COLLOQUIUM MATHEMATICUM
 VOL. LXIII $1992 \quad$ FASC. 1

A SUBFIELD OF A COMPLEX BANACH ALGEBRA
is not necessarily topologically isomorphic TO A SUBFIELD OF \mathbb{C}
BY
W. ŻELAZKO (WARSZAWA)

The classical Mazur-Gelfand theorem ([1]-[5]) implies that any subfield of a complex Banach algebra A is topologically isomorphic to \mathbb{C}, provided it is a linear subspace of A. Here we present a somewhat surprising observation that if F is a subfield of A which is just a subring, and not a subalgebra, it need not be topologically isomorphic to a subfield of \mathbb{C}.

Let A be a complex Banach algebra and let F be a subfield of A. Denote by A_{0} the smallest closed subalgebra of A containing F. This is a commutative algebra with unit element equal to the unity of F. Thus A_{0} has a non-zero multiplicative-linear functional mapping isomorphically F into \mathbb{C}. Therefore any subfield of A is isomorphic to a subfield of \mathbb{C} under a continuous isomorphism. We shall show that in certain cases such an isomorphism cannot be a homeomorphic map.

Denote by Q the set of all rational complex numbers, i.e. numbers of the form $\varrho=r_{1}+i r_{2}$ with rational r_{1} and r_{2}. Denote by W the field of all rational functions in a variable t, with coefficients in Q; it contains the subfield of all constant functions, i.e. quotients of elements in Q. This subfield is clearly a dense subset of the complex plane \mathbb{C}. Fixing a transcendental number c we obtain an isomorphic imbedding of W into \mathbb{C} given by $w \rightarrow w(c), w \in W$ (a function w is uniquely determined by its value $w(c)$ and this value is a well defined complex number, since c is transcendental). One can easily see that each isomorphism h of W into \mathbb{C} is of the form $w \rightarrow \widetilde{w}(d)$, where d is a transcendental number given by $d=h(t)$, and \widetilde{w} is either w or \bar{w}, depending on whether $h(i)=i$ or $h(i)=-i$. Here \bar{w} is an element of W obtained by replacing in w all coefficients by their complex conjugates.

Take a complex Banach space $X, \operatorname{dim} X>1$, and take as A the algebra $L(X)$ of all continuous endomorphisms of X. One can easily see that A contains a non-zero operator T satisfying

$$
\begin{equation*}
T^{2}=0 \tag{1}
\end{equation*}
$$

Define now a subfield of A setting

$$
F_{0}=\left\{w(c) I+w^{\prime}(c) T \in A: w \in W\right\}
$$

where c is a fixed transcendental number and I is the unity of A (the identity operator on X). By (1) we have

$$
\left(w_{1}(c) I+w_{1}^{\prime}(c) T\right)\left(w_{2}(c) I+w_{2}^{\prime}(c) T\right)=w_{1}(c) w_{2}(c) I+\left[w_{1}(c) w_{2}(c)\right]^{\prime} T
$$

thus F_{0} is a subring of A; moreover,

$$
\left(w(c) I+w^{\prime}(c) T\right)^{-1}=w(c)^{-1} I-\frac{w^{\prime}(c)}{w(c)^{2}} T
$$

which we check easily using (1). Thus F_{0} is a subfield of A. Since the value $w(c)$ uniquely determines w, and hence also $w^{\prime}(c)$, the map $w(c) I+w^{\prime}(c) T$ $\rightarrow w$ is an isomorphism of F_{0} onto W, and so F_{0} is isomorphic to a subfield of \mathbb{C}. On the other hand, the map $w(c) I+w^{\prime}(c) T \rightarrow\left(w(c), w^{\prime}(c)\right)$ is a homeomorphism of F_{0} onto a dense subset of $\mathbb{C}^{2}\left(F_{0}\right.$ is a dense subset of a two-dimensional subspace of A). As observed above, any isomorphism of F_{0} into \mathbb{C} is given by

$$
h_{0}: w(c) I+w^{\prime}(c) T \rightarrow \widetilde{w}(d)
$$

where d is some transcendental number. Such a map is never a homeomorphism. The discontinuity of h_{0}^{-1} follows from the discontinuity of the map $w(c) \rightarrow w^{\prime}(c)$, and the latter can be seen by observing that $w^{\prime}(c)=0$ on a dense subset of \mathbb{C} consisting of numbers $w(c)$ for constant functions w, while $w^{\prime}(c)$ is not identically zero. An alternative proof can be obtained by observing that a dense subset of \mathbb{C}^{2} cannot be homeomorphic to a subset of \mathbb{C}. Thus we have

Proposition. There exists a complex Banach algebra A and a subfield F of A which is not topologically isomorphic with a subfield of \mathbb{C}.

Remarks. The above construction can be performed in any complex Banach algebra A possessing a nilpotent element $T, T^{n-1} \neq 0, T^{n}=0$ for some $n>1$. In this case as the subfield F we take

$$
F=\left\{w(c) I+w^{\prime}(c) T+\ldots+\frac{w^{(n-1)}(c)}{(n-1)!} T^{n-1} \in A: w \in W\right\}
$$

This is a subfield of A homeomorphic to a dense subset of \mathbb{C}^{n}.
A modified argument gives a similar construction in a real Banach algebra.

REFERENCES

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
[2] N. Bourbaki, Théories spectrales, Hermann, Paris 1967.
[3] M. A. Neumark, Normierte Algebren, Frankfurt 1990.
[4] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Toronto 1960.
[5] W. Żelazko, Banach Algebras, Elsevier, Amsterdam 1973.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ŚNIADECKICH 8
00-950 WARSZAWA, POLAND

