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Abstract. A long-standing problem in large-eddy simulations (LES) of the planetary boundary 
layer (PBL) is that the mean wind and temperature profiles differ from the Monin-Obukhov 
similarity forms in the surface layer. This shortcoming of LES has been attributed to poor grid 
resolution and inadequate sub-grid-scale (SGS) modeling. We study this deficiency in PBL LES 
solutions calculated over a range of shear and buoyancy forcing conditions. The discrepancy from 
similarity forms becomes larger with increasing shear and smaller buoyancy forcing, and persists 
even with substantial horizontal grid refinement. With strong buoyancy forcing, however, the error 
is negligible. 

In order to achieve better agreement between LES and similarity forms in the surface layer, 
a two-part SGS eddy-viscosity model is proposed. The model preserves the usual SGS turbulent 
kinetic energy formulation for the SGS eddy viscosity, but it explicitly includes a contribution 
from the mean flow and a reduction of the contributions from the turbulent fluctuations near the 
surface. Solutions with the new model yield increased fluctuation amplitudes near the surface and 
better correspondence with similarity forms out to a distance of 0.1-0.2 times the PBL depth, i.e., 
a typical surface-layer depth. These results are also found to be independent of grid anisotropy. 
The new model is simple to implement and computationally inexpensive. 

1. Introduction 

Large-eddy simulation (LES) is a well established tool for the study of  turbulent 

flows (Wyngaard, 1984; Reynolds,  1989). The physical  basis for LES is the 

separation of  the flow into large-scale or resolved and small-scale or subgrid- 

scale (SGS) motions: the larger scales contain most  of  the energy and turbulent 

fluxes and are more  dependent  on the flow environment,  while the less energetic 

SGS motions are bel ieved to be more  universal in character. The scale separation 

is determined by the choice of  a spatial filter, which for practical purposes is 

fixed by the numerical  resolution. Model ing the effects of  the SGS motions on 

the resolved motions is a somewhat  empirical  science; however,  it has been 

found that many  aspects of  LES solutions are relatively insensitive to the type of  

SGS model  (Nieuwstadt et al., 1993), at least for conditions where the resolved 

motions are dominant.  

Numerous  SGS models  have been proposed with varying levels of  sophistica- 

tion. In the context of  planetary boundary- layer  (PBL) flows, Deardorf f  (1980), 

Nieuwstadt  and Brost  (1986), and Moeng  (1984) use an eddy-viscosi ty  model  

based on a t ime-evolving turbulent kinetic energy equation; Mason  and Callen 
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(1986) use a variant of the Smagorinsky (1963) nonlinear-viscosity model; and 

Schmidt and Schumann (1989) use a second-order closure model. For channel 
flows driven by shear, recent SGS models have been developed by Horiuti (1993), 

Yakhot et  at. (1989), Yoshizawa (I989), and Germano et  al. (1991). 

The variety of SGS models arises both because the theoretical justifications 

are arguable and because LES solutions are sensitive to the type of SGS model 

where the SGS motions are not conspicuously weaker than the resolved motions, 

e.g., near walls and in strongly stable density stratification. As evidence of this 

sensitivity, the turbulent motions in a LES of shear-driven channel flow cannot 
be sustained without reducing the dissipative effects of the SGS model (e.g., 

Moin and Kim. 1982). For shear flows, standard SGS models which use the 

theoretical values for the SGS constants are too dissipative with respect to the 

resolved motions. Recently Mason and Thomson (1992) showed that a typical 

LES wind-shear profile (i.e.. the vertical derivative of the mean horizontal wind) 

deviates from the well established Monin-Obukhov similarity forms (Businger 

et  al.. 1971) near a bounding surface. They proposed a correction by introduc- 

ing stochastic backscatter in their Smagorinsky SGS model that produced better 

agreement between LES and similarity forms; however, the computational cost 

of this model is high and the resulting resolved flow is significantly agitated by 

stochastic excitations, particularly near the boundary. Schumann (1993) point- 

ed out that the addition of SGS stochastic backscatter significantly influences 

the resolved motions since a considerably larger eddy viscosity is required to 

dissipate the extra energy generated. Another known means for matching the 

similarity forms is by direct numerical simulation with finite viscosity (Spalart, 

1988), but this conflicts with the LES goal of simulating fluid dynamics at large 

Reynolds number without the computational burden of resolving the viscous 

boundary layers. 

There is increasing evidence that intermittent coherent structures carry most 

of  the turbulent fluxes of momentum and buoyancy in the PBL and that these 

structures are preferentially generated near the ground (e.g., Mahrt and Gibson, 

1992: Moeng and Sullivan, 1993). An important goal for LES is to represent at 

least the strongest of these structures. This, we believe, can be accomplished by 

allowing the resolved dynamics to be both weakly damped and weakly agitated 

by the SGS interactions, even in the vicinity of the boundary. Thus we accept 

the diagnosis of Mason and Thompson that current LES solutions are deficient 

in their surface layer by failing to match similarity forms for the first and second 

statistical moments of the turbulent PBL; however, our view is that both the 

statistical moments and the important dynamical motions can be recovered from 

the resolved motions by using a combination of a less dissipative SGS model 

and adequate grid resolution. 

In this paper we examine in detail the surface layer of a PBL in LES solutions 

and the extent to which a new, simple SGS model is capable of diminishing their 
discrepancies from similarity forms. 



A SUBGRID-SCALE MODEL FOR LARGE-EDDY SIMULATION 249 

2. Current SGS Model 

A common thread amongst the simpler SGS models is the assumption that the 
SGS stresses ~-ij can be approximately related to the resolved field by the adoption 
of a turbulent eddy viscosity ut, so that 

"rij = - 2 u t S i j ,  (1) 

where the resolved flow rate of strain tensor is 

sit  = \ Oxj Ox i /  " (2) 

In Equation (2), ui are resolved velocity components (u, v, w) in the coordinate 
directions xi, i.e., (x, y, z). SGS fluxes for buoyancy and/or scalar transport are 
assumed to be of the analogous form 

O0 
"roi = - u o  Oxi '  (3) 

where u0 is the eddy diffusivity for heat 0 (or other scalar). The most widely used 

prescription for ut is the Smagorinsky (1963) nonlinear model, which results from 
an assumed local equilibrium balance between shear production and dissipation 

in the SGS turbulent kinetic energy (TKE) equation. For PBLs where buoyancy 

forcing is important, the Smagorinsky model is further modified (e.g., see Mason 

and Callen, 1986). An alternative SGS model is to solve the TKE equation 
explicitly, although such models have not been found to be generally superior 

to those obtained with a modified Smagorinsky model (Schmidt and Schumann, 
1989). Advantages of such models are that no equilibrium assumption is required, 

and the prognostic equation provides a direct means of calculating the SGS kinetic 

energy which is needed to construct the actual pressure (see Equations (7) and 

(9) in Moeng, 1984). 
For the sake of discussion and completeness, the SGS model based on the TKE 

equation developed by Deardorff (1980) and used by Moeng (1984), hereafter 

referred to as the baseline model, is briefly reviewed. This model uses Equations 

(1) and (3) with 

~ t = C k l e  1/2, (4) 

and 

(5) 
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where e denotes the SGS kinetic energy, l is a mixing length, A is an average 

grid mesh spacing, and Ck is a constant. For the mixed spectral-finite difference 

code that we use, 

A 3 = A x A y A z ~  (6) 

where z~x, zSy and A z  are effective grid mesh spacings, which account for 

de-aliasing of the upper 1/3 of the wavenumbers. Here, 

zSx : 3Lx/2N~, Z~y = 3Lv/2Nv,  and Az = Lz/Nz ,  

where (Lz, L v, Lz) are the domain sizes and (Nx, N v, Nz) the number of grid 

points in the coordinate directions (x, y, z), respectively. For unstable stratifica- 

tion, [ = ~ ,  while for stable stratification, 1 is reduced as suggested by Deardorff 

(1980), 

0.76el/a 
l - -  (._9_00, 1/2 , (7) 

\00 ~ ]  

where 9 is the gravitational acceleration and 00 a reference virtual potential 

temperature, This length-scale correction for stable stratification was analyzed 

by Schumann (1991), and for the PBL cases studied had only minor effects. 

However, we found that this reduction in length scale is a necessary ingredient in 

order to model PBL flows with strong capping inversions. Recently we included 

a change in length scale near a bounding surface if the mixing length exceeds 

the value obtained from similarity theory, i.e., nz, where t~ is the yon Karman 

constant. The latter corresponds to a wall damping correction (Van Driest, 1956), 

but is rarely invoked even for the first grid point above the surface for grids which 

are not too anisotropic. 

The prognostic equation for SGS energy e is 

0 +uJ-~zJ e = P + B - e + D  (8) 

where the various terms on the right-hand side are shear production P,  buoyancy 

B, dissipation e, and diffusion D. Terms in the above expression can be directly 

computed or are modeled as 

P = -~ jS~ j ,  (9) 

9 
B = (10) 

~0 

e3/2 
e -  C ~ - - ,  (11) g 
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and 

o ( o 2 )  
D = ~ x  i 2ut (12) 

If the LES grid is within the inertial subrange, the spectral analysis of Moeng 
and Wyngaard (1988) finds that the SGS constants are Ck = 0.1 and C~ = 

0.93. Their computations of a highly convective PBL are found to be relatively 

insensitive to modest changes in these constants. If the shear production and 
dissipation terms are equated in Equation (8) and Equations (1) and (4) are used, 

the Smagorinsky model 

ut = ( C 8 A ) 2 ~ ,  (13) 

is recovered where the Smagorinsky constant Cs written in terms of Ck and Ce 

is 

~ )  1/2 ( C8= Ck (14) 

Substitution of the theoretical values noted previously for Ck and C,, yields 

c8 =0.18. 
Additional ingredients of the baseline SGS model are the surface boundary 

conditions. We follow the approach developed by Moeng (1984) and others in 
which horizontally-averaged conditions at the first computational grid point above 

the surface are matched to Monin-Obukhov similarity theory (Businger et al., 

1971). This assumes that the vertical grid is adequate to resolve at least a por- 
tion of the surface layer. The outcome of this procedure is a prediction of the 

horizontally-averaged value of the surface shear stress, and the surface potential 

temperature or heat flux depending on the form of the boundary condition for 

the latter. In order to estimate fluctuating values of the surface stress, a "local 

similarity rule" is adopted which relates the fluctuating values of the surface 
stress and temperature to the fluctuating velocity and temperature at the first grid 

point. Numerous rules have been proposed for this step, e.g., Schumann (1975), 

Mason and Callen (1986), and Piomelli et al. (1989), but we have found that 
all the suggested schemes alter the computed solutions only slightly. Thus in the 

present work we adopt the scheme suggested in Moeng (1984). 

3. Proposed SGS Model 

As a bounding surface is approached, the mean shear increases, anisotropy is 

induced in the turbulent velocity components, and the dominant scales in the tur- 

bulent motion decrease in size. These factors, especially the latter, erode the abil- 

ity to perform accurate LES calculations near rigid boundaries because a greater 
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burden is placed on the form of the SGS model. As a boundary is approached, 

a transition is needed from the LES solution, where the majority of turbulent 

motions are computed, towards ensemble-average modeling, where all the tur- 
bulent motions are subgrid scale. This transition near a boundary is necessitated 

because the LES grid is fixed and the scales of the important turbulent motions 

are decreasing. The ensemble-average model equations, which are a greatly sim- 

plified subset of the LES equations, are known to reproduce mean logarithmic 

profiles when the turbulence parameterization is an eddy viscosity that varies 

linearly with distance from the wall (e.g., Cebecci and Bradshaw, 1988). How- 

ever. in the ensemble-average equations, the turbulence parameterization differs 

from standard SGS models in that it encompasses all turbulent scales. Thus it is 

possible to envision a transition from LES to ensemble-average modeling in the 

vicinity of the wall in the framework of the LES equations, provided the SGS 

model is appropriately modified. 

Most SGS models are developed by first assuming that the flow contains an 

inertial subrange so that the SGS motions can be considered to be isotropic. Then 

the SGS constants are computed by adopting a specific form for the isotropic 

energy spectrum (Moeng and Wyngaard, 1988). The isotropy assumption is sat- 

isfied provided that the grid resolution is extremely fine so that the anisotropy 

introduced by the mean shear is negligible (Schumann, 1975). However, for a 

high Reynolds number large-eddy simulation of a PBL (i.e., where the molecular 

viscosity is not explicitly accounted for), somewhere near the bounding surface 

the effect of the mean shear on the SGS motions can no longer be ignored, no 

matter what the grid resolution. Consequently, the SGS modeling that is appro- 

priate for mid-PBL must be altered to account for the special conditions near a 

boundary~ Further. the optimum value of the SGS constants can be expected to 

deviate from the theoretical predictions in the interior of the flow. 

In view of the above arguments, the baseline model needs to be extended 

to accoum for the inhomogeneous nature of the flow in the z direction, and 

the limited resolution of an LES near a bounding surface. At the same time, 

it is desirable that the baseline model is recovered in the regions away from 

a bounding surface. This is advantageous in view of the success of the well 

established baseline model. 

Near a bounding surface, PBL flows take on the character of a shear-driven 

channel flow, and thus it is natural to adopt SGS modeling ideas used in the 

LES of shear-dominated flows. A potential starting point for a SGS model is 

the two-part eddy viscosity model first proposed by Schumann (1975), extended 

by Grotzbach and Schumann (1977) and Schumann et al. (1980), and further 

employed by Moin and Kim (1982). In these studies, the computation of the SGS 

stresses is split into what are termed isotropic and inhomogeneous contributions. 

The isotropic eddy viscosity depends on the magnitude of the fluctuating strain 

rate, while the inhomogeneous term varies with the magnitude of the mean strain 

rate. For a shear-driven boundary-layer flow, the inhomogeneous term is only 
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significant near the wall where O ( u ) / O z  is large. Satisfactory predictions are 

obtained with the two-part model for channel flows, but only with a Smagorinsky 

constant smaller than the theoretical estimate based on the assumption of an 

isotropic spectrum in the inertial range. An important feature of the two-part 

eddy viscosity model, owing to its separation into mean and fluctuating parts, 

is that it provides a transition from LES to ensemble-average modeling as the 

wall is approached. In the two-part model as used by Schumann (1975), the 

fluctuating eddy viscosity decreases roughly like the resolved fluctuating strain 

in the near-wall region. 

Our proposed SGS model which embodies the above ideas is 

T~j = - 2 u t T S i j  - 2 u T ( S # ) .  (15) 

Here the angle brackets ( ) denote averages over the homogeneous directions, 

in this case x and g, and /.I T is an average eddy viscosity which needs to be 

expressed in terms of mean flow quantities. Hereafter ut and uT are referred to 

as fluctuating and mean-field eddy-viscosities, respectively. In Equation (15), % 

referred to as an "isotropy factor", has a dual interpretation in that it accounts for 

variability in the theoretical SGS constants due to anisotropy of the mean flow, 

but also controls the transition between SGS and ensemble-average turbulence 

parameterizations. The exact forms of u r  and "7 are given in Sections 3.1 and 

3.2, respectively. 

The fluctuating eddy viscosity, ut, in Equation (15) is taken to be the baseline 

model given by Equation (4) with a noticeable exception in the computation of 

the SGS energy, e. Here, the shear production term in the SGS energy Equation 

(8) is computed solely from the fluctuating velocities as suggested by Schumann 

(1975). In other words, the mean-shear effect is taken out from the production 

term in Equation (8) so that 

P = 2 u t y ( S i j  - ( S i j ) ) ( S i i  - ( S i j ) ) .  (16) 

We realize that the exact forms of Equations (15) and (16) are not unique, and 

in fact other functional forms are possible. However, these two expressions do 

satisfy what we view as an important requirement, i.e., the turbulence parame- 

terizations pass smoothly from a standard SGS model to one based on ensemble- 

average closure modeling depending on the level of the resolved fluctuating strain 

compared to the mean strain. As noted by Schumann (1975), the use of fluctuating 

strains in the production term is consistent with the assumption of local isotropy 

and moreover results in zero production of SGS energy if the resolved turbulence 

disappears. Under the assumption made in Equation (16), the mean shear can only 

directly generate resolved-scale turbulence, but not SGS motions. Of course, the 

mean shear effect still influences the SGS motions via the resolved-field strain 

rate. 
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3.1. MEAN-FIELD EDDY-VISCOSITY MODEL 

The specification for UT is devised to recover law-of-the-wall behavior in the 

absence of any resolved turbulence. A model which is consistent with this idea 

is Prandtl's mixing length concept, viz., 

uT = (CK Lm)2~/2(Sij ) (S@. (17) 

With the definition for Sij (Equation (2)), Equation (17) simplifies to 

PT = (CKLm) 2 + \--~-z ] (18) 

for horizontally homogeneous PBL flows. In the above expressions, CK is a 

constant and CKLm is a mixingqength scale tied to the grid mesh spacing. 

Schumann (1975), Grotzbach and Schumann (1977), and Schumann et al. (1980) 

find that the constant analogous to CK is approximately 0.1 for channel flows. 

This constant is, however, influenced by the grid geometry and a universal value 

is difficult to prescribe. Despite the attempts by Schumann (1975) and Grotzbach 

and Schumann (1977) to derive theoretical estimates for these constants, they 

were forced to introduce additional corrective constants to gain agreement over 

a range of experiments. 

Our choice of CK is instead guided by the desire to match Monin-Obukhov 

similarity theory in the wall region. The baseline model calculations already 

make use of similarity theory by invoking a match between the computed mean 

wind and Monin-Obukhov similarity predictions at the first u grid point (Az/2)  

and thereby determine the surface friction velocity (Moeng, 1984). (Recall that 

the u and w grid levels are staggered so that the first u grid location is at Az/2.) 

With the introduction of the mean-field eddy-viscosity term in Equation (15), 

an additional constraint can be imposed on our matching procedure. Here we 

stipulate that the computed and similarity-theory derivatives also match at the 

first w grid point, z = zl = Az. The expression for the wind-speed derivative 

(e.g., Businger et aL, 1971) is simply 

O G  _ u.r 
, (19) 

OZ l~Z 

where u .  is the friction velocity, n the von Karman constant, r  the Monin- 

Obukhov stability function for momentum, and Us the average surface layer wind 

speed (Le., (]8 = (Vu-2~ 2 + v2)). In order to make use of Equation (18), we further 

impose a "constant flux" condition below z = zl. For our LES calculations, this 

condition states that the sum of the SGS and resolved momentum fluxes be equal 

to the surface stress, i.e., 

2 (20) [(Tuw) 2 + (Tvw)231/2 + [(~W) 2 + (VW)2] 1/2 = Zt,. 
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We develop a simple predictive relationship for the mean-field eddy-viscosity 
at the first grid point Zl, @ = UT(Zl), by invoking two approximations. First, 

we neglect the fluctuating components of strain compared to the mean strain so 
that only the horizontally-averaged SGS stress in Equation (15) is retained. This 
leads to 

<~-~w> : -((.t~> + ~'T) b7 ' 
(21a) 

(~-v~> : - ( ( . t o ' )  + - r ) - -  
O(v} (21b) 

and, secondly, we ignore the mean wind turning with height at the first grid point 

which implies that 

({ olu l )  2 ( o I v l )  2 

\ Oz ] + \-g-2-~] 

0g~ 
- -  (22) 
Oz "  

Upon substitution of Equation (21) into Equation (20) and making use of Equa- 

tions (19) and (22), the expression for the mean-field eddy-viscosity, @,  becomes 

r  

NZ1 r .  ' 2 + <VW)2] 1/2. ( 2 3 )  

Equation (23) provides an adaptive method for estimating the mean-field eddy 

viscosity needed to force the computed wind speed derivative to match with 

similarity theory at z = Zl. At any other height, we use 

, NZ1 
uT = U T u , 6 ~ ( z l )  2 (S i j } (S i j ) ,  (24) 

which follows directly from Equations (17), (19), and (22). 
For consistency, a similar correction should also be applied to the SGS temper- 

ature (or scalar) field, and several variants analogous to Equation (15) were tried 

for TOi. However, we found that correcting the velocity field induces a substan- 

tial improvement in the mean potential-temperature profile; hence no additional 

correction is applied to Equation (3) for the heat flux. 

3.2. I S O T R O P Y  FACTOR 

It is well known, from trial and error, that the optimum value of the Smagorin- 

sky constant decreases with increasing mean shear. For instance, C8 = 0.2 in 
homogeneous isotropic flows (Clark et al., 1979), while in channel flows, Dear- 

dorff (1970) and Piomelli et al. (1988) use Cs = 0.1; Bardina (1983) finds an 

optimum value of C~ = 0.09, and Moin and Kim (1982) use Ca = 0.065. Since 

the equivalent Smagorinsky constant based on the inertial subrange spectrum is 
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Cs = 0.18, we can expec~ that this value of Cs is too large (i.e., too dissipative) 

for use near a solid surface. 

The exact cause for the observed dependence of Cs on mean shear is not 

completely understood, but Horiuti (1993) and Yakhot et al. (1989) speculate 

that the anisotropy of the SGS motions is significant near a bounding surface. 

In general, a decrease in the Smagorinsky constant coincides with an increase in 

anisotropy in both the resolved and SGS velocities (Horiuti, 1993). It should be 

noted that the change in the Smagorinsky constant considered here is a conse- 

quence of the mean shear. We realize that the Smagorinsky constant also varies 

with grid mesh aspect ratio as pointed out by Scotti et al. (1993). 

In order to account for this anisotropic effect, Yakhot et al. (1989) devised a 

correction based on the ratio of the resolved normal velocity component to the 

total resolved energy, i.e., 3w 2/(u2+v2+w2), which is applied on an instantaneous 

basis. Yakhot's proposal makes an attempt to address the anisotropy issue, but as 

noted by Horiuti (t993 ~. this correction does not account for a change in isotropy 

of the SGS motions with increasing grid resolution. Horiuti (1993) proposed a 

similar correction as Yakhot et al. (1989) with filtered velocity components. Then 

in the limit of very fine grid resolution, the isotropy correction tends to unity. 

The effecl of the Yakhot et al. (1989) and Horiuti (1993) isotropy correction is 

to act much like a wall damping function. 

Both of these models neglect the source of the anisotropy for the small- 

scale motions, which is the presence of increasing mean shear near the wall. 

As pointed out by Tennekes and Lumley (1972), the small-scale motions will 

be roughly independent of the mean strain rate, and hence isotropic, if the ratio 

of the small-scale to large-scale strain is larger than about 10. Also this ratio 

is dependent on grid resolution, since the small-scale (high wavenumber) strain 

rate varies like 23 2/3 in the inertial subrange. Consequently, we choose to base 

an isotropy factor on the ratio of small- and large-scale strain rates in view of 

their important physical content and their ready availability in an LES. Here the 

horizontally-averaged fluctuating resolved strain, 

\ ~  (Sij))(Sij  - (Sij))), (25) S t =  

is used as an estimator for the small-scale strain, while the large-scale strain is 

simply determined from the mean strain 

(S) = ~ (Sij). (26) 

Then the isotropy factor is defined as 

S l 

~' = S ' +  (S) '  (27) 

Notice that Equation (27) is solely a function of z since the horizontal aver- 

age of the fluctuating strain rate is used in Equation (25). For fixed S r, the 
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asymptotic limits of Equation (27) are unity (zero) when the mean strain (S} 

is small (large). Very near the wall where mean strain dominates the resolved 

strain, S ,.~ 1/~z and -y ~ Slnz. Also, if we use Equation (13) for ut, then the 

equivalent Smagorinsky model is 

PtU = (Os A ) 2 ~ ,  (28) 

where the equivalent Smagorinsky constant C8 is 

6*s = Csv~ .  (29) 

As alluded to earlier, -y can be interpreted as an isotropy measure, but this 

also facilitates a transition or blending of SGS and ensemble-average turbulence 

parameterizations. Since ~/decreases as the ratio of resolved fluctuating strain to 

mean strain, it reduces the net eddy viscosity ut'y and thereby leads to increasing 

importance of the mean-field viscosity. 

3.3. MATCHING WITH THE BASELINE MODEL 

The mean-field eddy viscosity UT and isotropy factor ~ play important roles near 

a bounding surface where mean shear is large. Away from the wall in the mid- 

PBL, the fluctuating resolved strain is almost a factor of 10 larger than the mean 

strain for typical grid resolutions used (see Section 4). In this region, ~/-+ 1 and 

UT << ut. Therefore for z > zi/2, where zi is the depth of the PBL, we choose 

to set "y = 1 and uT = 0. The eddy-viscosity model given by Equation (15) then 

reverts to the baseline model in the upper PBL. Then, the baseline model is used 

in regions of strong stable stratification that occur near z = zi, where the form of 

uT and -y are not expected to apply. The combined effects of shear and significant 

stable stratification are an active area of investigation (e.g., Gerz and Schumann, 

1989; and Canuto and Minotti, 1993), and will not be considered here. We realize 

that the selection of 0.5zi as the matching height is arbitrary, and any choice in 

the range 0.3zi < z < 0.7zi would suffice. The intent is to use the new model 

in the surface layer, but not in the entrainment layer. 

3.4. FEATURES OF THE PROPOSED MODEL 

The proposed SGS model borrows ideas advanced by other investigators but 

differs in several aspects. First, we prefer to keep the mean shear in the first term 

on the right-hand side of Equation (15), whereas previous proposals eliminate 

the mean shear from this term. As a result, the new model for the SGS stresses 

given by Equation (15) can blend smoothly with the baseline model given by 

Equation (1) since the mean field eddy viscosity becomes negligibly small away 

from the surface layer. Secondly, Moin and Kim (1982) choose the length scale 

associated with the mean-field eddy viscosity PT to be dependent only on the 

spanwise grid spacing. This selection was based on the observation that the 
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spanwise spacing of the streaks was the dominant motion that was inadequately 

resolved. Our procedure for determining the mean-field surface eddy viscosity, 

@, avoids a direct specification of the mixing length CKLm as is required in 
Schumann (1975). This is important because the wall streaks in our PBL flows 

with Coriolis rotation are oriented with the surface wind (Moeng and Sullivan, 

1994) and not solely in the z direction as in channel flow. 

Another advantage of the present scheme is that it matches the velocity deriva- 

tive near the surface to the similarity relation independent of grid resolution. In 

Equation (15); the mean-field eddy viscosity is introduced to account for inade- 
quate grid resolution and for shortcomings in the baseline SGS model. This term 

dies out quickly away from the walt so that the baseline model is recovered. Also 

noteworthy is t h a t  IIT(Sij ) in Equation (15) is only a function of z and, as men- 

tioned by Moin and Kim (1982) and Rogallo and Moin (1984), only dissipates 

energy associated with the mean flow Us. This directly influences the mean flow 

profile and indirectly leads to more resolved flow turbulence through the energy 

cascade. 

4. Results 

A sequence of large-eddy simulations with varying grid densities in different flow 

regimes was carried out using the baseline and new SGS models. The PBL flows 

vary from strongly convective to shear-dominated (or neutral). A strong stably 

stratified capping inversion was used to limit the growth of the PBL. A grid- 

resolution sensitivity study was further carried out for a weakly convective PBL 

with vigorous shear forcing, A summary of various properties of the simulations 

and global statistics is provided in Tables I and II. The simulations are labeled 

as strongly convective (B), or as shear-dominated with either zero (S) or weakly 

convective (SB) buoyancy forcing. Mean and turbulent statistics are gathered 

over about two large-eddy turnover times after statistically steady conditions 

were reached. More information concerning these simulations can be found in 

Moeng and Sullivan (1994). 

4.1. SGS EDDY-VISCOSITY PROFILES 

To see how the resolved flow is sensitive to the type of SGS model very near 

the surface, we examine the eddy-viscosity profiles for the baseline and new 

models. In Figure 1, the horizontally-averaged eddy-viscosity profiles ut, for the 

baseline model, and ut7 and ur ,  for the new model, are shown for each of the 

three basic flows Considered. These simulations differ slightly in numbers of grid 

points used (see Table I), but are roughly comparable in terms of grid resolution. 

In the case of the new SGS model, the product of the fluctuating eddy viscosity 

and the isotropy factor is shown since this is the effective SGS diffusivity seen 

by the resolved flow. 
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TABLE I 

Input parameters for simulations 

Case L~, Lv Lz NxxJVyxNz  Q .  Ug 

(m) (m) (~ m/s) (m/s) 

S 3000 1000 96x96x96 0.0 15 

SB1  2000 750 50x50• 0.02 15 

S B 2  2000 750 64x64x75 0.02 15 

S B 3  2000 750 100x 100• 0.02 15 

S B 4  2000 750 192x 192• 0.02 15 

/3 5000 2000 96 x 96 x 96 0.24 10 

TABLE II 

Global statistics from simulations. The PBL depth z~ 
is defined as the vertical location where the buoyan- 
cy flux is minimum and 7-, is the large eddy turnover 
time; ~-, = z~/w,  (or z t / u , )  for convective (or neu- 
tral) flows. 

Case u .  w .  zi 7-. - z i / L  

(m/s) (m/s) (m) (s) 

S b 0.499 0.0 466 934 0.0 

SB1  b 0.596 0.682 484 711 0.596 

S B 2  b 0.581 0.680 482 710 0.641 

S B 3  b 0.584 0.684 492 718 0.645 

S B 4  b 0.573 0.683 489 715 0.678 

B b 0.556 2.000 1042 520 18.9 

S n 0.536 0.0 532 993 0.0 

SB1  n 0.620 0.683 488 714 0.534 

S B 2  n 0.613 0.680 481 707 0.545 

S B 3  ~ 0.617 0.685 491 717 0.547 

S B 4  ~ 0.629 0.684 490 716 0.512 

t3 n 0.570 2.000 1028 514 17.5 

b Simulation with baseline SGS model. 

n Simulation with new SGS model. 

Fea tu re s  wor th  no t ing  in F i g u r e  1 are  that  the  b a s e l i n e  and  new m o d e l s  y i e l d  

nea r ly  iden t i ca l  e d d y  v i scos i t i e s  for  al l  three  f lows  a b o v e  z / z i  > 0.2,  sugges t i ng  

that  the  cha rac t e r  o f  the  b a s e l i n e  so lu t ions  is p r e s e r v e d  in the  n e w  ca l cu la t ions  

in this  reg ion .  B e l o w  z / z i  > 0.2, the  f luc tua t ing  e d d y  v i s cos i t y  u t ~ / i n  the  n e w  

m o d e l  is sma l l e r  than  its ba se l i ne  m o d e l  coun te rpa r t .  A t  the  first  w g r id  poin t ,  ut 'y 
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is more than 50% smaller than u~ for an three flows. This is a direct consequence 

of the increasing dominance of the mean strain (S) compared to the resolved 

fluctuating strain 5'P: ,)/ becomes smaller as the surface is approached where 

(S) > S r It is interesting to observe that the mean-field eddy viscosity u r  is 

smaller than its fluctuating counterpart over the entire domain except for a region 

close to the wall for simulations S and SB3.  In the strongly convective simulation 

13, the fluctuating and mean-field eddy viscosities at the first grid level are about 

the same magnitude. These results also suggest that the assumption that ur  is 

negligible compared to z/t, discussed in Section 3.3, is certainly justified above 

z /z i  > 0.2. The lower value of the SGS fluctuating eddy viscosity, and hence 

dissipation, in the new model implies the resolved motions are more energetic in 

the surface layer compared to results obtained with the baseline model. At the 

same time, the mean-field eddy viscosity helps to improve the shape of the mean 

velocity and temperature profiles near the boundary, as shown below. 
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4 . 2 .  C O M P A R I S O N  WITH SIMILARITY THEORY PREDICTIONS 

In view of our focus on the surface layer, the present simulations are compared in 

detail with the predictions from similarity theory. In other words, similarity theory 

in the surface layer is considered the standard, and small or large deviations from 

it are accordingly judged as either good or bad. Comparison quantities are the 

stability functions for momentum and heat, and the wind and temperature profiles. 

For the strong convective PBL flow studied, where - z i / L  > 10, similarity theory 

is expected to be applicable up to about 0.1zi (Wyngaard, 1988). The depth of 

the surface layer is expected to extend beyond 0.1zi for the other simulations 

since - zi / L < 1. 

In the surface layer, the logarithmic velocity and temperature profiles found in 

neutral boundary-layer flows are modified by stratification effects. The derivatives 

of the mean wind speed U~ and mean potential temperature 69 are defined as 

~z OU~ 
Cm u.  Oz ' (30) 

and 

~z O0 
r  O, Oz '  (31) 

where ~b,~ and ~s are so-called stability functions for momentum and heat, respec- 

tively. The surface heat flux Q.,  and friction velocity u.  are used to define 0., 

i.e., 0. = - Q . / u . .  On the basis of experimental results and dimensional analysis, 

Businger et al. (1971) find for unstable and neutral conditions that 

q5 m = (1 - 1 5 r  - 1 / 4 ,  (32) 

and 

~hs = 0.74(1 - 94) -1/2, (33) 

where r = - z / L .  In the case of zero surface heat flux (i.e., the neutral case) 

Om = 1 for all z. Note that Equations (30) and (31) can be integrated for the wind 

speed and potential temperature. (These expressions are not given here, but are 

supplied in B usinger et al. (1971). There is some debate about the exact functional 

form for the stability functions, but the above expressions suffice for the present 

discussion. We are aware that the roughness length z0 should be included in the 

expressions for the stability functions; however, for the grids used, Zl >> z0, and 

the effects of z0 can be neglected. As pointed out by Businger et al. (1971), the 

effect of z0 cannot, however, be neglected in the integrated expressions for the 

wind speed and potential temperature. 

The stability functions are dimensionless forms of the vertical wind speed 

and potential temperature derivatives, and can be used to assess the agreement 
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Fig. 2. Momentum stability function profiles; dotted line similarity theory, dashed-dot line baseline 
model, solid line new model; for the same flows as in Figure 1. 

between LES and similarity theory predictions. LES estimates for the stability 

functions are obtained by substitution of horizontal- and time-averaged profiles 

of  wind speed and potential temperature into the right-hand side of Equations 

(30) and (31). These same averaged wind speed and potential temperature LES 

fields are also compared to similarity-theory predictions for Us and 6). 

A comparison of LES ~m, U~, ~ and @ with their similarity-theory coun- 

terparts for the three flows S, SB3 and B are shown in Figures 2, 3, 4 and 5, 

respectively. Here the wind profiles are shown in terms of the dimensionless coor- 

dinates Us/~, and z/zo, where the roughness length z0 = 0.16 m. The potential 

temperature profiles are also displayed in the dimensionless form (0 - 0s)/0,,  

where 0s is the surface temperature. 

The stability function for the baseline model is in close agreement with the 

Mason and Thomson (1992) result for a neutrally stratified Ekman flow without 

backscatter. Almost a factor of two overshoot in the computed ~ occurs near 

z/zi = 0.1. This implies that our neutral PBL with a strong capping inversion 

exhibits the same "error" as observed by Mason and Thomson. The agreement 

between the computed 0 n  and its similarity counterpart is noticeably improved 
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using the new SGS model for the neutral and weakly convective flows. The 

strong convective flow, B, apparently is relatively insensitive to the SGS model. 

These results indicate that the excessive mean-velocity gradients obtained using 

the baseline model are reduced considerably using the new model for simulations 

S and SB3.  

The computed LES wind profiles, shown in Figure 3, show marked improve- 

ment with the new model, reflecting the enhanced agreement in the stability 

function. Clear logarithmic velocity profiles are observed for all three simula- 

tions starting from the first grid point and extending up to about z/zo = 800 (or 

about z ~ 128 m) with the new SGS model. The simulations with the baseline 

model deviate sharply from similarity theory except very close to the wall. It 

should be noted that the effect of "stochastic backscatter" (Mason and Thomson, 

1992) has the same qualitative improvement as the findings obtained here with 

the new SGS model. 
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The stability function ~bs and potential temperature 0, shown in Figures 4 and 

5, possess the same general features as their velocity field counterparts with the 

new SGS model. With the new model, close agreement between the computed qS, 

and the similarity prediction is observed up to about z = 0.2zi, while a distinct 

logarithmic region is found in the potential temperature profile for simulations 

5"B3 and B. Note that the derivative of the potential temperature at the first grid 

point is in close agreement to similarity theory even though no attempt is made 

to match these quantities explicitly. The results from the baseline model deviate 

sharply from similarity theory for simulation 5"B3. 

4.3, G R I D - A N I S O T R O P Y  EFFECT S 

tn order to study the influence of grid anisotropy and to some extent grid res- 

olution, on the present results, a grid sensitivity experiment was carried out 

where the vertical resolution was held constant while the horizontal spacing was 

gradually refined. Simulations of a strong shear-weakly convective PBL with 

effective mesh aspect ratios zSx/Az = 6.0, 4.7, 3.0 and 1.5 were carried out, 

viz., 5;t71, SB2, 5't33 and 5"B4. This set of simulations provides a clue as to 



A SUBGRID-SCALE MODEL FOR LARGE-EDDY SIMULATION 265 

lOOO 

lOO 

10 1 1 , , I , , , , I , , , , I , , , i i , , , , I , , , ,  
o b) 20 

�9 I 

0 c) 20 

( 0  - 

Fig. 5. Potential temperature profiles; dotted line similarity theory, dashed-dotted line baseline 
model, solid line new model; for same flows as in Figure 1. 

whether the deviation from similarity theory using the baseline model can be 

corrected with enhanced grid resolution or with a more isotropic grid spacing. 

At the same time, the effects of grid resolution using the new model can also be 

studied. 

Computed estimates of the stability functions, mean wind and mean potential 

temperature profiles are compared to similarity theory predictions in Figures 6, 

7, 8 and 9. Examination of the variations reveals, as the horizontal grid resolu- 

tion becomes finer, that a substantial error still exists using the baseline model, 

although a closer inspection of ~bm suggests that the error occurs nearer the sur- 

face as Lflz/Az -+ 1. With the new SGS model, an extended logarithmic region 

is observed in both the wind speed and potential temperature profiles shown in 

Figures 7 and 9, respectively. The extent of the region over which the new SGS 

model and similarity theory agree extends up to ~100 m or .~0.2zi, which is 

expected considering that -zi/L < 1. On the basis of the velocity and temper- 

ature profiles, the extent of the logarithmic region is about 5 to 6 times greater 

with the new SGS model compared to results with the baseline model. Improve- 
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ments in the wind and temperature profiles are found at all grid resolutions 

used: Although no explicit correction is applied to the SGS model for heat flux, 

noticeable improvements are found in the stability function Cs and potential tem- 

perature profiles O~ This suggests that errors in prior simulations were primarily 

confined to the treatment of the SGS velocity fields for flows with strong shear 

and small buoyancy effects. The small variation in the computed mean profiles 

for cases SB1, SB2, SB3 and SB4 with the new SGS model implies that the 

manner in which the mean-field eddy viscosity is computed properly takes into 

account variations due to grid resolution. Some explorations where the vertical 

resolution was changed (not shown) indicate that the new model produces mean 

profiles which are also independent of the vertical mesh spacing. 

The variation of the isotropy factor with grid resolution is shown in Figure 

10. As anticipated previously, the region over which 3' alters the isotropic eddy 

viscosity is reduced with increasing grid resolution. This is due to the resolved 

small-scale strains which increase with finer resolution. From Equation (29), 
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the equivalent Smagorinsky constant near the surface is C's ~ 0.12 to 0.13 

depending on the grid resolution, which is close to the optimum value suggested 

by Deardorff (1970) for channel flows. 

4.4. S E C O N D - M O M E N T  STATISTICS 

The changes to the mean wind and temperature profiles introduced by the new 

SGS model are also reflected in the second-moment turbulent statistics. However, 

since the largest changes are observed in the shear-dominated neutral flow, this 

simulation will be the only one shown here. 

Inspection of Table II shows that the surface stress (i.e., u2,) increases by about 

15% with the new model compared to the baseline computation. This increase 

largely results from the mean-field eddy viscosity, which dissipates mean kinetic 

energy. 

The vertical variation of the total turbulent kinetic energy, resolved plus SGS 

velocity variances, and vertical momentum flux normalized by u2, are shown 
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in Figures t l ,  12 and 13, respectively. Above the surface layer the shape of 

the  normalized kinetic energy profile with the new SGS model is similar to the 

baseline model. In the surface layer, the SGS contribution to the total kinetic 

energy is reduced and more energy lies in the resolved motions with the new 

I SGS model.  This is a consequence of the reduced eddy viscosity in the near- 

wall region and the change in shape in the mean velocity profile. Notice that the 

normalized peak kinetic energy with the new model is about 5% smaller than the 

baseline result, and occurs at a slightly lower height. In Figure 12, the maximum 
4 2 (~2) variance with the new SGS model is approximately .7% whereas with the 

baseline model, the peak is about 8% larger, (~z 2) = 5.0u 2. At the same time, 

the (v 2) and (w 2) variances, obtained with the new model, are increased in the 

surface layer compared to the baseline results. 

The change in shape in the (w 2) profile in the surface layer with the new SGS 

model is especially apparent�9 Near the boundary, the local minimum and sharp 

increase in the (w 2) variance obtained with the baseline model is replaced by a 

smooth increase followed by a gradual decrease with the new model. It should be 

noted that Mason and Thomson (1992) obtained a vertical (w 2) profile similar to 

our baseline model after the introduction of stochastic backscatter. They interpret 
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P o t e n t i a l  temperature profiles for same conditions as in Figure 6. 

this as a result of using isotropic estimates for their SGS variances. Mason and 

Thomson (1992) applied further corrections to their estimates of the SGS (w 2) 

variance, and then obtained a (w 2) profile similar to that found with our new SGS 

model. Meanwhile, our maximum (u 2) and (v 2) variances with the new model 

are almost identical to the values computed by Mason and Thomson (1992) using 

their backscatter model. 

The flux profiles shown in Figure 13 also show that the resolved motions are 

enhanced by the reduced eddy viscosity below z/zi  = 0.1 with the new SGS 

model. Inspection of the profiles indicates that the vertical location where the 

resolved and SGS contributions are equal occurs at a smaller z with the new 

model as compared to the baseline model�9 (Note that the flux profile (uw)/u2, 
at the surface is slightly less than unity because of a small but noticeable con- 

tribution from the spanwise flux (vw). The latter arises because of the presence 

of Coriolis rotation, e.g., Coleman et al. (1990). 
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4.5. FLOW VISUALIZATION 

The effects of the new model on the detailed flow structures can be illustrated by 

comparing flow patterns obtained with the baseline and new models. In Figure 

14, snapshots of the u, w, and uw flow fields in the x - y plane at a single 

vertical location well within the surface layer, z = O.06zi, at nearly the same 

instant in time for simulation S are shown. The shading and contouring scheme 
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w field, and bottom v w  field: u contours ( - 3 ,  - 2 ,  - 1.5, - 1, - 0 . 7 5 ,  0.75, 1, 1.5, 2, 3), dark (light) 
shading values larger (smaller) than 0.75 ( -0 .75) :  w and u w  contours ( -1 .5 ,  - 1 ,  - 0 . 5 ,  - 0 .25 ,  
--0.2, 0.2, 0.25, 0.5, 1, 1.5) dark (light) shading values larger (smaller) than 0.25 ( -0 .25) .  

is selected to highlight the areas of maximum and minimum intensities in each 
field. 
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Inspection of the figures reveals that the new model preserves the same flow 

structures as the baseline model, but with significantly more detail. For instance, 

the alignment of the streaky structures, readily observed in the ~z field, is nearly 

identical with the baseline and new SGS models. At the same time, the regions 

where positive (negative) w fluctuations occur are aligned with negative (positive) 

u fluctuations. This alignment is also clearly shown in the u w  flux contours, 

which are predominantly negative. These features are discussed in more detail in 

Moeng and Sullivan (1994). With the new model, however, finer details appear 

in all flow patterns. This is a result of the smaller SGS eddy viscosity with 

the new SGS model which is less dissipative relative to the resolved motions. 

The appearance of more energetic higher frequency motions with the new SGS 

model is consistent with the stochastic backscatter results of Mason and Thomson 

(1992); however, the source of these high frequency resolved motions differs. In 

the present case, the high frequency motions arise because of a reduced SGS eddy 

diffusivity, whereas in Mason and Thomson (1992), random stochastic forcing 

at the SGS level raises the energy content of the resolved motions. We cannot 

state with certainty that the results from the new model shown in Figure 14 are a 

better representation of actual flow fields than given by the baseline model owing 

to the lack of such detailed measurements. However, since the new model has a 

lower eddy viscosity and larger, more dominant, resolved motions compared to 

the baseline model results, we feel that the results from the new model are in all 

likelihood a better representation of the actual flow. 

4.6. M O D E L  S E N S I T I V I T Y  

By trial and error, we found that the shape of the velocity profiles and their 

derivatives are controlled by the two new features in our SGS eddy viscosity 

model, viz., uT and "y. Solutions obtained with UT alone and the baseline model 

for ut were too dissipative in the near-wall region. This is expected since the 

effective Smagorinsky constant for the baseline model is Cs = 0.18, while pri- 

or channel flow simulations have used Cs = 0.1 (e.g., Deardorff, 1970). Thus 

a reduction in the SGS eddy viscosity ut in the near-wall region is required. 

However, reducing ut by -,/ in the absence of UT, although beneficial, resulted 

in excessive mean-velocity gradients compared to similarity theory predictions 

somewhere near the surface. Thus we conclude that for our infinite Reynolds 

number PBL simulations, both a mean-field eddy viscosity and a reduction of 

the fluctuating eddy viscosity are required in order to achieve agreement with 

similarity theory. We also found that if one chooses the constant C K L m  in the 

mean-field eddy viscosity for one flow at a single grid resolution, the selected 

constant was not necessarily optimum for use in other flows or grid resolu- 

tions. The dynamical procedure adopted by Equation (23) attempts to account 

for variations in UT caused by changes in grid resolution. It should be noted that 

additional improvements in the wind speed profiles may perhaps be achieved 

with further refinements to the isotropy factor. If one were to reduce 3' more in 
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the near-wall region, then uT would increase, although not linearly, according to 

Equation (23). This in turn would provide additional leverage over the shape of 

the mean profile. The present model, however, has been shown to be reasonably 
successful with various shear and buoyancy combinations ranging from neutral 

to strongly convective even with modest grid resolutions. 

5. Conclusions 

In the surface laver where SGS motions are comparable to (or even dominate) 

the resolved motions, a LES for the PBL is sensitive to the type of SGS model. 

In order to investigate this sensitivity, a series of LES was calculated for PBLs 

which vary from neutrally stratified to strongly convective flows. In addition, a 

grid-anisotropy sensitivity study was carried out with horizontal-to-vertical grid 

aspect ratios of 6.0. 4.7. 3.0 and 1.5. 

We find that the turbulent-kinetic-energy eddy-viscosity model suggested by 

Deardorff (1980) and used by Moeng (1984) produces deviations from Monin- 

Obukhov similarity forms near a bounding surface. The deviation from similarity 

forms (or error) is readily observed in the wind and temperature profiles, and 

to a greater extent in their dimensionless vertical derivatives (i.e., the stability 

functions~. Overshoot by a factor of two in the stability function is found for our 

neutral PBE simulation, similar to that found previously by Mason and Thomson 

(1992). However, with substantial buoyant forcing, the error is negligible. 

In order to improve the simulations in the near-wall region, a two-part eddy- 

viscosity model is proposed. The new model adds to the turbulent-kinetic-energy 

formulation for the eddy viscosity used by Moeng (1984) a contribution from the 

mean shear. The mean-field eddy viscosity, unlike the prior models of Schumann 

(1975) and Grotzbach and Schumann (1977), is adjusted along with the flow 

evolution so that the mean shear matches similarity theory at the first compu- 

tational grid point above the surface. Although the mean-field eddy viscosity is 

only important near the wall, it leads to a substantial improvement in the profiles 

of wind speed and potential temperature throughout the whole surface layer. In 

addition, an isotropy factor 7, proportional to the ratio of the resolved fluctu- 

ating strain and the horizontal mean strain, accounts for the anisotropy in the 

SGS motions near the wall. This factor reduces the fluctuating eddy viscosity 

by more than 50% in the near-wall region. The equivalent Smagorinsky constant 

near the surface is then about 0.12. which is close to the empirical values used 

for previous channel-flow simulations. 

The results of our simulations with the new model clearly show logarithmic 

regions in both the wind speed and potential temperature profiles for all cases 

examined. Similar improvements are observed in the profiles of the stability 

functions for momentum and temperature. Agreement with similarity forms is 

found up to about 0.1 0.2zi. These results are also found to be independent of 

grid anisotropyo A comparison of the second-moment turbulent statistics shows 
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that the resolved motions contain more  energy and the surface stress is about 

15% greater with the new model.  Also, (u 2) with the new model  is slightly 

reduced very near  the boundary. Inspection of  the instantaneous flow patterns 

reveals that the same fundamental  flow structures are present  independent  of  the 

SGS model;  with the new model,  however,  finer detail appears  because of  lower  

SGS eddy viscosity. Additional advantages of  the new SGS model  are that it is 

simple to implement  and requires little additional computat ional  cost. 
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