B. ROUXELKODAI MATH. J.4 (1981), 181–188

A-SUBMANIFOLDS IN EUCLIDEAN SPACE

BY B. ROUXEL

§0. Introduction. In this paper we give a geometrical characterization of A-submanifolds M^n of a Euclidean space E^{n+p} using the (p-2)th polar hypersurface $K_m^{(2)}$ of the characteristic hypersurface K of the normal space $T_m^{\perp}M^n$, $m \in M^n$. This leads us to other characterizations involving Lipschitz-Killing curvature and second mean curvature. Several examples of A-submanifolds in E^4 are given. Finally we extend the notion of A-submanifold in a natural way to A_k -submanifold according to the position of the mean curvature vector with respect to $K_m^{(2)}$.

§1. Preliminaries.

Let M^n be an *n*-dimensional submanifold immersed in an (n+p)-dimensional Euclidean space E^{n+p} . At $m \in M^n$ we choose an orthonormal frame $(e_1, e_2, \cdots, e_{n+p})$ such that the vectors e_1, \cdots, e_n span the tangent space $T_m M^n$ and e_{n+1}, \cdots, e_{n+p} span the normal space $T_m^{\perp} M^n$. Then we have

$$dm = \omega^{1}e_{1} + \dots + \omega^{n}e_{n},$$

$$de_{i} = \sum_{j=1}^{n+p} \omega_{i}^{j}e_{j}, \quad \omega_{i}^{j} + \omega_{j}^{i} = 0,$$

$$\omega_{i}^{j} = \sum_{k=1}^{n} \gamma_{ik}^{j}\omega^{k}.$$

The second fundamental form is given by

$$h = \sum \gamma_{ij}^k \omega^i \omega^j e_k$$
 i, $j=1, 2, \cdots, n, k=n+1, \cdots, n+p$,

and the mean curvature vector by

(1)
$$H = \frac{1}{n} \sum_{k=n+1}^{n+p} \left(\sum_{i=1}^{n} \gamma_{ii}^k \right) e_k.$$

With any normal vector e at $m \in M^n$ we associate the symmetric transformation A(e) of $T_m M^n$ into itself defined by

$$\langle A(e)(X), Y \rangle = \langle e, h(X, Y) \rangle$$

Received June 28, 1979

for all tangent vectors X, Y at m. A(e) is the second fundamental tensor associated with e. The determinant of A(e) is the Lipschitz-Killing curvature K(m, e). M^n is said to be pseudo-umbilical if $A\left(\frac{H}{|H|}\right) = \lambda I$. A-submanifolds of E^{n+p} are defined as follows [2]; we consider a normal vector field u and a local frame field such as

$$u = |u| e_{n+1}, |u| = \langle u, u \rangle^{1/2}.$$

Then the allied vector field of u is given by [2]

(2)
$$a(u) = \frac{1}{n} |u| \sum_{r=2}^{p} \operatorname{trace} \left(A(e_{n+1}) A(e_{n+r}) \right) e_{n+r}.$$

The allied mean curvature vector is a(H). If the allied mean curvature vector a(H)=0, then M^n is called an A-submanifold of E^{n+p} . (Minimal submanifolds, pseudo-umbilical submanifolds and hypersurfaces are A-submanifolds of E^{n+p}).

§2. Polar hyperquadric of an A-submanifold.

In the case of a surface M^2 in E^4 the locus of the points N in which $T_m^{\perp}M^2$ is cut by the neighboring normal plane of M^2 is a conic, which is called the Kommerell conic. In the case of a general M^n is E^{n+p} we obtain an algebraic hypersurface of $T_m^{\perp}M^n$, denoted by K. This was studied by Perepelkine [8]. The coordinates $X^r(r=1, \dots, p)$ of a point N belonging to $T_m^{\perp}M^n$ and to a neighboring normal space are such that

$$-\omega^{\imath}+\sum_{r=1}^{p}X^{r}\omega_{\imath}^{n+r}=0$$
, $\imath=1, \cdots, n$,

and hence the equation of K is

(3)
$$\det |\sum_{r=1}^{p} X^{r} \gamma_{ij}^{n+r} - \delta_{ij}| = 0.$$

(3) defines an algebraic hypersurface of degree n in $T_m^+ M^n$. We associate in an intrinsic way to the couple (K, m) the successive polar hypersurfaces of K with respect to m. Let $F(X^1, X^2, \dots, X^{p+1})=0$ be the homogeneous equation of K. Then the equation of the (p-s)th polar hypersurface $K_m^{(s)}$ is

$$\left(\sum_{r=1}^{p+1} X^r \frac{\partial}{\partial X^r}\right)^s F(X^1, \cdots, X^{p+1}) = 0$$

where the values of the partial derivatives are taken at the point $m(0, 0, \dots, 1)$. For the (p-2)th polar hypersurface $K_m^{(2)}$ we obtain

$$\sum_{r} \left[(X^{r})^{2} \sum_{\lambda \neq \mu} \{ \gamma_{\lambda\lambda}^{n+r} \gamma_{\mu\mu}^{n+r} - (\gamma_{\lambda\mu}^{n+r})^{2} \} \right] + \sum_{r \neq s} X^{r} X^{s} \left[\sum_{\lambda \neq \mu} \{ \gamma_{\lambda\lambda}^{n+r} \gamma_{\mu\mu}^{n+s} - \gamma_{\lambda\mu}^{n+r} \gamma_{\lambda\mu}^{n+s} \} \right]$$

182

(4)
$$\cdots -2(n-1)\sum_{r} X^{r}(\sum_{r} \gamma_{\lambda\lambda}^{n+r}) + n(n-1) = 0$$
, where $r, s=1, 2, \cdots, p$,
 $\lambda, \mu = 1, 2, \cdots, n$.

Further the allied vector field $a(e_{n+1})$ is

$$a(e_{n+1}) = \frac{1}{n} \sum_{r=2}^{p} \operatorname{Trace} \left[A(e_{n+1}) A(e_{n+r}) \right] e_{n+r}$$

and Trace $[A(e_{n+1})A(e_{n+r})] = \sum_{\lambda} \gamma_{\lambda\lambda}^{n+1} \gamma_{\lambda\lambda}^{n+r} + \sum_{\lambda \neq \mu} \gamma_{\lambda\mu}^{n+1} \gamma_{\lambda\mu}^{n+r}; \lambda, \mu=1, 2, \dots, n.$ By choosing the local frame such that $\frac{H}{|H|} = e_{n+1}$ we get $\sum_{\lambda=1}^{n} \gamma_{\lambda\lambda}^{n+r} = 0$ for r > 1, and Trace $[A(e_{n+1})A(e_{n+r})] = -\sum_{\lambda \neq \mu} \gamma_{\lambda\lambda}^{n+1} \gamma_{\mu\mu}^{n+r} + \sum_{\lambda \neq \mu} \gamma_{\lambda\mu}^{n+1} \lambda_{\lambda\mu}^{n+r}; \lambda, \mu=1, 2, \dots, n.$

Hence if M^n is an A-submanifold the coefficient of X^1X^r in the equation of $K_m^{(2)}$ vanishes. This proves

THEOREM 1. A submanifold M^n of a Euclidean space E^{n+p} is an A-submanifold if and only if the mean curvature vector H determines a principal direction of the (p-2)th polar hypersurface of K.

Remark 1. If M^n is a pseudo-umbilical submanifold of E^{n+p} with mean curvature vector $|H|e_{n+1}$ then

$$\gamma_{11}^{n+1} = \gamma_{22}^{n+1} = \cdots = \gamma_{nn}^{n+1} = \gamma; \ \gamma_{\lambda\mu}^{n+1} = 0; \ \lambda \neq \mu; \ \lambda, \ \mu = 1, 2, \cdots, n$$

The terms independent of X^r , r > 1, in the equation of $K_m^{(2)}$ are,

$$n(n-1)\gamma(X^1)^2 - 2n(n-1)\gamma X^1 + n(n-1) = n(n-1)(\gamma X^1 - 1)^2$$

and hence $K_m^{(2)}$ is a quadratic hypercone with vertex at $m + \frac{1}{\gamma} e_{n+1}$ and H as principal axe.

Remark 2. M^n is minimal if and only if $K_m^{(2)}$ has its center at m.

Remark 3. It is possible to give a geometric interpretation of various theorems of B. Y. Chen, L. Verstraelen and K. Yano for submanifolds of codimension 2 with umbilical or quasi-umbilical normal direction. We give some examples.

If p=2, K is a curve. For an M^n umbilical w.r.t. a nonparallel normal direction, K degenerates into two straight lines (with multiplicity 1 and n-2 respectively) [3].

If p=2, n>4 and M^n quasi umbilical w.r.t. a non-parallel normal direction, K has a multiple point of order n-1 and another of order >n-3. Then K degenerates and contains a line with multiplicity >n-3, [4].

§ 3. Examples of A-submanifolds in E^4 .

Recently [10], G. Vranceanu studied a class of surfaces M^2 in E^4 called *rotation surfaces*. These surfaces are defined by the following equations w.r.t. an orthonormal system of coordinates $(x_1, x_2, x_3, x_4): x_1=r(u) \cos u \cos v, x_2=r(u) \cos u \sin v, x_3=r(u) \sin u \cos v, x_4=r(u) \sin u \sin v$. Now we choose a local moving frame such that e_1 , e_2 are in the tangent plane and e_3 , e_4 are in the normal plane. For example, we take

$$e_{1} = \begin{pmatrix} -\cos u \sin v \\ \cos u \cos v \\ -\sin u \sin v \\ \sin u \cos v \end{pmatrix}, e_{2} = \frac{1}{A} \begin{pmatrix} B \cos v \\ B \sin v \\ C \cos v \\ C \sin v \end{pmatrix}, e_{3} = \frac{1}{A} \begin{pmatrix} -C \cos v \\ -C \sin v \\ B \cos v \\ B \sin v \end{pmatrix},$$
$$e_{4} = \begin{pmatrix} -\sin u \sin v \\ \sin u \cos v \\ \cos u \sin v \\ -\cos u \cos v \end{pmatrix},$$

where $A = \sqrt{r^2 + r'^2}$, $B = r' \cos u - r \sin u$, $C = r' \sin u + r \cos u$. Then, with $\omega^1 = r \, dv$ and $\omega^2 = \sqrt{r^2 + r'^2} \, du$, we get

$$\begin{cases} \gamma_{11}^{3} = \frac{1}{\sqrt{r^{2} + r'^{2}}}, \quad \gamma_{12}^{3} = 0, \quad \gamma_{22}^{3} = \frac{-rr'' + 2r'^{2} + r^{2}}{(r^{2} + r'^{2})^{3/2}} \\ \gamma_{11}^{4} = 0, \quad \gamma_{12}^{4} = \frac{-1}{\sqrt{r^{2} + r'^{2}}}, \quad \gamma_{22}^{4} = 0 \\ \omega_{1}^{2} = \omega_{3}^{4} = \frac{-r'\omega^{1}}{\sqrt{r^{2} + r'^{2}}} \end{cases}$$

Hence we have immediately

Theorem 2. Rotation surfaces of E^4 are A-submanifolds.

Remark 1. When $r=e^{au}$ we obtain pseudo-umbilical submanifolds of E^4 and from $\omega_1^2 = \omega_3^4$ it follows that these submanifolds are flat.

Remark 2. It is possible to give others examples of A-submanifolds of E^4 . For instance R. Calapso [1] studied the M^2 of E^4 for which K is a circle and proved that such M^2 posses a conjugate net of Voss of special type (type c). These submanifolds are A-submanifolds and have constant Lipschitz-Killing curvature at m. L.N. Krivonosov proved that surfaces in E^4 for which K is a circle are in normal correspondance with minimal surfaces of E^4 [7].

184

§4. Lipschitz-killing curvature of A-surfaces.

For a surface M^2 of E^{2+p} the K-variety is an hyperquadric. The Lipschitz-Killing curvature in the direction of the unit normal vector $e(x^1, x^2, \dots, x^p)$ is given by

$$K(m, e) = \det \left| \sum_{r=1}^{p} \gamma_{ij}^{r} x^{r} \right|.$$

The K-variety has two common points with the line $N=m+\rho e$. These points are determined by the roots ρ_1 , ρ_2 of the equation

$$\det \left| \sum_{r=1}^{p} \rho x^{r} \gamma_{ij}^{r} - \delta_{ij} \right| = 0.$$

Then $K(m, e) = \frac{1}{\rho_1 \rho_2}$. It is well known that for a hyperquadric $\frac{1}{\rho_1 \rho_2}$ has extremal values when e determines a principal direction. This proves

THEOREM 3. A surface M^2 in E^{2+p} is an A-submanifold if and only if the Lipchitz-killing curvature has an extremal value in the direction of the mean curvature vector.

This result is analogous to a theorem of C.S. Houh for pseudoumbilical surfaces [6]. In the case of rotation surfaces of E^4 the Lipschitz-Killing curvature for $e = \cos \theta e_3 + \sin \theta e_4$ is

$$K(m, e) = \frac{2r^2 + 3r'^2 - rr''}{(r^2 + r'^2)^2} \cos^2\theta - \frac{1}{r^2 + r'^2}$$

K(m, e) has maximal value if $2r^2+3r'^2-rr''>0$ and minimal value if $2r^2+3r'^2-rr''<0$. It is possible to construct examples for the two cases. For instance if $r=\cos u$, K(m, e) has maximal value in the direction of the mean curvature vector. If $r=u^{-(1/5)}$, K(m, e) has minimal value in the direction of the mean curvature vector for some values of u. This is a counterexample to a lemma of C. S. Houh in [6].

If $2r^2+3r'^2-rr''=0$, the rotation surfaces are special minimal surfaces (R-surfaces) studied by Eisenhart [5].

It is possible to generalize theorem 3 to M^n in E^{n+p} as follows.

THEOREM 4. A submanifold M^n in E^{n+p} is an A-submanifold if and if the second mean curvature has an extremal value in the direction of the mean curvature vector.

Proof. Let k_1, \dots, k_p be the principal curvatures of M^n w.r.t. a normal unit vector e. The *l*th mean curvature of M^n w.r.t. e is defined by [2].

$$\binom{p}{l}M_l(e) = \sum k_1 k_2 \cdots k_l$$
.

By the geometric properties of polar hypersurfaces [9] we see that the point $m + \rho e$ of $K_m^{(2)}$ are determined by the equation

$$\sum_{i\neq j} \left(\frac{1}{\rho} - k_i\right) \left(\frac{1}{\rho} - k_j\right) = 0.$$

Hence

$$\frac{1}{\rho_1\rho_2} = \sum_{i\neq j} k_i k_j = {p \choose 2} M_2(e) \,.$$

The theorem follows now at once.

§ 5. A_k -submanifolds.

Let A be the symmetric square matrix of order p associated with the (p-2) th polar hypersurface $K_m^{(2)}$. Let E_{λ_i} be the eigenspace associated with each eigenvalue λ_i of A; we get a decomposition of $T_m^{\perp}M^n$ into an orthogonal direct sum $E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_s}$. We denote by k the number of nonzero projections of H on the eigenspaces E_{λ_i} . A submanifold M^n of E^{n+p} is said to be an A_k -submanifold of E^{n+p} if k is the integer associated with the mean curvature vector H of M^n .

 A_0 -submanifolds are minimal submanifolds. A_1 -submanifolds are the A-submanifolds. Each submanifold of E^{n+p} is an A_k -submanifold for some k with $0 \le k \le p$. Now we prove the following theorem on product submanifolds.

THEOREM 5. If $M^{n_1}(\text{resp. } M^{n'_1})$ is an $A_{k_1}-(\text{resp. } an A_{k'_1})$ submanifold of $E^{n_1+p_1}(\text{resp. } E^{n'_1+p'_1})$ then the product $M^{n_1} \times M^{n'_1}$ is an A_k -submanifold of $E^{n_1+p_1} \times E^{n'_1+p'_1}$ with $k \leq p_1 + p'_1$.

Proof. Let A_1 (resp. A'_1) the symmetric square matrix of order p_1 associated with the polar hypersurface $K_m^{(2)}$ of K in $T_m^{\perp}M^{n_1}$. There exist k_1 eigenvectors of A_1 denoted by ξ_1, \dots, ξ_{k_1} such that

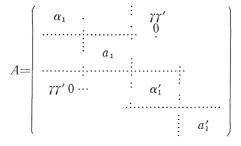
$$H_1 = \sum_{i=1}^{k_1} h_i \xi_i, \quad h_i \neq 0.$$

There exist an orthonormal set of p_1 vectors such that e_{n_1+1} is collinear with the mean curvature vector H_1 of M^{n_1} , $e_{n+r}(r=1, \dots, k_1)$ belong to the vector space spanned by ξ_1, \dots, ξ_{k_1} , and $e_{n+s}(s=k_1+1, \dots, p_1)$ are eigenvectors of A_1 . We can then write A_1 as

$$A_1 = \left(\begin{array}{ccc} \alpha_1 & 0\\ \cdots & \cdots & \cdots\\ 0 & \vdots & a_1 \end{array}\right)$$

186

where a_1 is a symmetric square matrix of order k_1 and a_1 is a diagonal matrix of order p_1-k_1 . The same construction may be done for A'_1 and a short calculation shows that the matrix A associated with the polar hyperquadric of $M^{n_1} \times M^{n'_1}$ is



where $\gamma = \sum_{i=1}^{n} \gamma_{ii}^{n_1+1}$ and $\gamma' = \sum_{i=1}^{n_1'} \gamma_{ii}^{n_1'+1}$.

The mean curvature vector of $M^{n_1} \times M^{n'_1}$ is given by $H = \frac{1}{n_1 + n'_1} (\gamma e_{n_1+1} + \gamma' e_{n'_1+1})$. In the general case A(H) belongs to a linear space of dimension $k_1 + k'_1$ orthogonal to the eigenvectors $\xi_{k_1+1}, \dots, \xi_{p_1}, \xi_{k'_1+1}, \dots, \xi_{p'_1}$ of A. Thus $M^{n_1} \times M^{n'_1}$ is an A_k -submanifold with $k \leq k_1 + k'_1$ and theorem 5 is proved.

Remark. If $k_1=0$ then $\gamma=0$ (M^{n_1} is minimal) and $k=k'_1$. If $k_1=k'_1=1$ then α_1 and α'_1 are (1, 1) matrices and

$$A(H) = \frac{1}{n_1 + n_1'} \left\{ (\alpha_1 \gamma + \gamma \gamma'^2) e_{n_1 + 1} + (\alpha_1' \gamma' + \gamma' \gamma^2) e_{n_1' + 1} \right\}$$

we have $A(H) = \mu H$ if and only if

$$\alpha_1+\gamma'^2=\gamma^2+\alpha'_1$$
.

But by (4) $\gamma'^2 - \alpha'_1 = \left(\sum_{i=1}^{n_1} \gamma_{ii}^{n_1+1}\right)^2 - \sum_{\lambda \neq \mu} \{\gamma_{\lambda\lambda}^{n_1+1} \gamma_{\mu\mu}^{n_1+1} - (\gamma_{\lambda\mu}^{n_1+1})^2\}$ $= \sum_{\lambda \neq \mu}^{n_1} (\gamma_{ii}^{n_1+1}) + \sum_{\lambda \neq \mu} (\gamma_{\lambda\mu}^{n_1+1})^2 = \operatorname{Trace} (A(e_{n_1+1}))^2.$

So

The product of two A-submanifolds is an A-submanifold if and only if $\operatorname{Trace}(A(e_{n_1+1}))^2 = \operatorname{Trace}(A(e_{n'_1+1}))^2$ [B.Y. Chen [2]]. In the other cases the product of two A-submanifolds is an A_2 -submanifold.

This gives a method to construct examples of A_2 -submanifolds. Most of these results can be extended to Riemannian spaces.

The author would like to express his hearty thanks to Professor L. Vanhecke for valuable conversations about this paper.

BIBLIOGRAPHY

- [1] CALAPSO, R., Sulle reti di Voss di uno spazio lineare quadridimensionale, Rend. Sem. Math. Roma, 2 (1938), 276-311.
- [2] CHEN, B.Y., Geometry of submanifolds, Marcel Dekker, New York (1973).
- [3] CHEN, B.Y. AND YANO, K., Submanifolds umbilical with respect to a nonparallel normal direction, J. Diff. Geometry 8 (1973), 589-597.
- [4] CHEN, B.Y. AND VERSTRAELEN, L., Codimension 2-submanifolds with a quasiumbilical normal direction, J. Korean Math. Soc. 13 (1976), 87-97.
- [5] EISENHART, L. P., Minimal surfaces in Euclidean four space, Amer. J. Math. 34 (1912), 215-236.
- [6] HOUH, C.S., Surfaces with maximal Lipschitz-Killing curvature in the direction of mean curvature vector, Proc. Amer. Math. Soc. 35 (1972), 537-542.
- [7] KRIVONOSOV, L. N., Parallel and normal correspondance of two-dimensional surfaces in the four-dimensional Euclidean space E⁴, Izv. Vyss. Ucebn. Zaved. Matematika 54 (1966), 78-87.
- [8] PEREPELKINE, D., Sur la courbure et les espaces normaux d'une V_m dans R_n , Mat. Sbornik 42 (1935), 81-100.
- [9] SALMON, G., Higher plane curves, Chelsea Publishing Company, New York (1960)
- [10] VRANCEANU, G., Surfaces de rotation dans E^4 , Rev. Roumaine Math. Pures Appl. 22 (1977), 857-862.

U.E.R. DE MATHEMATIQUES PURES ET APPLIQUEES Universite des Sciences et Techniques de Lille 1 59655—Villeneuve D'Ascq Cedex (France)