consider Figure �� subsets of G are visualized by elements of f���gjGj� �F�G�

enforces the element � while �F �� G� enforces � and �� Consequently	 D�F�G� � f�� �� �� �g	
D�F �� G� � f�� �� �g and dim�F�G� � �� dim�F �� G� � �� Note that rank�F�G� � �dim�F�G� � ��

The following monotonicity Lemma is an immediate consequence of the de�nitions and �al
though quite obvious� forms the background of the analysis in the next stage�

Lemma ��

�i� If F � � F then D�F �� G� � D�F�G��
�ii� If F � G � G� then D�F�G� � D�F�G���
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Figure �� Part of an AOP on � elements

The basic algorithm� Now we are able to describe a �rst basic version of our algorithm� We feel
that the main idea behind the subexponential analysis can be explained most clearly by assuming
that the following subroutine is available�

Sample Domain�F�G�
� if D�F�G� � 	
� then error $empty%
� else choose a random e from D�F�G�
� choose Fe � F with Fe � G� feg
� return �e� Fe�

So Sample Domain chooses an element which is free in �F�G� at random and computes a
corresponding �witness� Fe� Note that the elements in G � F are free with witness F � however	
there may be other free elements which are not immediately accessible since they are hidden in F 	
and it is not clear whether one can �nd them e�ciently� Nevertheless	 let us assume for this stage
that Sample Domain comes for free�

Using this subroutine	 we can formulate a procedure Aop SD�F�G� to �nd opt�G� in presence
of estimate F �

Aop SD�F�G�
� �e� Fe� �� Sample Domain�F�G�
� if error $empty%
� then return F
� F � Aop SD�Fe� G� feg�
� F � � ��F�G�
 if F � F �

! then return F �

" return Aop SD�F �� G�

The analysis� Termination and Correctness easily follow by observing that the �rst recursive
call solves a subproblem on a smaller set and in the second one we have rank�F �� G� � rank�F�G��
For �xed H let T �k� be the worst case expected number of oracle queries performed in a call to
Aop SD�F�G� with dim�F�G� � k and G � H� We get T ��� � � and for k � �

Theorem ��

T �k� � T �k � �� � � �
T �k � �� � ���� T ���

k
�
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Proof First of all	 it is not hard to see that T is monotone in k� Now we can argue as follows� if
�F�G� has dimension k then dim�Fe� G� feg� � k � �	 since

D�Fe� G� feg� � feg � D�Fe� G� � D�F�G��

This implies that the expected number of oracle queries necessary in the �rst recursive call is
bounded by T �k � ��� Another query is done in line �� the last term �nally gives a bound for the
second recursive call� To see this	 consider D�F�G� � fe�� ���� ekg	 ordered in such a way that

opt�G� fe�g� � opt�G� fe�g� � ��� � opt�G� fekg��

If e is chosen to be ei in line �	 we get

F � � opt�G� fejg�� for all j � i�

so by De�nition ��	 e�� ���� ei will be enforced in �F �� G�� This means

D�F �� G� � D�F�G�� fe�� ���� eig�

so dim�F �� G� � k� i and an expected number of no more than T �k� i� oracle queries is performed
inAop SD�F �� G�� Since i is equally likely to be any number between � and k	 we obtain the desired
average�

The heart of the argument is the fact that on the average the dimension halves when going
from pair �F�G� to �F �� G�	 and this pursues a method �rst applied by Kalai and more generally
by Matou�sek	 Sharir 
 Welzl�

In order to �nd an explicit bound for T �k�	 we majorize T �k� by t�k�� � where t�k� satis�es

t�k� � t�k � �� �
�

k

k��X
i	�

t�i�

with t��� � ��

Lemma �	

t�k� �
kX

i	�

�
k

i

�
�

i&
�

Proof An easy way to see this goes via a nice combinatorial interpretation of t�k� �suggested
by P� Flajolet�� Consider a permutation 
 � Sk� A subset R � f�� ���� kg is called an increasing
chain in 
 i� � x� y � R � x � y implies 
�x� � 
�y�� Denote by s�
� the number of increasing
chains in 
� Then t�k� � E�s�	 the expected number of increasing chains in a random permutation

 � Sk� The proof of this fact is by induction� For k � � we have one increasing chain	 namely the
empty set� Assume k � �� by the inductive hypothesis the expected number of increasing chains
not containing k is t�k � ��� The ones containing k are in onetoone correspondence with the
increasing chains in f�� ���� 
���k� � �g	 whose expected number is t�
���k� � ��� Since 
���k� is
equal to i with probability ��k	 for any i � f�� ���� kg	 we recover the original recurrence for t�k��
On the other hand	

t�k� � E�s� �
X
R

Prob�R is an increasing chain�

�
kX

i	�

X
jRj	i

Prob�R is an increasing chain� �
kX

i	�

�
k

i

�
�

i&
�

so the lemma follows�
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Corollary �


t�k� � e�
p
k�

Proof

t�k� �
kX
i	�

�
k

i

�
�

i&
�

kX
i	�

ki

i&�
�

kX
i	�

�

p
k
i

i&
�� � �

kX
i	�

p
k
i

i&
�� � �

�X
i	�

p
k
i

i&
�� � e�

p
k�

The bound is almost tight� this will be discussed later� Concerning the performance ofAop SD

we get

Theorem �� Aop SD solves any AOP �H����� with an expected number of at most e�
p
jHj � �

oracle queries�

How to sample from the domain� In order to turn the procedure Aop SD from the pre
vious paragraph into a working algorithm	 we have to do something about the subroutine Sam�
ple Domain� As we have already indicated	 the way to deal with it will be to �nd a reasonably
cheap way to �approximate� it� The idea is simple� rather than sampling from the whole domain
of a given pair �F�G�	 we will identify a subset D of the domain � along with the corresponding
witnesses � and sample from D only� After plugging in this version of Sample Domain	 the ex
pected performance of Aop SD will drop o�	 depending on the size of D	 which we assume to be
a function r � r�k� of k � dim�F�G�� the recurrence of Theorem �� then becomes

T �k� � T �k � �� �
T �k � �� � ���� T �k � r�k��

r�k�
�

This bound is exponential for r�k� � O��� but becomes better the closer r�k� is to k� On the other
hand	 the larger r�k� is	 the harder is the task of �nding the set D� A reasonable balancing is
achieved by choosing r�k� proportional to k	 say r�k� � dcke	 for some �xed �xed � � c � � �the
exact value will be determined later�� We will see that the additional e�ort to �nd D � D�F�G�
of this size is small	 and the algorithm basically preserves its expected performance as analyzed
above�

To construct D when called on a pair �F�G�	 the algorithm proceeds incrementally� since we
know that at least the elements in G�F are free with witness F 	 we can start o� by setting D to
G�F � In case D is already large enough	 we just sample fromD and proceed as before� Otherwise
we will have to enlarge D by at least one more free element hidden in F � to this end we will step
through a sequence of improving oracle queries �in a way to be described in a minute�	 until a
witness for a yet unknown free element is found �or we already end up in opt�G���

Suppose that in the generic step certain elements in G have already been identi�ed as free in
�F�G�	 and we need to �nd another free one� Here is the way to do it� call the algorithm recursively
with �F �� G�	 where F � is the current estimate	 but supply an additional parameter E that contains
all the elements of G whose status is yet unknown �note that E � F ��� This recursive call now has
two ways to terminate� either it �nds the desired solution opt�G� or � while improving its estimate
� discovers an F �� � G which fails to contain E� This	 however	 means that the elements in E�F ��

have been uncovered as free elements with witness F ��	 so the call has accomplished its task� The
key observation is that as long as D is small	 the set E of elements with unknown status will be
large	 and since the recursive call with parameter E terminates as soon as the �rst estimate F ��

appears that is no longer wedged between E and G	 it actually operates only on G � E instead
of G	 which makes it substantially cheaper �this method is a generalization of the idea behind the
pivoting strategy Kalai uses in his LP algorithm��
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A working algorithm� The generic call will have three parameters E � F � G	 where in the
beginning E � 	� Let us formulate the procedure Aop�E�F�G� that will either return opt�G� or
deliver an estimate F � � F with E �� F � to a higher level in the recursion� The set D is implicitly
maintained	 comments will refer to it�

Aop�E�F�G� � E � F � G� returns opt�G� or F � � F�E �� F �

� if E � G
� then return ��F�G� � either ��F�G� � E � F � G or E �� ��F�G�
� E� � F � E� contains E and elements of unknown status
� for all e � G�E� � D �� G� E�	 the initial free elements
� do Fe � F � set witness
 while jG�E�j � dcjG�Eje � D still to small	 try to enlarge it
! do F �Aop�E�� F�G�
" if E �� F � return to higher level in recursion
� then return F

�� if E� �� F � new free element�s� found
�� then for all e � E� � F
�� do Fe � F � set witness
�� E� � E� � F � update E� �D �� D � �E� � F ��
�� else return F � line ! has already computed opt�G�
�� choose a random e � G�E� � sample from D
� F �Aop�E�Fe� G� feg�
�! if E �� F � return to higher level in recursion
�" then return F
�� F � � ��F�G� � once we get here	 F � opt�G� feg�
�� if E �� F � or F � F � � check both termination criteria
�� then return F �

�� return Aop�E � feg� F �� G� � repeat with better estimate

Termination of Aop follows by observing that the recursive calls solve smaller problems �mea
sured in terms of jG� Ej�� The correctness of the procedure is not obvious at �rst sight	 but it
su�ces to inductively check the invariant that E is contained in every estimate up to the termi
nating one� This may be doubtful in the recursive call of line ��	 when E is replaced with E�feg�
to see that this is justi�ed	 observe that if the procedure gets through to line �� at all	 the call in
line � must have actually computed F � opt�G� feg�� moreover	 F � � F � This	 however	 means
that e is enforced in �F �� G�	 so for every future estimate F �� � G with F �� � F � we will have

E �� F �� � E � feg �� F ���

so the invariant is guaranteed�
It should be mentioned that the estimate Fe plugged into the recursive call in line � may be

worse than some estimates computed during the whileloop� The important property	 however	 is
that Fe is at least as good as the original F we started with�

Towards the recurrence� The reader might wonder whether this algorithm really matches the
rough idea described above� For example	 we have promised to make D as large as dcjD�F�G�je�
This holds if E � 		 because in this case after the whileloop

jDj � dcjG� Eje � dcjGje � dcjD�F�G�je�
but if jEj � �	 we might end up with a much smaller D� In this case	 however	 there are elements
in D�F�G� �especially the ones in E� which are actually enforced in the sense that every estimate
containing E has to contain these elements as well	 and we should no longer consider such elements
as free in a recursive call with parameters E�F and G� The following de�nition for triples takes
care of that� it mimics De�nition �� for pairs�
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De�nition �� For E � F � G� e � G � E is enforced in �E�F�G� if F � opt�E�G � feg� ��
min�fF � j E � F � � G � fegg� and e is free otherwise� The free elements form the domain of
�E�F�G�� i�e�

D�E�F�G� �� fe � G�E j �F � � F�E � F � � G� fegg�
The dimension of �E�F�G� is the size of its domain� i�e�

dim�E�F�G� �� jD�E�F�G�j�
This ensures that the domain contains exactly the elements which are candidates for being

included in D and guarantees that jDj � dcjD�E�F�G�je after the whileloop�

The main recurrence� In order to bound the expected performance of Aop	 we can set up a
recurrence which will look similar to the one that holds for Aop SD� However	 it will include an
additional term for the e�ort that is necessary to �nd the set D� even worse	 it will depend on two
parameters rather than one which makes it somewhat harder to solve� Nevertheless	 it basically
behaves like the oneparameter version and we will be able to establish a similar bound�

For �xed H and m � k	 let T �m� k� be the worstcase expected number of oracle queries
performed in a call to Aop�E�F�G� with size jG � Ej � m and dimension dim�E�F�G� � k	
G � H� For a statement A let �A be � if A holds and � otherwise� We get T ��� �� � � and for
m � � we have

Theorem ��

T �m� k� � � �

dcme��X
i	�

T �i�min�i� k�� � �k�dcme�T �m � �� k� �� �
�

dcme
dcmeX
i	�

T �m � �� k� i���

Proof The arguments are basically the ones of Theorem ��	 so we omit the details� Again
T is monotone in k� there are at most � oracle queries at the top level� In the worst case	 the
whileloop may be executed once with every value of i �� jG�E�j between � and dcme� �	 which

amounts to the
Pdcme��

i	� T �i�min�i� k�� term �note that we implicitly use the obvious generalization
of the monotonicity Lemma �� to triples�� If k � dcme	 the algorithm will not be able to �nd the
required number of free elements and thus cannot get beyond the whileloop� Otherwise	 the triple
processed in line � has size m � � and dimension at most k � � �e is no longer free� which gives
the T �m � �� k � �� term� Finally	 the last term bounds the expected e�ort in line ��	 averaged
over the random choice in line ���

Solving the recurrence� It turns out that the behavior of T �m� k� is only quasipolynomial in
m	 while the major contribution comes from k� Let us de�ne two auxiliary functions�

f�k� � f�k � �� �
�

dcke
dckeX
i	�

f�k � i��

g�m� � g�m � �� �

dcme��X
i	�

g�i��

with f��� � � and g��� � ��

Lemma ��
T �m� k� � f�k�g�m� � ��

Proof we proceed by induction on m� For m � � we have equality	 so assume m � �� Then
T �m� k� is bounded by

��

dcme��X
i	�

f�min�i� k��g�i��dcme��k�dcme �f�k���g�m������
�

dcme
dcmeX
i	�

f�k� i�g�m������
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� f�k�

dcme��X
i	�

g�i� � �k�dcmeg�m � ���f�k � �� �
�

dcke
dckeX
i	�

f�k � i�� � �� dcme � ��k�dcme

� f�k��g�m� � g�m � ��� � �k�dcmeg�m � ��f�k� � ��k�dcme � dcme
� f�k�g�m� � g�m � ���f�k� � �k�dcmef�k�� � ��k�dcme � �

� f�k�g�m� � g����f��� � �k�dcmef���� � ��k�dcme � �

� f�k�g�m� � ��

It remains to bound f�k� and g�m��

Lemma ��

g�m� � �mlog
��c m���

f�k� � �k � ���e�
p
k�c� where  ��

�� c

�c
�

Proof The function g�m� is monotone	 so we can argue that g�m� � g�m����dcmeg�dcme���	
which by expanding g�m � �� yields

g�m� �
mX
i	�

dcieg�dcie � �� � g��� � mdcmeg�dcme � �� � � � m�g�dcme � �� � ��

We have g�m� � h�m� � � for
h�m� � m�h�dcme � ��

with h��� � �� Now we see that for m � �	 h�m� � �mlog��cm�� which holds for m � �	 and
inductively we obtain

h�m� � �m��cm�log��c cm�� � �m�mlog
��c m�� � �mlog

��c m���

In order to bound f�k� we proceed by induction	 noting that for k � � the bound holds� Now
assume k � � and recall that  � ��� c���c� From the inductive hypothesis we get

f�k� � k�e�
p

�k����c �
�

dcke
dckeX
i	�

�k � i � ���e�
p
�k�i��c

� k��e�
p

�k����c �
�

ck

k��X
i	�

e�
p
i�c��

The sum can be estimated via the corresponding integral� we can write

k��X
i	�

e�
p
i�c �

Z k

�
e�
p
x�cdx � �

p
ce�

p
x�c�

p
x�

p
c

�
��k� �

p
ce�

p
k�c�

p
k �

p
c

�
�� �

p
ce�

p
��c � c

�
��

For c � �	 the last term is at least one so that we get

k��X
i	�

e�
p
i�c � p

ce�
p
k�c�

p
k �

p
c

�
��

This gives

f�k� � k�e�
p
k�c�e��

p
�k����c�

p
k�c� �

�p
ck

� �

�k
��



� 

Using
p
k � ��pk � � �

�
p
k
we conclude that

f�k� � k�e�
p
k�c�e���

p
ck �

�p
ck
� �

�k
��

and by observing that ex is majorized by ��x� x�

� for negative x	 we �nd that the term in brackets
is upperbounded by

� �
�

�ck
� �

�k
� � �



k
�

We �nally obtain

f�k� � k�e�
p
k�c�� �



k
� � �k � ���e�

p
k�c�

It takes some more e�ort to show that f�k� � ��k���
e�
p
k�c� if c is a constant	 so our simple

estimate loses only slightly more than a �
p
k factor if c is close to � �if c � �	 we recover the bound

of Corollary ����
We have proved that the expected number of oracle queries performed by algorithmAop when

called on a triple �E�F�G� of size m and dimension k	 is bounded by

T �m� k� � ��k � �����c���ce�
p
k�cmlog

��c m��

for any �xed � � c � �� Setting z �� ��c� � and rewriting the expression shows that

T �n� n� � �ne�
p
n�zn�ln� n� ln���z��ln�n���z��

queries are su�cient on the average to solve an Abstract Optimization Problem on a set H with
n elements� By easy calculations	 we see that the value z� minimizing this bound satis�es

z� �
lnn
�
p
n
�� � o�����

so a reasonable choice for z is z � lnn� �
p
n� Exploiting that ln�� � z� � z � z�

� for positive z gives

ln� n

ln�� � z�
� ln� n

z � z�

�

�
ln� n

z
�

ln� n

�� z
� �
p
n lnn� ln� n�

This derivation holds for z � �� in case z � �	 the inequality follows directly� From the mean value
theorem we get p

n� zn � p
n �

z

�

p
n � p

n�
�

�
�
p
n lnn�

This leads to an overall upper bound of

T �n� n� � �ne�
p
n�� �

p
n lnn�lnn��� �

�
ln�n���� �

p
n��

Theorem �� An Abstract Optimization Problem �H����� with jHj � n can be solved with an
expected number of no more than

e�
p
n�� �

p
n lnn�ln n����

�
ln�n��� �

p
n��ln � � e�

p
n�O� �

p
n lnn�

oracle queries�
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� Discussion

We have given an e���o����
p
n expected time randomized algorithm for Abstract Optimization

Problems on an nelement set H� the algorithm applies to the minimum spanning ball prob
lem for n points in dspace and to the problem of computing the minimum distance between
two ddimensional nvertex �or nfacet� polyhedra	 and for both problems we obtain the �rst
subexponential bounds in d� As in the case of Linear Programming one can obtain a bound of

O�d�n�eO�
p
d log d�� for both problems by combining our result with the ones of �MSW� and �Cla���

Recently	 Ludwig �Lud� has shown that the problem of �nding optimal strategies for simple
stochastic games �Con� allows a subexponential solution �where he implicitly proved that the prob
lem can be formulated as an AOP which allows direct application of the procedure Aop SD from
Subsection ����� unlike the AOPs we have discussed here	 the simple stochastic game problem is
of a more combinatorial rather than geometric �avor� In general	 however	 it seems that local
optimization occurs most naturally in geometric settings�

To determine the randomized complexity of Abstract Optimization Problems itself is a chal
lenging open problem� It seems that in order to substantially improve on the bound given here
one would have to come up with a method that does not rely on the concept of the dimension
of an estimate as a measure of progress during the algorithm� Any better upper bound would
immediately imply better algorithms for the �small� instances of the problems we have discussed �
and we believe that the ideas behind such progress would carry over to the �large� instances� On
the other hand	 it is quite possible that there is a lower bound for AOPs that is in the range of the
upper bound given here� however	 so far we have not been able to establish any nontrivial lower
bound� A natural time class to consider when thinking about upper or lower bounds seems to be
�log

r n for constant r�
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