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Abstract

This paper introduces the notion of subjective evidence, which fuels a new parallel cascade influ-
ence propagation model. The model sheds light on the phenomena of belief reinforcement and viral
spread of innovations, rumors, opinions, etc., in social networks. Network actors are assumed to be
testing a Bayesian hypothesis, e.g., for making judgment about the superiority of some product(s)
or service(s) over others, or (dis)utility of a given program/policy. The model-based influence maxi-
mization solutions inform the strategies for market niche selection and protection, and identification
of susceptible groups in political campaigning. The NP-Hard problem of influential seed selection is
first solved as a mixed-integer program. Second, an efficient Lagrangian Relaxation heuristic with
guaranteed bounds is presented. In small, medium and large-scale computational investigations, we
analyze: (1) how the success of an influence cascade triggered in a (sub)community, long exposed
to an opposite belief, depends on the structural properties of the underlying social network, (2) to
what extent growing (increasing the density of) a consumer network within a market niche helps
a company protect the niche, (3) given a competitor’s strength, when a company should counter
the competitor on “their turf”, and when and how it should look for limited-time opportunities to
maximally profit before eventually surrendering the market.

Keywords: influence maximization, social networks, Bayesian inference, evidence, seed selection.

1 Introduction and Motivation

People tend to view product recommendations received from friends or through friends more favorably

compared to advertisements offered by commercial mass media channels (Chen et al., 2010; Hinz et al.,

2011). Social connections enable the propagation of ideas, judgments and opinions; the phenomenon

where knowledge transfer between individuals significantly affects their decisions about purchasing a

product is known as social influence/contagion (Van den Bulte and Lilien 2001; Tang et al., 2009; Chen

et al., 2013). Social influence and diffusion of innovations in social networks are mainly explored in

managerial and sociological studies (Wejnert 2002; Angst et al., 2010; Aral et al., 2011). However,

the need for simulating information diffusion/peer influence in social networks and solving optimization

problems to algorithmically find potent success of cascade initiation strategies led to the introduction

of the Influence Maximization (IM) problem. The objective of the IM problem is to find such early
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starters, termed seeds, for influence spread in a social network that will direct information transfer so as

to achieve a desired impact on the expected product adoption, or people’s decisions/judgments/opinions

with respect to a query of interest (Kempe et al., 2003; Chen et al., 2009).

Early mathematical formulations of the IM problem in social networks view social ties as indicators

of dyadic dependence, where the random graph or Markov random field-based approach is a natural

choice for model design (Domingos and Richardson 2001; Richardson and Domingos 2002). More

recent literature on the algorithmic analysis of influence spread has been dominated by diffusion-based

models (Kempe et al., 2003), in which ties are viewed as information flow channels. The Independent

Cascade (IC) and Linear Threshold (LT) models are most notable ones, both allowing for elegant discrete

optimization problem statements; these models also provided the basis for a streak of subsequent studies

(Kempe et al., 2005; Goyal et al., 2011; Wang et al., 2012; Dinh et al., 2014).

Application-wise, diffusion models have been found suitable for research studies in marketing (Arthur

et al., 2009; Chen et al., 2010) and health care (Sangachin et al., 2014). However, algorithmic investi-

gations up to date failed to culminate in significant managerial insights and strategies. This is in part

due to the fact that existing models do not specify the medium and nature of influence flow through a

network, i.e., fail to explain the diffusion of what leads to social influence, and how it does so.

This paper takes a previously unexplored approach to modeling the spread of competitive influence

in social networks, rooted in Bayesian Inference theory and focused on propagation of evidence. Bayesian

inference logic helps quantify social influence under the premise that people treat new information as

evidence and update their beliefs in support of or against the null hypothesis. In this approach, network

nodes represent intelligent agents (actors) who seek to form judgments about a product/query by testing

a relevant hypothesis (e.g., that a particular claim is true), based on their prior beliefs as well as the

knowledge acquired through friends. A node’s decision to significantly favor the null hypothesis signals

the node’s “positive activation”; significantly favoring the alternative implies “negative activation”;

finally, whenever the collected evidence is inconclusive, the node is labeled “inactive”.

This paper presents a Parallel Cascade (PC) diffusion framework for modeling evidence spread

through social networks. The flow of information in this PC model is classified as parallel duplication

in the typology of flow processes on social networks, introduced by Borgatti (2005), which supports

the idea of belief reinforcement through subjective evidence duplication in social communication. The

paper reports insightful observations, e.g., pertinent to the identification of penetrable market niches

and convenient points of initial influence for conquering new market segments, obtained from solving

basic instances of the PC model-based IM (PCIM) problem. The paper develops problem-specific

optimization schemes for handling medium and large-scale instances of PCIM problem formulated as a

Mixed-Integer program.
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The rest of this paper is organized as follows. Section 2 reviews the literature on diffusion models

for IM. Section 3 formally introduces the PC diffusion model, formulates PCIM problem and discusses

its application to two empirical case studies. Offering a more computationally efficient approach to the

problem, Section 4 presents a Lagrangian Relaxation heuristic tool suit, with solution quality guarantees

achieved via two problem-specific heuristics for finding lower bounds for PCIM problem optima. Section

5 reports on the conducted experimental studies. Section 6 summarizes the findings, discusses the

potential applications of the proposed methods and outlines future research directions. The paper

contains two appendices: Appendix A presents the NP-hardness proof for the PCIM problem; Appendix

B details the Subgradient Search algorithm for finding an upper bound for PCIM problem optima.

2 The Landscape of the Social Influence Research Domain

The concept of word-of-mouth has received attention in the 1940’s as an effective way for diffusion of

information (e.g., about new products) and soon became a coined term in the experimental marketing

research (Merton 1947; Whyte Jr 1954; Katz 1957). Models of information diffusion over networks,

also first introduced in the marketing field, were developed more recently and found use in health care

(Newman 2002), sociology (Macy 1991; Valente et al., 1994) and politics (Deroıan 2002). From an

experimental point of view, the phenomenon of social contagion is known to be a significant factor

affecting the strength of diffusion processes in social networks (Manchanda et al., 2008; Angst et al.,

2010; Peres et al., 2010; Aral and Walker 2011; Susarla et al., 2012; Aral and Walker 2014).

The investigations into the impact of influential people, or opinion leaders, on cascade formation

comprise a large part of the literature. Opinion leaders are defined as the individuals that have the ability

to strongly affect the opinions or decisions of their network peers (Yoganarasimhan 2012). While some

studies degrade the value/power of opinion leaders for social cascade progression (Becker 1970; Watts

and Dodds 2007), most authors see opinion leader presence as a critical facilitator for cascade emergence

(Lu et al., 2013; Tucker 2008; Ghose and Ipeirotis 2011; Iyengar et al., 2011; Van den Bulte and Joshi

2007). Hinz et al., (2011) experimentally showed that a wisely selected group of opinion leaders can

increase the influence spread rate in a cascade up to eight times. Yet, two questions remain unanswered:

How can one select the appropriate opinion leaders for maximizing the spread of influence in a social

network? and How does this selection depend the social network structure? While the literature reviewed

above is more concerned with exploring the mechanisms of successful cascade propagation, it does not

provide a readily available method/solution/strategy (for a company or a political party) to artificially

create a cascade in support of a product or opinion by recruiting the “best” opinion leaders. The latter

objective, however, may be highly sought-after by research-aware practitioners.
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The first organized efforts for identifying influential nodes in social networks relied on centrality-

based heuristics (Borgatti 2006). The degree centrality heuristic assumes that any node with a large

number of direct connections (called a hub) must be highly influential in a social network. The distance

centrality heuristic, on the other hand, considers a node influential if it has short paths to other nodes

in the network (called a bridge) (Wasserman 1994; Hinz et al., 2011). The centrality-based heuristics,

however, provide no quality guarantee for the solution of the IM problems with multiple required seeds.

To formulate an algorithmic approach to finding influential node sets, the term “influence maximization”

was coined by Domingos and Richardson (2001). While the first attempts to address the IM problem

employed a Markov random field approach (Domingos and Richardson 2001; Richardson and Domingos

2002), Kempe et al., (2003) were first to re-frame it as a discrete optimization problem.

The Independent Cascade (IC) model and the Linear Threshold (LT) model, proposed by Kempe

et al., (2003), are the most well-known diffusion models for IM; the optimization problems based on

these models are NP-hard (Wang et al., 2012; Chen et al., 2010). Kempe et al., (2003) discovered a

submodularity property of the IM objective function and presented a greedy seed selection algorithm

with guaranteed, albeit loose, optimality bounds. The problem of assuming submodularity lies in the

fact that under it, the marginal gain of adding new seeds should be decreasing, which does not support

the idea of fixed threshold effects and reveals a manifest shortcoming in the respective diffusion models

(Granovetter 1978; Macy 1991). Furthermore, the original greedy algorithm and even its extensions

were found overly demanding computationally (Leskovec et al., 2007; Goyal et al., 2011; Chen et al.,

2009; Chen et al., 2010; Wang et al., 2012).

A separate branch of literature has explored social influence from the empirical data mining perspec-

tive. As discovered by Aral et al., (2011), a financially viable cascade initiation requires the selection

(buy-in) of no more then 0.2% of the nodes in a network. This finding underlines the value of precise

seed selection algorithms that can ensure a desirable cost/returns ratio in cascade seeding. However,

one observes a gap between the literature based on data-driven studies and algorithmic research. The

latter efforts, unfortunately, have often focused on computational investigations in impractical settings

and failed to produce managerial insights. The present paper serves as a bridge between these two

research thrusts. It designs a realistic diffusion model, strongly supported by mathematical sociology

findings, and solves the seed selection problem optimally over real social network datasets, and hence,

paves a way to rigorously explore strategic decision-making in social networks.

Note that the original IM problem formulation was concerned with maximizing the expected number

of activated nodes at the end of the diffusion process, when the activation status of all the nodes

becomes fixed, irrespective of the sequence and timing of node activation. However, in many practical

IM applications, an influence campaign has a predefined time window, over which it has to achieve the
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maximized possible effect. Only recently, Goyal et al., (2012) addressed the issue of unconstrained time

horizon for IM and introduced MINTIME problem where the objective is to minimize the time until

the activation of a predefined number of nodes.

Note also that in most IC and LT model-based seed selection problems have ignored the aspect

of activation timing; furthermore, they assumed no competition. Meanwhile, the existing literature

confirms the co-existence of (competing) opinions in real-world decision-making settings (Berger et al.,

2010; Bhagat et al., 2012). Chen et al., (2011) were first to recognize this issue by introducing an IC

model that allows negative influence to impede the spread of positive influence.

In summary, the diffusion-based IM problems have received attention from the research community

for finding influential nodes in social networks and have been confirmed to be useful for treating real-

world problems. However, the current diffusion models for IM problems have not been able to produce

many managerial insights, in part due to the underspecification of influence flow mechanisms. The

present work proposes a mathematical framework for finding exact solutions to seed selection problems,

which allows one to more rigorously explore the structure of such optimal solutions.

3 Bayesian Inference Logic in Influence Maximization

This section formalizes the Parallel Cascade (PC) model for diffusion of subjective evidence through

social networks, provides the mathematical model for solving the problem of identifying the best positive

seeds, and lastly, illustrates the use of the presented PC model with two case studies. The PC model

views the node’s adoption of a product or opinion, called activation, as a decision-making process based

on continuously collected evidence. It has been established that human decision-making can be modeled

as Bayesian inference with a high precision whenever the alternatives are given as mutually exclusive

hypotheses (Tenenbaum et al., 2006). These human subject experiments confirm that the collection rate

and the impact of evidence on human decision-making process can be studied empirically, and hence,

the models presented in this paper can be specified based on real-world data. Naturally, the current

paper posits that people use their initial preferences and beliefs, as well as the incoming information

they receive from peers, to decide whether a given null hypothesis (H0) or the opposite alternative

hypothesis (H1) is more likely to be true. It is assumed that, based on the evidence accumulated and

processed through Bayesian updates, a decision-maker may turn from an observer into a supporter of

the hypothesis that convincingly appears more likely to them at a particular point in time; the described

transition is defined by thresholds (on the evidence scale) as done in a great deal of sociology literature

(Macy 1991; Valente et al., 1994; Young 2001).
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Consider a triplet of actors who are testing the same hypothesis, e.g.,
that a new phone service is reliable. Suppose node 1 observes a fact sup-
porting the hypothesis, e.g., using the new phone service for a month
and experiencing few dropped calls, and presents their impression to
nodes 2 and 3. Both nodes 2 and 3 update their beliefs about the hy-
pothesis, and then, node 2 shares the absorbed information to node 3
without providing the source of information. Node 3 captures the infor-
mation (in fact, the rumor) from node 2, treats it as if it provides new
evidence supporting the hypothesis and updates its belief again. This
process shows how a person’s belief about a hypothesis can be rein-
forced multiple times as a result of a single external test/fact. In social
networks, edges serve as channels that permit evidence duplication, and
hence, can enable (unfounded) belief reinforcement.
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Figure 1: Belief reinforcement through subjective evidence spread in a social network.

Bayesian inference logic uses Bayes’ rule to update beliefs in such hypotheses testing (i.e., update

the probability that a particular hypothesis is true) as new evidence is received and processed; here,

evidence is an objective quantity, that valuates the new information regarding a hypothesis, e.g., as a

result of observing a new fact. However, in reality, beliefs are not necessarily updated based on such

facts. When the source of in-coming information is not given (not traceable or forgotten), people still

treat the information (supposedly new to them) as evidence, which we term subjective, and update

their beliefs (Choi et al., 2005; Golub and Jackson 2010). Figure 1 demonstrates the effect of subjective

evidence spread on updating beliefs in social networks.

The PC model views positive activation as the event when an actor begins to significantly favor

one hypothesis over the other. Once a network node becomes active, it begins to deliver the messages

in support of their favored hypothesis to their connected peers. The evidence accumulation can be

mathematically expressed by using the “Odds” function (O), defined as the probability that “H0 is

true” divided by the probability that “H0 is false”. Taking the logarithm of the Odds leads to an

additive evidence function. The evidence function for H0 is given as

e(H0 ∣ Rd) = 10 log10 (O(H0 ∣ Rd)) = e(H0 ∣ R) + 10 log10 [P (d ∣H0R)
P (d ∣H1R)], (1)

where R is the prior knowledge of the null hypothesis (before the evidence diffusion begins) and d is one

signal (a piece of new information) that supports the null hypothesis (Jaynes 2003). Thus, the evidence

function combines the prior evidence and observed evidence. With no prior information (data) available,

equal probabilities are typically assigned to the null and alternative hypotheses. When a sequence of

multiple signals (data) D is received and processed, the updated evidence is given as

e(H0 ∣ RD) = 10 log10 (O(H0 ∣ RD)) = e(H0 ∣ R) + 10∑
i

log10 [P (di ∣H0R)
P (di ∣H1R)]. (2)

The increment of the positive evidence (e+) resulting from a single observation supporting the null

hypothesis (d), and the increment of the negative evidence (e−) resulting from a single observation
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supporting the alternative hypothesis (d′) are respectively given by

e+ = e(H0 ∣ d) = 10 ∗ (log10P (d ∣H0R) − log10P (d ∣H1R)), (3)

e− = e(H1 ∣ d′) = 10 ∗ (log10P (d′ ∣H1R) − log10P (d′ ∣H0R)). (4)

Therefore, upon collecting and processing multiple observations D with n+ positive and n− negative

signals, the evidence supporting the H0 becomes

e(H0 ∣DR) = e(H0 ∣ R) + e+ ⋅ (n+) − e− ⋅ (n−). (5)

The evidence increment values (e+ and e−) are used as parameters in the PC model.

3.1 The Parallel Cascade Diffusion Model

Define an Influence Graph as a directed graph G = (N,A), with a set of nodes N and a set of arcs A.

Let the sets of positive and negative seeds, i.e., the initial sets of evidence propagators, be denoted by

S+ and S−, respectively. Note that the notion of “positivity” of evidence is arbitrary: the hypothesis

that postulates a claim preferred by the grand policy-maker will hereafter be viewed as positive, hence

the distinction between positive and negative evidence. For each node i ∈ N , let θ+i ≥ 0 (θ−i ≥ 0) denote a

positive (negative) threshold for the evidence that a node must accumulate, in support of (against) the

null hypothesis, to become positively (negatively) activated. In a given problem, θ+ and θ− can be set

using Bayesian logic: these values should reflect the desired levels of assurance for a node not to make

a mistake (about the product/query) when it gets positively or negatively activated (Jaynes 2003).

At each discrete time period t = 0,1,2, ..., T , let Lit ≥ 0 and Kit ≥ 0 denote the cumulative levels

of positive and negative evidence for node i, respectively. Node i is said to be positively (negatively)

activated at period t if and only if Lit −Kit ≥ θ
+

i (Kit − Lit ≥ θ
−

i ); otherwise, it maintains the inactive

status. Let Li0 = θ+i and Ki0 = 0 denote the initial evidence levels of node i ∈ S+, at time t = 0.

Equivalently, Lj0 = 0 and Kj0 = θ
−

j denote the initial levels of evidence for node j ∈ S−, at time period

t = 0. Each node is assumed to accumulate evidence incoming from its activated neighbors, regardless

of its own activation status. For each node i ∈ N , the nodes that have arcs toward (coming from)

i are termed in-neighbors (out-neighbors) of i; Nin(i) and Nout(i) are the sets of in-neighbors and

out-neighbors of i, respectively.

At time period t = 0,1, ..., T , let N+t (i) ⊆ Nin(i) (N−t (i) ⊆ Nin(i)) denote the set of positively

(negatively) activated in-neighbors of i. A node p ∈ N+t (i) sends positive feedback (positive evidence)

toward i and n ∈ N−t (i) provides negative feedback (negative evidence) for i. The numerical values

of the positive and negative evidence provided by node i ∈ N at time t > 0 to its out-neighbors are

denoted by E+it ≥ 0 and E−it ≥ 0, respectively. If node i is positively activated at time t, E−it is zero; if
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it is negatively activated at time t, E+it is zero; finally, when i is inactive at time t, both E−it and E+it

are zero. The evidence value provided by a node to its out-neighbors in the time period immediately

following positive (negative) activation is given by e+ (e−). Note that e− is defined as the absolute

value of the negative evidence calculated using Bayesian logic (i.e., e− > 0). At the end of each time

period, each node updates its cumulative evidence levels (positive and negative) by adding the newly

received evidence to the current evidence levels, and possibly, updates its activation status (to be used

for the next time period). Once an activated node loses its activation (becomes inactive), its ability

to propagate evidence is immediately revoked. Note that node activation does not have to be followed

by an action (e.g., product purchase): the specific application of the model will dictate a desirable

assumption in this regard (Bhagat et al., 2012).

In order to realistically capture the effects of information transfer and evidence accumulation in

social networks, two decay factors are incorporated in the presented evidence propagation model, one

pertaining to evidence provision and the other pertaining to evidence collection and processing. The

value of positive (negative) evidence provided by activated nodes decreases by α+ (α−) as time passes

from the last positive (negative) activation. As a result, the effect of the transferred information in

updating the evidence level of out-neighbors is expected to diminish. Furthermore, “forgetfulness”

rate β+ (β−) is introduced into the PC model to allow nodes to forget (discount as old) a part of the

positive (negative) evidence they previously collected. Forgetfulness rate, that has been well studied

in marketing literature (Mahajan et al., 1984; Bimpikis et al., 2013), causes the recently observed

evidence to make a greater contribution to the decision making process. Also, with time, the nodes will

become indifferent to the query, as it often occurs in practice. Figure 2 illustrates the dynamics of PC

model-driven evidence propagation over a small network.

Sets S+ and S− include the Influence graph nodes that are positively and negatively activated,

respectively, at t = 0; set S− is given; the nodes in S+ are to be selected by the decision-maker solving

the IM problem. The diffusion process is terminated after a pre-set (practically relevant) number of time

periods (T ). Following the traditional setup, the PC model-based IM (PCIM) problem is concerned with

populating S+
∗ so as to maximize some measure of the evidence spread in the network. The measure

taken in this paper accounts for both the earliness and sustainment of node activation: PCIM amounts

to maximizing the count of time periods with positive activation (ΓG(S+, S−)) while minimizing the

count of time periods with negative activation (∆G(S+, S−)) over all the nodes,

S+
∗
∈ argmax(S+⊆N ∣S−⊆N,S+∩S−=∅)(ΓG(S+, S−) −∆G(S+, S−)).

It thus makes the model applicable for such marketing, political and military problems where the timing

and duration of activation matter. For example, when activation stands for subscription for a service,
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Figure 2: The spread of pos-
itive and negative evidence
through a network with ∣N ∣ =
15, T = 5, e+ = 7.1, e− = 2.5,
α+ = α− = 1.0, β+ = β− = 1.0,
θ+ = 2 and θ− = −2. The net
activation value (Lti −Kit) for
each node is found beside each
node. Each graph reports the
activation status of each node
at a singe time period t.

each node generates profit in each time period that it’s positively activated. As a result, the total

duration of a node’s positive activation determines its contribution to the objective function. Note

that a positively activated node still observes both positive and negative evidence: as such, a positively

activated node can become negatively activated after receiving enough negative evidence, and vice versa.

Note also that in the absence of negative seeds, when communication can only reinforce the nodes’

beliefs, the PC model with the decay factors set to α+ = 1 and β+ = 0, reduces to a special case equivalent

to the original LT model introduced by Kempe et al., (2003), with the fixed threshold values.

By accommodating conflicting evidence and thanks to its objective function, the PCIM problem

can inform decisions even in situations where the decision-maker stands to eventually loose its market

position(s). Via the threshold values and forgetfulness rates, the PC model also easily accommodates

the non-symmetry of positive and negative influence effects in social networks, i.e., the phenomenon

known as the “Negativity Bias”, which, e.g., reflects the fact that only a few negative product feedback

comments can turn a potential buyer away (Nam et al., 2010; Baumeister et al., 2001; Taylor 1991).

3.2 Optimization Model Specification and Solution Methodology

In this section, a Mixed-Integer Program is constructed for finding exact optimal solutions to the PCIM

problem. It is first noted that the PCIM problem is NP-hard.

THEOREM 1. The PCIM problem is NP-hard.

PROOF: By a polynomial Turing reduction from the Maximum Coverage Problem (see Appendix A).

The PCIM problem is now formally stated, with the notation summarized in Table 1.

9



Table 1: Definition of indices, input parameters and decision variables in mathematical problem

Indices

i, j node indices
t time period index

Inputs

G(N,A) the Influence Graph; a directed graph with a set of nodes N and a set of arcs A∣N ∣ total number of nodes in the network
T total number of time periods in the time horizon considered in the problem∣S+∣ total number of positive seeds

θ+i the value of positive threshold for ith node

θ−i the value of negative threshold for ith node
e+ maximum value of positive evidence a node can send in a single time period
e− maximum value of negative evidence a node can send in a single time period
α+ discount rate for the value of positive evidence sent by a positively activated node
α− discount rate for the value of negative evidence sent by a negatively activated node
β+ the rate that each node forgets the previously received positive evidence
β− the rate that each node forgets the previously received negative evidence

S−i { 1, if ith node is a negative seed,
0, otherwise,

Decision Variables

Xit { 1, if node i is positively activated at time t

0, otherwise

Yit { 1, if node i is negatively activated at time t

0, otherwise

Lit cumulative level of positive evidence for ith node at time t

Kit cumulative level of negative evidence for ith node at time t

E+it the value of positive evidence that ith node provides for its neighbors at time t

E−it the value of negative evidence that ith node provides for its neighbors at time t

As stated earlier in the paper, at every time period, each node is either positively activated, nega-

tively activated or inactive. At the end of each time period, every node collects all the incoming evidence

and updates its cumulative evidence level to determine its activation status for the next time period.

The Mixed-Integer Programming model (P) for the PCIM problem is given,

(P ) maxZ =
∣N ∣

∑
i=1

T

∑
t=0

(Xit − Yit) (6)

Subject to:

Yit ≥ ((Kit −Lit) − θ−i )/M i = 1,2, ...∣N ∣, t = 0,1, ..., T, (7)

1 −Xit ≥ (θ+i − (Lit −Kit))/M i = 1,2, ...∣N ∣, t = 0,1, ..., T, (8)

Xit + Yit ≤ 1 i = 1,2, ...∣N ∣, t = 0,1, ..., T, (9)

Lit = β
+Lit−1 + ∑

(j,i)∈A

E+jt−1 i = 1,2, ...∣N ∣, t = 1,2, ..., T, (10)

Kit = β
−Kit−1 + ∑

(j,i)∈A

E−jt−1 i = 1,2, ...∣N ∣, t = 1,2, ..., T, (11)

Li0 =Xi0(θ+i ) i = 1,2, ...∣N ∣, (12)

Ki0 = Yi0(θ−i + ǫ) i = 1,2, ...∣N ∣, (13)
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E+it ≤ (α+E+it−1) + (1 −Xit−1)e+ i = 1,2, ...∣N ∣, t = 1,2, ..., T, (14)

E+it ≤ e
+(Xit) i = 1,2, ...∣N ∣, t = 1,2, ..., T, (15)

E−it ≥ (α−E−it−1) + (Yit − Yit−1)e− i = 1,2, ...∣N ∣, t = 1,2, ..., T, (16)

E−it ≤ e
−(Yit) i = 1,2, ...∣N ∣, t = 1,2, ..., T, (17)

Yi0 = S
−

i i = 1,2, ...∣N ∣, (18)

E+i0 =Xi0e
+ i = 1,2, ...∣N ∣, (19)

E−i0 = Yi0e
− i = 1,2, ...∣N ∣, (20)

∣N ∣

∑
i=1

Xi0 ≤ ∣S+∣, (21)

0 ≤ Lit,Kit,E
+

it,E
−

it i = 1,2, ...∣N ∣, t = 0,1, ..., T, (22)

Yit,Xit ∈ {0,1} i = 1,2, ...∣N ∣, t = 0,1, ..., T. (23)

The objective function in (6) takes into account the timing of node activation through the counts

of positively and negatively activated nodes in each time period. Note that removing the timing of

activation from the objective function in (6) would generate the problem of maximizing the number of

positively activated nodes and minimizing the number of negatively activated nodes at the end of the

diffusion process, i.e., in period T , which can be solved as a special case of (P).

The constraints (7) and (8) ensure that each node gets positively activated when its net evidence

level (the difference between cumulative positive evidence and cumulative negative evidence) is greater

than or equal to the positive threshold (θ+), and gets negatively activated when the net evidence level is

less than or equal to the negative threshold (θ−). In constraints (7) and (8), M is a large positive number

greater than or equal to [maxi∈N(θ+i +θ−i )]+ǫ+(∣N ∣−1)(T +1)e−. Constraint (9) guarantees that, at each
time period, each node is either positively or negatively activated, or otherwise inactive. Constraints

(10) and (11) ensure the correct updates of the level of cumulative evidence for each node at each time

period. The diffusion process starts with the cumulative level of positive and negative evidence set to

zero for all the nodes except the seeds. Constraints (12) and (13) ensure that the cumulative level of

positive evidence for each positive seed is greater than the positive threshold (θ+), and the cumulative

level of negative evidence for each negative seed is greater than the negative threshold (θ−). This is

required to ensure that the seeds do not lose their ability for propagating influence immediately following

the initial time period. As the objective function favors reducing the number of negative activations

(deactivates a negatively activated node in case that its negative level of evidence is exactly equal to

its negative threshold), a very small positive parameter ǫ, as small as 0.0001, is needed to force the
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model to keep the negative seeds negatively activated at the end of the initial time period. Such a

parameter is not needed in constraint (12) because the objective function favors keeping the positive

seeds positively activated when the level of positive evidence and the positive threshold are the same.

Note that assigning a large value to ǫ and adding it to both (12) and (13) would increase the time over

which positive and negative seeds can sustain their respective activation. Constraints (14) and (15) set

the value of the positive evidence that any node can propagate over a single time period t ≥ 0 (E+it);

they guarantee that: (a) E+it is zero when node i is not positively activated at time t (Xit = 0), (b) E
+

it

is equal to e+ when i has become positively activated at time t (Xit −Xit−1 = 1), and (c) E+it is equal

to α+E+it−1, otherwise. Constraints (16) and (17) set the value of the negative evidence that any node

can propagate over a single time period t ≥ 0 (E−it). Constraint (18) ensures the initial activation of the

negative seeds. Constraints (19) and (20) set the initial value of the evidence propagated by each node

in the network. Constraint (21) ensures that the total number of positive seeds at time t = 0 does not

exceed the pre-defined number of seeds in the problem. The non-negativity and binary constraints for

the decision variables in the problem are defined in (22) and (23).

To the best of our knowledge, this paper presents a first mixed-integer program for solving IM

problems. The experimental results with (P ) are reported in Section 5.

3.3 Case Studies with the PC Model

The most meaningful and valuable IM modeling efforts, reported in the literature, allow for the char-

acterization of the properties of optimal solutions, derived from the analyses of distinct small- and

medium-sized problem instances; such findings can then be extrapolated to more general, large problem

instances. This section presents two examples using data from real-world networks that illustrate the

power of the PC model in explaining the consequences of seed selection decisions when positive and

negative influences clash in social networks with specific structure. The PC model reveals how and why

the optimal strategy for positive influence spread depends on the selected seeds’ positions, on the time

length of the window of opportunity the decision-maker has, on the network structure, on the locations

of the opponent’s seeds, and on the specifications of the evidence accumulation mechanism.

Case Study 1: This example studies the flow of information over the Zachary’s karate club network,

a well-known network in the literature of social network analysis. The dataset contains 34 members

of a karate club who were observed for two years and the friendship links were extracted based on the

interactions among members outside of the club-related activities (Zachary 1977). During the data

collection course, a disagreement grew between the club’s administrator and instructor, which led to

the club’s break-up into two clubs. Figure 3 shows the Zachary’s karate club social network, named

Network 1, where node 1 denotes the instructor who is the central node in the first cluster (C1) and

12



node 34 denotes the administrator who is the central node of the second cluster (C2). The clusters

depict the eventual student memberships in the two separated clubs (Girvan and Newman 2002).

In order to define a PCIM problem on Network 1, consider it as a new market for a vitamin

supplement product. Through personal connections, the students can share information with each

other and observe each other using the product: consequently, they can process such observations as

evidence in support of the hypothesis that the new product is good.
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Figure 3: The IM problem on
Network 1 with ∣N ∣ = 34, T = 5,
α+ = α− = 0.8, β+ = β− = 1.0,
θ+ = 2 and θ− = −2. Square
nodes represent members of the
first cluster (C1) and circle
nodes represent members of the
second cluster (C2). Node 34
is the club administrator, who
serves as the negative seed.

Firm F1, the producer of a particular model (variation) of the new product, plans to offer the

product at a discounted price to two people in the network, as seeds, to encourage other people to

adopt the product, which they were reluctant to adopt otherwise. Meanwhile, a competing producer

F2, that produces an alternative product’s model, has also identified Network 1 as a niche and has

already incentivized node 34, the administrator who has the highest degree in Network 1, to serve as

their seed. It is assumed that each person, when exposed to both F1’s and F2’s products, tests the null

hypothesis that “F1’s model is better than F2’s” versus the alternative hypothesis that “F2’s model is

better than F1’s”. The acceptance (rejection) of the null hypothesis by any node corresponds to the

adoption of F1’s (F2’s) model, while staying undecided signals that the node has not yet adopted the

product. The set position of the negative seed serves as a constraint in the problem that F1 formulates,

with the objective of locating its own seeds more efficiently.

In competing against each other, each company (F1 and F2) not only tries to maximize its own

profit, but also tries to minimize the competitor’s profit. Without any further assumptions, if F2 has a

significantly stronger brand image than F1, the best intuitive strategy for F1 is to locate its seeds far

away from the negative seed to influence a group of people and reap some profit in the limited time

window before all the people adopt the F2’s product. A more challenging problem arises when F1’s

brand image is as strong as F2’s. In this situation, F1 can assign both seeds to cluster C1 to influence
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all people in this cluster, while a more reasonable strategy is to assign one seed to cluster C2, in the

neighborhood of the negative seed to cancel it out, and assign the other seed to cluster C1.

Turning the described intuition into exact PCIM solutions, however, is not trivial. To this end, one

can use program (P ); see the results in Table 2. In the solved PCIM instances, all the nodes process

evidence in the same manner (i.e., the community is homogeneous), and the evidence threshold values

are set to θ+i = 2, θ−i = −2, for every node i ∈ N . The positive seeds are gradually strengthened over

several problem instances, by increasing the value of positive evidence increment (e+), which leads to the

changing optimal seed locations. The time horizon in every problem instance is set to T = 5 (note that,

since the network is small, with the diameter of five links, then any two positive nodes can potentially

reach the whole network within five time periods).

Table 2: Optimal positive seeds competing the negative seed in node 34 for T = 5 (Network 1).

Exp. Index e+ e− Opt. Seeds Remarks

1 0.5 3.5 (6,7) both seeds are as far away from the neg. seed as possible
2 0.8 3.5 (5,6) both seeds are far away from the neg. seed
3 1.1 3.5 (1,2) both seeds inch closer to the neg. seed, still in C1

4 1.7 3.5 (1,33) one seed stays in C1 and the other one moves to counter the neg. seed in C2

5 2.1 3.5 (3,33) one seed moves to the bridge of C1 and C2 and the other one is still in C2

6 2.6 3.5 (32,33) both seeds move to C2 to block the neg. seed in its own cluster
7 3.5 3.5 (3,33) one seed stays close to the neg. seed and the other one begins to move away
8 4.4 3.5 (1,33) the seeds spread out over the network, without regard to the neg. seed
9 6 3.5 (1,33) the seeds spread out over the network, without regard to the neg. seed

In Table 2, the first column shows the experiment index, the second and third columns show the

evidence increment values, reflective of the relative quality levels of the F1’s (e
+) and F2’s (e

−) products,

and the last column reports the optimal seed set for each instance. The analysis of the optimal seed

sets showcases the transition in the optimal seed allocations, as the problem parameters are varied.

When the positive evidence increment value is too small, the optimal positive seeds find themselves

in the locations most distant from the negative seed. As the positive evidence strength grows in the

subsequent instances, the optimal positive seed locations first gradually move toward the negative seed

and then spread out evenly over the network. These results are well in line with the intuition.

In order to study the effect of the different time horizon settings on the optimal solution for F1, the

experiments are repeated with various time horizons and the results are reported in Table 3. Tracking

the changes in the optimal positive seed locations with the varied T reveals that the decision-maker

should become more conservative as the time horizon for the problem increases. In order to further

study the patterns in the optimal solution formation with the growing T , assume that the decision-

maker (F1) earns (loses) one dollar per positive (negative) activation per time period. Then, the PCIM

objective can be interpreted as the amount of money that the decision-maker earns by the end of the

marketing campaign. Taking any action other than the optimal one leads to a regret compared to the
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objective value that would be obtained under the optimal seed selection. As such, a decision-maker

that relies on centrality-based heuristics, will always select the nodes (1,33) as the positive seeds, as

they have the highest degree and betweenness centrality values (except for node 34, which cannot be

selected), irrespective of the evidence values and T .

Table 3: The effect of time horizon on the Optimal position of positive seeds (Network 1).

Exp. e+ e− Opt. Seeds Heu. Opt. Seeds Heu. Opt. Seeds Heu. Opt. Seeds Heu. Opt. Seeds Heu.
Index T = 2 Reg. T = 4 Reg. T = 7 Reg. T = 9 Reg. T = 15 Reg.

1 0.5 3.5 (7,14) 3 (7,11) 6 (6,7) 6 (6,7) 6 (6,7) 7
2 0.8 3.5 (1,2) 5 (5,6) 10 (5,6) 13 (7,11) 12 (7,11) 13
3 1.1 3.5 (1,2) 10 (1,2) 35 (1,2) 48 (1,2) 48 (5,6) 55
4 1.7 3.5 (1,33) 0 (1,33) 0 (1,33) 0 (1,3) 2 (1,3) 9
5 2.1 3.5 (1,33) 0 (3,33) 9 (3,33) 24 (3,33) 21 (3,33) 104
6 2.6 3.5 (1,33) 0 (32,33) 31 (32,33) 116 (32,33) 184 (32,33) 393
7 3.5 3.5 (1,33) 0 (3,33) 20 (3,33) 29 (3,33) 31 (3,33) 31
8 4.4 3.5 (1,33) 0 (1,33) 0 (1,33) 0 (1,33) 0 (1,33) 0
9 6 3.5 (1,33) 0 (1,33) 0 (1,33) 0 (1,33) 0 (1,33) 0

Table 3 shows the regret of the heuristic solution; the regret increases with T , which in part explains

why the decision-maker becomes more conservative as T increases. Note that the regret values should be

standardized to allow for proper comparison across that problem instances with different time horizons.

As the maximum amount of money that F1 can theoretically make in each instance is N(T +1), termed

the maximum theoretical revenue (MTR), the heuristic regret of each problem is divided by MTR and

the standardized regrets are plotted in Figure 4.

When the positive seeds are weak, the negative evidence conquers the whole network, and vice

versa. The peak in Figure 4 corresponds to the case where the groups of positive seeds and the negative

seed are almost equally strong - this is when calculated seed selection can have a big impact. The

calculations of the area under the standardized regret curve on Figure 4 reveal that the regret value

of the heuristic-based seed selection increases with T . Overall, these results emphasize the importance

of optimal seed selection in (a) the problems with a large time horizon, and (b) the problems where

neither positive nor negative evidence is overly dominant.

Note that when the positive evidence increment (e+) becomes much larger than the negative evidence

increment (e−), such that any strategy eventually leads to full positive activation in the network, then the

optimal strategy is indifferent to both the location of the negative seed and the time horizon, and places

the positive seeds so as to minimize the time of reaching all the nodes. Interestingly, this observation

brings up the idea of minimizing the maximum distance (or the average distance) of nodes to positive

seed(s) as a heuristic method for locating positive seeds in social networks, when positive evidence

strongly dominates the negative evidence. This finding connects the problem of locating positive seed(s)

for maximizing the spread of evidence in a non-competitive social network to the p-center and p−median
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Figure 4: The standardized
regret value of the centrality-
based heuristics in Table 3.

problems in facility location literature, that try to locate facilities so that it minimizes the maximum

or average distance of facilities to the points of demand (Hakimi 1964; Tansel et al., 1983).

Case Study 2: This example studies the stability of judgments in a network in the presence of

external influence. To this end, a new concept reflecting the consequences of subjective evidence rein-

forcement is introduced, and its utility is illustrated in application to the Florentine families’ marriage

network (Padgett and Ansell 1993). Define a network cluster’s “defendability” as the number of its

nodes that withstand the pressure of an external judgement, i.e., do not change their opinions/decisions

(e.g., related to product purchasing, political party support, etc.). This case study showcases how the

defendability of a cluster depends on its interconnectedness and the timing of an external “attack”.
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Figure 5: The IM problem on
Network 2 with ∣N ∣ = 16, T =
50, α+ = α− = 0.7, β+ = β− =

1.0, θ+ = 2 and θ− = −2: (a)
the initial setup, (b) the red
edges are added to the network,
(c) the green edges are added
to the network, (d) the blue
edges are added to the network.
Adding edges to the cluster (in-
creasing the density of the clus-
ter) increases its defendabil-
ity and makes it more difficult
for the Bruno family (negative
seed) to penetrate the network
cluster.
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The Florentine families’ marriage network, named Network 2, contains 16 elite families in Florence

in which the links represent the inter-family marriages in the time period 1394-1434. Padgett and

Ansell (1993) illustrated how Medici family took power through creating strategic marriage links in this

network. It is of interest to explore how the growing number of within-cluster marriage links would

help Medici remain in power, if a new family were to emerge from the outside and attempt to impose

its own influence on the cluster (see Figures 5(b) - 5(d)).

Without loss of generality, the Medici family is taken as a positive seed in Figure 5: it is assumed

to begin a political campaign at time period t = 0. After d time periods, a new family Bruno, taken as

a negative seed, creates a marriage link to Lambertes family, a peripheral node in the original network,

hoping to initiate an oppositional campaign. The negative influence is assumed stronger than positive

(e+ = 1 and e− = 3.5) ensuring that the negative influencer has the potential to penetrate the cluster.

Intuitively, one expects the network cluster to reinforce a particular view as it is exposed to it for a long

time. Also, the number of within-cluster connections should accelerate the information exchange, and

thereby, make the cluster more defendable.

With both positive and negative seed locations given, the PC diffusion model is employed for evalu-

ating the spread of evidence through the network over time (up to T = 50) until the optimal solution no

longer changes with the growing T . In order to gauge the impact of the cluster density on defendability,

two marriage links first are added to the original network: Acciaioul to Pazzi, and Albizzi to Bischeri

(Figure 5(b)); then, two additional links are added: Ridolfi to Albizzi, and Strozzi to Guadagni (Figure

5(c)); and finally, two more links: Medici to Guadagni and Ridolfi to Bischeri (Figure 5(d)).

Table 4: The counts of positively and negatively activated nodes in Network 2 at time T = 50.

Network 2 (a) 2 (b) 2 (c) 2 (d)
(Density) (0.167) (0.183) (0.2) (0.217)

Delay (+) (-) (+) (-) (+) (-) (+) (-)

0 - 15 - 15 - 15 - 15
1 - 15 - 15 - 15 14 1
2 - 15 - 15 - 15 14 1
3 - 15 3 9 14 1 14 1
4 - 15 8 4 14 1 14 1
5 1 11 9 4 14 1 14 1
6 6 9 9 3 14 1 14 1
7 13 1 13 1 14 1 14 1

Table 4 summarizes the results for the four clusters (2(a)-2(d) shown in Figures 5(a)-5(d)): the first

row gives the cluster labels; the second row reports the clusters’ densities. The first column of Table 4

reports the delay (in the number of time periods) after which the cluster gets exposed to the negative

influence. For each cluster in Table 4, the first (second) column reports the total number of nodes

(families) that adopt the positive (negative) political opinion by the end of the diffusion process. The
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Table 5: Attacking low-degree families.

Network Attacking Pazzi Attacking Acciaioul
(Density) (0.167) (0.167)

Delay (+) (-) (+) (-)

0 13 2 - 15
1 13 2 14 1
2 13 2 14 1
3 13 2 14 1
4 13 2 14 1
5 13 2 14 1
6 13 2 14 1
7 13 2 14 1

Table 6: Attacking Lambertes family

Network Attacking Lambertes
(Density) (0.175)

Delay (+) (-)

0 - 15
1 - 15
2 13 1
3 13 1
4 13 1
5 13 1
6 13 1
7 13 1

results reported in Table 4 quantifies how the cluster defendability increases with the growing density,

confirming the claim of Easley and Kleinberg (2010) about the association of pluralistic ignorance and

the number of direct contacts in the network. The clusters are also observed to become more defendable

after a certain delay period, termed critical delay threshold, which depends on the evidence strengths,

cluster connectivity and proximity of the point of attack to the positive seed in the cluster.

In the real-world scenario, Bruno family would be unlikely to be able to marry into any family in the

core of Network 2. A link to Pucci, an isolated node, would hardly be useful. The results of the diffusion

process with the same settings as in Table 4, but with Bruno targeting Acciaiiuol and Pazzi (low-degree

families), are reported in Table 5. The results showcase the fact that attacking a network through a

point far from the positive seed provides a better opportunity for the external evidence to succeed. In

order to see how the distance of the point of attack from the positive seed affects the success of the

external influence to spread in the cluster, the same experiments are repeated when a link is added to

the network to connect the point of attack (Lambertes) to the positive seed (Medici) - see Table 6. The

comparison of Tables 4 and 6 reveals that decreasing the distance between the positive seed and the

point of attack hurts the prospects of the negative seed. More generally, reinforcing a network with

more links makes it more defendable against an opposing influence.

Case Study 2 highlights the fact that investments into influencing a well-connected community must

be carefully calculated. Both the community structure and intervention timing are important to such

ventures. Note that in a marketing problem of occupying and protecting a market niche, the delay

considered in this section can be viewed as that of introducing a competing product. In this context,

the PC diffusion model can help valuate long-term marketing strategies, i.e., assess the trade-off between

an earlier yet more expensive or a delayed but less expensive product introduction.

In summary, Section 3.3 showcases the value of the PC diffusion model for expressing the spread of

evidence in practical IM problems. Furthermore, the provided case studies exemplify how sensitive the

18



optimal solutions to IM problems may be to the numerical values of problem parameters. Notably, the

present section connects the seed positioning problem in social networks to the facility location problem,

a well-studied problem in the literature of Operation Research, that opens a door to applying location

theory models for IM problems in social networks. Section 4.2.1 explains how the methods from the

location theory literature can inform new IM heuristics.

4 A Set of Lagrangian Heuristic Tools for PCIM

As mentioned in Section 3 (and proved in Appendix A), the PCIM problem is NP-hard. The sources of

complexity of the PCIM problem include the number of nodes in the Influence Graph, the total number

of time periods for spreading the evidence and the number of positive seeds. An efficient approach is

required for solving PCIM problem instances with large Influence Graphs.

This section presents a guaranteed-performance heuristic method for PCIM using Lagrangian Re-

laxation. It works by relaxing a preselected subset of constraints in (P ) and including weighted penalty

terms for violating the relaxed constraints into the objective function. Lagrangian Relaxation has been

applied for solving optimization problems in various areas, including supply chain network design (Pan

and Nagi 2013), scheduling (Diaby et al., 1992), network planning (Siomina et al., 2007) and data clus-

tering (Ding et al., 2005). A Lagrangian Relaxation heuristic for PCIM is designed in Section 4.1: it

identifies good feasible solutions in reasonable time, while returning a tight upper bound for the optima.

To achieve the latter, a Subgradient algorithm is presented in Appendix B as a method for finding the

lowest upper bound for PCIM. Finally, two heuristic methods are presented in Section 4.2 for finding

near-optimal feasible PCIM solutions and obtaining tight lower bounds for the optima.

4.1 Lagrangian Relaxation for Finding an Upper Bound for PCIM Solutions

By definition, incorporating the removed PCIM constraints into its objective function results in a valid

“relaxation” of the original formulation (Held and Karp 1970; Fisher 1981).

A Lagrangian Relaxation problem (LRu) for (P ) is given,

(LRu) maxZLRu(u) = ∣N ∣∑
i=1

T

∑
t=0

(Xit − Yit) + u(∣S+∣ −
∣N ∣

∑
i=1

Xi0), (24)

Subject to:

u ≥ 0, (25)

(7)-(20),

(22)-(23).

19



Each feasible solution of (P ) is feasible for the corresponding (LRu), since (LRu) is at most as

constrained as (P ). In order to make (LRu) a valid relaxation for (P ), a non-negativity constraint is

required for the Lagrangian multiplier (u). As a result of defining (LRu) as a relaxation for (P ), each

feasible solution for (LRu) provides an upper bound for (P ). In an effort to obtain tight upper bounds

for PCIM, a Lagrangian dual problem (LDu) is formulated,

(LDu) ZLDu
=Minu′Z

∗LRu(u′), (26)

where Z∗LRu(u′) is the optimal solution of (LRu), for a given u′. The Lagrangian dual problem (LDu)

can be iteratively solved for finding the dual multipliers that minimize the optimal solution of (LRu)

to obtain the best (lowest) upper bound for (P ).

To make the iterative search procedure of solving LDu more efficient, a loose relaxation of (LRu)

is preferable. Tighter relaxations, however, are expected to provide better bounds for (P ); thus, a

trade-off arises between executing fewer iterations of the search procedure for solving (LDu) with a

tighter relaxation and executing more iterations of the search procedure for solving (LDu) with a less

tight relaxation. Such relaxations that keep Xit (i = 1,2, ..., ∣N ∣, t = 0,1, ..., T ) binary and keep the

negative seeds fixed are computationally easier because adding (dropping) positive seeds to (from) their

optimal solutions can provide valid feasible solutions for (P ). With this idea in mind, constraint set

(21) is relaxed with dual multiplier u. Although the selected relaxed problem removes the constraint

for the exact number of positive seeds in (P ), the maximum number of positive seeds in (P ) is still

constrained by the sets (9) and (18), which do not allow a node to be a negative seed and a positive

seed at the same time. In this paper, a Subgradient search procedure, a famous hill climbing algorithm

(Fisher 2004), is applied to solve the Lagrangian dual problem (see Appendix B). There are other

methods including simplex-based methods and multiplier adjustment methods proposed in the literature

for solving Lagrangian dual problems, but Subgradient-based procedures, in general, achieve better

computational performance (Fisher 1981; Fisher 2004). Two heuristic methods are proposed next for

finding near-optimal feasible solutions for (P ) to provide the lower bound for calculating the heuristic

gap and updating the step size for the Subgradient algorithm.

4.2 Obtaining the Lower Bounds for Optimal PCIM Solutions

Each feasible solution for (P ) presents a valid lower bound for the optimal solution for (P ). The

presented PCIM problem always has at least one feasible solution if the total number of positive seeds

and negative seeds is less than or equal to the total number of nodes in the Influence Graph. The

simplest method for finding a feasible solution for (P ) is to trivially select any ∣S+∣ nodes, which are

not negative seeds, as positive seeds. Although such solutions satisfy the stopping criterion in the
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Subgradient algorithm, the resulting lower bound is not necessarily tight. In this section, two heuristic

methods are presented for finding near-optimal feasible solutions.

4.2.1 The Iterative Seed Removal (ISR) Algorithm

The PCIM problem has three properties, discovered through experimental studies with the mathematical

model (P ) over Network 1, Netowrk 2 and real Facebook datasets from SNAP collection (Leskovec and

Krevl 2014), and presented in this section as observations. The ISR algorithm to be presented utilizes

these properties to efficiently find near-optimal feasible solutions for PCIM problem.

Observation 1. In the PCIM problem, when the positive seed locations are given at time t = 0,

the calculation of the resulting objective function value in (P ) takes O(T ∣N ∣2) time.

Observation 2. For the PCIM problems with the varying number of positive seeds to be selected

(∣S+∣), the solution time is a concave function of ∣S+∣.
Observation 3. The intersection of the sets of optimal seeds for two instances of the PCIM problem

with a different number of positive seeds is generally non-empty; moreover, in a vast majority of cases,

the optimal seed set for a PCIM problem instance is a subset of the optimal seed set for the PCIM

instance with the same parameter specification but more positive seeds.

The analysis of PCIM run-times in Section 5.2 experimentally confirms Observations 1 and 2. As

a piece of evidence for Observation 3, Table 7 gives the results for three PCIM problems with the

growing number of positive seeds. The first problem uses the Mexican Political Elite (MPE) network

that contains the significant friendship, kinship, political and business connections within a powerful

political group in Mexico (De Nooy et al., 2011). The next two problems use Facebook data subsets,

FB1 and FB2, found in the SNAP collection (Leskovec and Krevl 2014). In each case, the number

of positive seeds in the original PCIM problem BP (Base Problem) is equal to four, and new PCIM

problems are generated by iteratively incrementing the number of positive seeds by one, and then, solved

to see if the optimal solution of a problem with more positive seeds includes the seeds from the optimal

solution for BP. The results confirm that the optimal solution for all the problems with more than four

positive seeds contain the solution for BP. Note that Observation 3 experimentally authenticates the

utility of the Greedy algorithm of Kempe et al., (2003) and the facility location Stingy algorithm (also

known as the Greedy-Drop algorithm) of Feldman et al., (1966), for solving PCIM problems.

The ISR algorithm employs the PCIM problem properties captured in the three presented Observa-

tions to efficiently obtain good and tight solutions to practical problem instances. Consider an instance

of the PCIM problem with ∣S+∣ positive seeds to be identified (henceforth referred to as the original

problem). The ISR algorithm increases the number of positive seeds and defines a Dummy problem with
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Table 7: Computational results for small- and medium-sized PCIM problem instances.

Dataset ∣S+∣ = 4 (BP) ∣S+∣ = 5 ∣S+∣ = 6 ∣S+∣ = 7
Opt. Sol. (∣N ∣=35, T=10) MPE (2,10,12,20) (2,10,12,18,20) (2,10,12,14,20,31) (2,10,12,14,20,29,31)

Inclusion of BP Solution (%) - 100 100 100
Opt. Sol. (∣N ∣=40, T=30) FB1 (6,8,17,19) (6,8,17,19,25) (6,8,17,19,25,34) (5,6,8,17,19,25,34)

Inclusion of BP Solution (%) - 100 100 100
Opt. Sol. (∣N ∣=50, T=25) FB2 (10,19,25,43) (10,16,19,25,43) (10,16,19,25,43,48) (10,16,19,25,43,47,48)

Inclusion of BP Solution (%) - 100 100 100

∣S+d ∣ > ∣S+∣ positive seeds. The Dummy problem is exactly the same as the original PCIM problem in the

Influence Graph and input parameters, but it seeks for a greater number of positive seeds. An optimal

solution for the Dummy problem is necessarily infeasible for the original PCIM; the ISR algorithm works

to iteratively obtain the best combination of the seeds to be removed from the optimal solution for the

Dummy problem and obtain a good feasible solution for the original problem. The number of positive

seeds in the Dummy problem is chosen to be large, but not too large, so that it can be solved fast, and

also, the seed removal procedure can be efficient.

According to Observation 2, it is always possible to find a simple Dummy problem with ∣S+∣+ ∣S−∣ ≤
∣N ∣. According to Observation 3, an optimal solution for the Dummy problem is expected to include

the positive seeds present in the optimal solution for the original problem. Hence, the ISR algorithm

executes the greedy algorithm of Kempe et al., (2003) backwards. At each iteration of the ISR algorithm,

the problem with more positive seeds is called a superior problem because its objective function value is

necessarily greater than or equal to that of a subproblem achieved by removing one seed, hence called

an inferior problem. To begin with, let the first superior problem have ∣S+d ∣ positive seeds and define an

inferior problem as a maximization problem for finding the best set of ∣S+d ∣−1 positive seeds. Instead of

solving the inferior problem, the ISR algorithm traverses all the distinct combinations of ∣S+d ∣−1 positive

seeds in the solution of the superior problem and selects the combination that maximizes the objective

function of the inferior problem. According to Observation 1, computing the objective function value

of the inferior problem for each possible combination of ∣S+d ∣−1 positive seeds in the optimal solution of

the superior problem takes O(T ∣N ∣2) time. To proceed, the ISR algorithm keeps removing the positive

seeds until it obtains a set of ∣S+∣ positive seeds, and reports it as a feasible solution for the original

PCIM problem and a lower bound for the optimal solution. The total number of inferior problems that

the ISR algorithm solves to obtain the feasible solution for the original PCIM problem with ∣S+∣ positive
seeds using a Dummy problem with ∣S+d ∣ positive seeds is

( ∣S+d ∣∣S+
d
∣ − 1) + (

∣S+d ∣ − 1∣S+
d
∣ − 2) + ... + (

∣S+∣ + 1
∣S+∣ ) = ∣S+d ∣ + ∣S+d − 1∣ + ... + ∣S+∣ + 1 =

∣S+d ∣2 + ∣S+d ∣ − ∣S+∣ − ∣S+∣2
2

. (27)

The ISR algorithm elegantly employs the PCIM problem properties. However, its main drawback

is its independence from the Subgradient algorithm: the upper bound for the PCIM problem, found by
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the Subgradient algorithm, does not feed into the ISR algorithm. Furthermore, the ISR algorithm may

not work well if all the available Dummy problems are hard to solve.

Algorithm 1 - The ISR Algorithm for PCIM

Initialize ∣S+∣ and ∣S+
d
∣ in a Dummy problem, with ∣S+

d
∣ > ∣S+∣;

Initialize bestSolutionValue with −M and currentSolutionValue with 0; /* M is a large positive number */
Solve the Dummy Problem with ∣S+

d
∣ positive seeds;

Store the solution in S∗sup;
for t ← 0 to (∣S+

d
∣ − ∣S+∣ − 1) do

for i ← 1 to (∣S+
d
∣ − t) do

createNewSolution(i); /* This function removes ith seed from S∗sup to obtain a new solution for the inferior problem*/
evaluateNewSolution(i); /* This function evaluates the objective function for the new solution*/
storeCurrentSolution(i); /* This function stores the objective value of the new solution in currentSolutionValue*/
if currentSolutionValue ≥ bestSolutionValue then

recordBestSolutionIndex(); /* This function records i as the index of the best solution for PCIM*/
updateBestSolutionValue(); /* This function updates the best solution for PCIM*/

end if

end for

removeOneSeed(); /* This function removes the seed with best solution index from seed set and updates S∗sup*/
updateBestSolutionValue(); /* This function initializes bestSolutionValue with −M*/

end for

4.2.2 The Adaptive Subgradient-Based (ASB) Algorithm

The ASB algorithm is designed to utilize the information obtained in executing the Subgradient al-

gorithm to iteratively improve the lower bound for PCIM. The optimal solution of (LRu) does not

necessarily provide a feasible solution for (P ), since (LRu) is not constrained by the number of positive

seeds. Let S+L be the set of positive seeds in the optimal solution of (LRu). At each iteration of the

Subgradient algorithm, if ∣S+L∣ ≥ ∣S+∣, the ASB algorithm selects the first ∣S+∣ positive seeds (with respect

to a fixed random ordering) from S+L to obtain a feasible solution for (P ) with ∣S+∣ positive seeds. On

the other hand, when ∣S+L∣ < ∣S+∣, the ASB algorithm selects all the positive seeds in S+L and randomly

selects ∣S+∣ − ∣S+L∣ positive seeds from the nodes in the network that are neither in S+L nor in S−. In

the early iterations of the Subgradient algorithm, the ASB algorithm blindly selects ∣S+∣ positive seeds,

however, the selection process becomes more precise as the Subgradient algorithm runs further.

Algorithm 2 - The ASB Algorithm for PCIM

Initialize ∣S+∣;
Initialize bestSolutionValue with solution of ISR algorithm and currentSolutionValue with 0;
while gapV alue ≤ acceptableGap do

storeLagrangianSolution(); /* This function stores the solution of LRu to be used for finding the lower bound*/
createFeasibleSolution(); /* This function creates a feasible folution for (P ) using S+

L
*/

evaluateNewSolution(); /* This function calculates the objective value of PCIM for the stored solution*/
storeCurrentSolution(); /* This function stores the objective value of the new solution in currentSolutionValue*/
if currentSolutionValue ≥ bestSolutionValue then

recordBestSolution(); /* This function updates the best feasible solution for PCIM*/
end if

end while

The ISR and ASB algorithms are very efficient when used together in practice. The ASB algorithm

first stores the best feasible solution obtained by the ISR algorithm as the best feasible solution of (P )
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Figure 6: The Lagrangian heuristic toolbox: an overview of the components.

found so far. At each iteration of the Subgradient algorithm, the ASB algorithm extracts a feasible

solution for (P ), using Algorithm 2, and quickly finds the corresponding objective value (see Observation

1). At each iteration of the Subgradient algorithm, the feasible solution for (P ), obtained by the ASB

algorithm, is accepted only if it provides a greater objective function value than the current best feasible

solution.

To summarize, the presented algorithms form a Lagrangian heuristic toolbox for obtaining near-

optimal PCIM problem solutions with rigorously evaluated bounds; the utility of and relationships

between the algorithms are explained in Figure 6.

5 Computational Results

This section presents the computational results with the PCIM instances on some real social networks.

Subsection 5.1 studies the performance of the Lagrangian Relaxation toolbox for PCIM. Subsection 5.2

focusing on run-time and discusses the sources of complexity in the PCIM problem.

5.1 Lagrangian Relaxation Performance

In order to analyze the performance of the presented Lagrangian Relaxation heuristic, this section

solves the PCIM problem instances formulated on four Facebook networks found in SNAP collection

(Leskovec and Krevl 2014). The network size- and structure-dependent statistics of these undirected

datasets, indexed F1, F2, F3 and F4, are reported in Table 8. The nodes in these networks are labeled;

in order to evaluate the performance of the heuristic method, each experiment takes a sub-network of

the main dataset with ∣N ∣ nodes.
In this work, the Mixed-Integer Program and the Lagrangian Relaxation heuristic are implemented

using Concert Technology in JAVA and the commercial solver CPLEX 12.5. All the experiments have

24



Table 8: Dataset Statistics.

Dataset Nodes Edges Directed Density

F1 150 1693 No 0.151
F2 747 30025 No 0.108
F3 534 4813 No 0.034
F4 1034 26749 No 0.05

been performed on a desktop with Intel(R)Core(TM)i3 3.3GHz processor, with 8GB RAM and 64 bit

operating system. Table 9 shows the computational results for small and medium-sized problems, all

solved to optimality using CPLEX. The availability of the optimal solutions for these problems permits

calculating both the optimality gap and heuristic gap. For the small problems, CPLEX outperforms

the Lagrangian Relaxation heuristic in terms of solution time. As the problem size increases the PCIM

solution time with CPLEX increases rapidly (see Section 5.2 for the sources of the PCIM problem

complexity), while the Lagrangian Relaxation heuristic remains fast. Note that in the majority of the

PCIM problem instances reported in Table 9, the ISR and ASB algorithms have found the optimal

solution (the optimality gap is equal to zero).

Table 9: Computational results with small- and medium-sized PCIM problem instances.

Dataset ∣N ∣ T ∣S+∣ LR Time LR LB LR UB Cplex Time Cplex Sol. Opt. Gap Heu. Gap Iter. #
(sec.) (sec.) (Opt.) (%) (%)

F1 30 40 6 11.53 1167 1186 0.69 1167 0 1.6 20
F1 40 100 9 72.01 4020 4021 7.89 4020 0 0.02 20
F1 60 50 7 81.32 2849 2931 74.32 2853 0.1 2.7 20
F2 45 64 7 26.59 2795 2870 7.71 2795 0 2.6 20
F2 60 50 9 32.06 2887 2929 45.84 2887 0 1.4 20
F2 85 75 14 49.66 6233 6289 3425.23 6233 0 0.8 30

The results of the computational study with large-sized problems are given in Table 10. For these

problems, CPLEX runs out of computer memory and fails to return optimal solutions. In such cases, the

Lagrangian Relaxation heuristic runs in a reasonable computational time and provides an acceptable

heuristic gap. For large problems, the optimality gap is unknown, due to unknown optimal solution, and

the heuristic gap remains the only criterion for the evaluation of the heuristic’s performance. The run-

time for the Lagrangian Relaxation heuristic smoothly increases with the dimensions of PCIM problem

instances and it illustrates the supreme contribution provided by the heuristic approach.

In order to assess the scalability of the Lagrangian Relaxation heuristic for solving practical PCIM

problems, it is executed with large Facebook networks, where CPLEX cannot even create a feasible

solution in the computer memory. It is observed that the Lagrangian Relaxation heuristic still provides

acceptable bounds for optimal PCIM solutions. Table 11 reports the results of a computational study

with five large problems where the only concerns are the heuristic gap and solution time of the La-

grangian Relaxation heuristic. The results of computational studies in Table 11 show that the proposed
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Table 10: Computational results with large-sized PCIM problem instances.

Dataset ∣N ∣ T ∣S+∣ LR Time LR LB LR UB Cplex Time Cplex Gap Heu. Gap Iter. #
(sec.) (%)

F1 80 50 9 70.91 3839 3923 > 4 hr > 195% 2.1 60
F1 100 60 10 112.99 5764 5981 > 4 hr > 190% 2.4 60
F2 120 70 10 259.73 8021 8280 > 4 hr > 198% 3.1 60
F2 120 70 10 259.73 8021 8280 > 4 hr > 198% 3.1 60
F3 80 50 11 78.65 3691 3836 > 4 hr > 192% 3.7 60
F3 120 70 10 259.73 8021 8280 > 4 hr > 198% 3.1 60

heuristic method provides encouraging results for large-scale problems, establishing its practical value.

Table 11: Computational results with large-sized PCIM problem instances.

Dataset ∣N ∣ T ∣S+∣ LR Time LR LB LR UB Heu. Gap Iter. #
(sec.) (%)

F2 550 50 40 594.96 26940 27494 2.0 60
F2 720 35 60 831.72 24467 25070 2.4 60
F3 480 30 84 522.73 13977 14208 1.6 60
F4 1034 30 100 1589.34 28991 29822 2.8 60

5.2 A Sensitivity Analysis of the PCIM Problem Run-time Dynamics

Three elements affect the solution time of program (P ) for PCIM: the number of nodes in the Influence

Graph, number of time periods for evidence spread and number of positive seeds to be selected in the

problem. In this section, the PCIM input parameters are varied selectively, and three sets of experiments

are performed with F3 dataset; in each case, only one of the three aforementioned factors is changed

to see how it affects the solution time. The results in Figure 7(a) show that the solution time increases

rapidly with the growing number of nodes in the Influence Graph, e.g., solving a problem with 90 nodes

takes about 50 times more time over a problem with 80 nodes.

Figure 7(b) shows the effect of the total number of time periods, T , on the run-time of (P ) revealing

a linear trend. Problems with a small number of nodes appear to remain tractable even with large T .

The results of the third set of experiments (see Figure 7(c)) show how the solution time of (P ) is

affected by the number of positive seeds in the PCIM problem. These results authenticate the second

observation given in Section 4.2.1. As shown in Figure 7(c), the solution time resembles a concave

function in the number of positive seeds, which motivates the ISR Algorithm: the number of positive

seeds in a hard PCIM problem instance needs to be just slightly increased to find a Dummy problem

with a significantly lower solution time.

6 Discussion

This section discusses the limitations of the presented models and methods, and concludes the paper.
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              (a)                              (b)                      (c) 

Figure 7: Sensitivity analyses of (P ) with α+ = α− = 0.7, β+ = β− = 0.9, e+ = 1.2, e− = 1.25: (a) run-time
dynamics as a function of the total number of nodes in the network (T = 10, ∣S+∣ = 4, ∣S−∣ = 3), (b)
run-time dynamics as a function of the number of time periods (∣N ∣ = 50, ∣S+∣ = 4, ∣S−∣ = 3), and (c)
run-time dynamics as a function of the number of positive seeds (∣N ∣ = 50, T = 10, ∣S−∣ = 3).

6.1 Study Limitations

This paper provides insightful findings and develops a framework for modeling the spread of influence

in a social network. However, this study has limitations worth mentioning.

First, while the PC model relies on the theory and findings established in the sociology literature

for human decision-making (Tenenbaum et al., 2006), it treats stochasticity only implicitly (through

Bayesian updates) and does not emphasize the differences between network actors and the uncertainty in

capturing such differences. The deterministic diffusion process makes the PCIM problem mathematically

tractable, i.e., allows one to solve it as a mixed-integer program, design efficient heuristics exploiting

known and fixed network characteristics, and make insightful observations (after all, linear programs are

often found useful in practice even though real-world problems are rarely truly deterministic). Future

work, however, can involve stochastic optimization for PCIM.

Second, data-focused studies are needed to uncover and address potential challenges in specifying the

model parameters, i.e., learning how people really process subjective, as opposed to objective, evidence.

The investigations with the latter have been previously conducted (Xu and Tenenbaum 2007; Goodman

et al., 2011), which gives promise to the expansion of the presented research in this direction, too; such

studies, however, should lie in the consumer psychology domain. On a positive note, from the modeling

and algorithmic perspectives, the PC model can be used with user-defined parameters, and its ability

to produce practical insights is confirmed through the reported case studies.

6.2 Concluding Remarks

This paper models social influence as a consequence of subjective evidence transfer, and quantitatively

derives general insights about cascading behavior and belief reinforcement in social networks. The
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presented Parallel Cascade (PC) diffusion model defines the rules of exchange and accumulation of

subjective evidence, which feeds into node-level hypothesis testing, en route to making decisions, forming

judgments, etc. The preference of a null hypothesis over an alternative hypothesis determines a node’s

participation status in regards to further evidence propagation. The value of evidence collected and

accumulated, in support of or against the null hypothesis, is calculated using Bayesian update logic.

The optimization problem of finding the set of influential nodes to initiate the evidence spread in

support of the null hypothesis under the PC diffusion model (PCIM) is formulated as a mathematical

program and solved using CPLEX. The PCIM problem is shown to be NP-hard, and next, an efficient,

guaranteed-performance heuristic tool set is presented, exploiting Lagrangian Relaxation.

The studies of the spread of evidence in social networks using the PC diffusion model showcase that

the ability of the decision-maker to trigger a successful cascade or keeping a cascade alive is sensitive

to the density of network connections and the presence of the opposite opinions in a target cluster.

This paper focuses on node-level IM solutions, utilizing the exact fine features of the network structure;

however, it also opens a door to studying the problem on the network level, e.g., describing the general

properties of the seeds’ optimal locations based on metrics such as density and clusterization. Based

on the presented PC diffusion model, one can potentially develop new centrality metrics for evaluating

network ability to reinforce/preserve beliefs. Future research can also explore how PCIM instances with

extremely large Influence Graphs can be reduced, e.g., via clustering, to become manageable.

The PC model quantifies belief reinforcement through social connections, and informs the changes in

optimal seed allocation for creating successful cascades. As noted in Section 3, the model can incorporate

actors’ actions: based on the collected evidence, the actors may not only be active in spreading their

opinions and judgments, but also, choose to buy a product, vote for a party, etc. Such actions will result

in the acquisition of first-hand objective evidence by the actors, which can be processed differently in

comparison with the processing of subjective evidence). The addition of actions in the model can lead

to more insightful analyses, e.g., of low-quality but actively advertised goods where customers may get

excited about a product but only until they buy one.

Also, this paper opens up a new area for modeling the defendability of cohesive clusters in social

networks against strong external opinions and for the identification of “vulnerable” nodes in network

clusters. Furthermore, the paper establishes connection between PCIM and location theory models.

Further efforts will pursue the construction of a theoretical method for solving stochastic PCIM in-

stances. Moreover, future studies can apply the proposed optimization scheme for modeling the spread

of evidence in the social networks that are growing, and in situations where neither the structure of a

social network nor the locations of the opponent’s opinion leaders are precisely specified.
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Appendix A. Proof of Theorem 1.

PCIM problem is shown to be NP-hard by a polynomial Turing reduction from the Maximum Coverage

Problem (MCP), also referred to as the max k-cover problem or set k-cover problem in the literature

(Feige 1998). The objective of MCP is to select a group of sets, where some sets have common elements,

such that the total number of selected sets is less than the predefined limit and the total number of

selected elements is maximized. MCP is first formally stated and then, the reduction from PCIM to

MCP is presented.

Maximum Coverage Problem

INSTANCE: A number k > 0 and a a collection of sets J = J1, J2, ..., Jm.

OBJECTIVE: Find a subset J ′ ⊆ J such that ∣J ′∣ ≤ k and the number of covered elements ∣ ⋃
Ji∈J ′

Ji∣
is maximized.

Given an arbitrary instance of MCP, define a particular instance of PCIM as follows: Assume

the Influence Graph G(N,A) is given and let T = 1, ∣N ∣ = m, ∣S+∣ = k and ∣S−∣ = 0. Let e+ >

max θ+i ; i = 1,2, ..., ∣N ∣, e− = 0, and lastly, set α+ = α− = β+ = β− = 1. Set Ji for i = 1,2, ...,m can

be defined such that j ∈ Ji iff j = i or (i, j) ∈ A, j = 1,2, ...,N (all the nodes in the first hop of node i).

This transformation can be performed in polynomial time in the size of the arbitrary instance of the

MCP.

In order to show that an optimal solution to PCIM problem maps to an optimal solution of MCP, let

X∗i0 for i = 1,2, ..., ∣N ∣ (Xi0 ∈ {0,1}) to be an optimal solution to PCIM problem. Then, ∑
∣N ∣
i=1Xi0 ≤ ∣S+∣,

XjT ≤ ∑(i,j)∈AXi,0+Xj0 for j = 1,2, ..., ∣N ∣, Yit = 0 for i = 1,2, ..., ∣N ∣, t = 0,1, ..., T and ∑
∣N ∣
i=1∑

T
t=0(Xit−Yit)

is maximized. The claim is that X∗i0 is an optimal solution for MCP. Note that X∗i0 for i = 1,2, .., ∣N ∣ is
a feasible solution for MCP because ∑

∣N ∣
i=1Xi0 ≤ ∣S+∣ = k.

Suppose there exists such solution to MCP X̄i0 for i = 1,2, .., ∣N ∣ that ∣ ⋃
Ji∈J̄ ′

Ji∣ > ∣ ⋃
Ji∈J ′∗

Ji∣. Solution

X̄i0 for i = 1,2, .., ∣N ∣ is a feasible solution for PCIM: ∑
∣N ∣
i=1 X̄i0 ≤ ∣S+∣ = k. Therefore, the PCIM objective

function for this solution is ∑
∣N ∣
i=1∑

T
t=0(X̄it− Ȳit) = ∣ ⋃

Ji∈J̄ ′
Ji∣+k > ∣ ⋃

Ji∈J ′∗
Ji∣+k = ∑∣N ∣i=1∑

T
t=0(X∗it−Y ∗it ), which

is a contradiction. Thus, X∗i0 for i = 1,2, .., ∣N ∣ is an optimal solution for MCP. ∎

Appendix B. Subgradient Search Algorithm for the Lagrangian Dual Problem

The Lagrangian dual problem (LDu) is presented in Section 5.1 for finding the best (lowest) upper

bound for the optimal solution of (P ). Since ZLDu(u) is non-differentiable, the subgradient of this

function is employed in the implementation of a search algorithm for finding the improved multipliers.

DEFINITION 1: Vector s is a subgradient of ZLDu(u) at point u′ if:
ZLDu(u) ≤ ZLDu(u′) + s(u − u′), ∀u. (28)
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Figure 8: The Heuristic and optimality gaps achieved with the Subgradient algorithm.

A multiplier u∗ is optimal for (LDu(u)) iff subgradient of ZLDu(u∗) is zero. At iteration k of the

Subgradient search algorithm, the subgradient can be expressed as

sk =∑
i

Xk
i0 − ∣S+∣, (29)

where Xk
i0, i = 1,2, ...,N, are the optimizers of (LRuk). According to Fisher (2004), the iterative Subgra-

dient search algorithm for generating the sequence of Lagrangian multipliers uk, given an initial value

u0, is defined as

uk+1 = uk − lk(sk), (30)

where lk denotes the step size and ZLDu(uk) → Z∗LDu if l → 0 with ∑k
i=0 li → ∞ (Goffin 1977). As

lk approaches zero, it is guaranteed that the Subgradient algorithm does not overstep u∗. Note that

the summation of step size values approaches positive infinity, which, theoretically, guarantees the

convergence to u∗. At the end of each iteration of the Subgradient algorithm, the step size value can

be updated using the quality of the solution obtained for (LDu) at the same iteration,

lk =
λk(ZLDu(uk) −Z ′)

∥ sk ∥2
, (31)

where λk is a positive scalar for the step size and Z ′ is a lower bound for ZLDu . The appropriate range

of values for λk can be defined experimentally; the range 0 < λk ≤ 2 has been found to work well in

practice (Fisher 2004). The maximum value in the selected range for the step size is assigned to the

initial value of the step size (λ0), and it is split when ZLDu fails to decrease for a given number of

consecutive iterations of the Subgradient algorithm (Held et al., 1974).

There is no mathematical proof for the optimality in the Subgradient algorithm. As (P ) is a maxi-

mization problem, the Subgradient algorithm stops when the gap between the lower bound, obtained by

the ISR and ASB algorithms presented in Section 4.2, and the upper bound, obtained by the Subgradient
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algorithm, becomes less than a preselected threshold value, which guarantees the quality of the solutions

for Lagrangian Relaxation heuristic. Alternatively, the Subgradient algorithm can be terminated after a

predetermined number of iterations have been executed or a predefined run-time limit has been reached

(Trigeiro et al., 1989; Xu and Nagi 2013). In this paper, the quality of the gradually improved solutions

drives the stopping criteria for the Subgradient algorithm to obtain a guaranteed-performance heuristic

method for solving (P ). Figure 8 shows how the heuristic and optimality gaps change in the Lagrangian

Relaxation method to reduce the gap around the optimal solution.
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