
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 10, Number 1, 2003
© Mary Ann Liebert, Inc.
Pp. 1–12

A Suboptimal Algorithm for De Novo Peptide
Sequencing via Tandem Mass Spectrometry

BINGWEN LU and TING CHEN

ABSTRACT

Tandem mass spectrometry has emerged to be one of the most powerful high-throughput
techniques for protein identi� cation. Tandem mass spectrometry selects and fragments pep-
tides of interest into N-terminal ions and C-terminal ions, and it measures the mass/charge
ratios of these ions. The de novo peptide sequencing problem is to derive the peptide se-
quences from given tandem mass spectral data of k ion peaks without searching against pro-
tein databases. By transforming the spectral data into a matrix spectrum graph G D (V , E),
where | V | D O(k2) and | E | D O(k3), we give the � rst polynomial time suboptimal algo-
rithm that � nds all the suboptimal solutions (peptides) in O(p | E | ) time, where p is the
number of solutions. The algorithm has been implemented and tested on experimental data.
The program is available at http://hto-c.usc.edu:8000/msms/menu/denovo.htm.

Key words: proteomics, mass spectrometry, suboptimal algorithms, dynamic programming,
de novo peptide sequencing.

INTRODUCTION

Protein identi� cation is central to many proteomics projects. Tandem mass spectrometry combined
with high-performance liquid chromatography (HPLC) has been one of the most powerful techniques

in protein analysis. A mixture of proteins is � rst digested into peptides by enzymes such as trypsin. Peptides
of interest are then separated by HPLCs, ionized, and measured for mass/charge ratios by a mass analyzer
such as a Finnigan LCQ ESI-MS/MS mass spectrometer. Peptides with a speci� c mass/charge ratio are
selected and further fragmented by methods such as collision-induced dissociation (CID), and all of the
resulting ions are measured again by a mass spectrometer for mass/charge ratios. In the CID process, one
peptide bond for each peptide molecule is broken, and the peptide is fragmented into two ions, typically
an N-terminal ion called b-ion and a C-terminal ion called y-ion.

For example, a doubly charged peptide, (NH2CHR1CO ¡ ¢ ¢ ¢ ¡ NHCHRiCO ¡ ¢ ¢ ¢ ¡ NHCHRnCOOH), is
selected for the fragmentation. If the ith peptide bond is broken, the resulting b-ion and y-ion are
(NH2CHR1CO ¡ ¢ ¢ ¢ ¡ NHCHRiCOC) and (NH2CHRiC1CO ¡ ¢ ¢ ¢ ¡ NHCHRC

n COOH), respectively. These two
ions are complementary because the original peptide sequence can be determined by joining them. Ide-
ally, this dissociation process may break any peptide bond of a molecule, so, given many molecules with
the same peptide sequence, the resulting b-ions and y-ions contain ions of all possible pre� x and suf� x
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subsequences. These ions display a characteristic pattern in the mass spectrometry, called a tandem mass
spectrum. A hypothetical tandem mass spectrum is shown in Fig. 1. The reader is referred to Chen et al.
(2001) for a graphical illustration of the peptide fragmentation process. The goal of the current paper is
to derive the original peptide sequence(s) for a given tandem mass spectrum.

The interpretation of a tandem mass spectrum has to deal with two main factors. First, it is unknown
whether a mass peak corresponds to an N-terminal ion or a C-terminal ion. Second, some ions may not
appear in the spectrum. In practice, noise and other factors have to be considered in the interpretation of a
tandem mass spectrum. For example, an ion may correspond to two or three different mass peaks because
of the distribution of isotopic carbons in the molecules; an ion may lose a water or an ammonia molecule
and display at a mass/charge ratio other than its normal one; the fragmentation method may result in some
other ion types such as a-ions and z-ions (a-ions and z-ions are less abundant types of N-terminal ions and
C-terminal ions, respectively); or every mass peak may display at a different height that is proportional to
the amount of molecules for the particular ion types.

Several computer programs, such as SEQUEST (Eng et al., 1994), Mascot (Perkins et al., 1999), and
ProteinProspector (Clauser et al., 1999), have been developed to interpret tandem mass spectral data by
searching a protein database. A typical program like SEQUEST correlates peptide sequences in a protein
database with a tandem mass spectrum. Every peptide sequence in the database is � rst converted into a
hypothetical tandem mass spectrum, and then it is matched against the experimental spectrum using a
correlation function. Sequences with top correlation scores are reported. Other scoring functions based
on probabilistic models (Qin et al., 1997; Dancik et al., 2000; Bafna and Edwards, 2001) have also been
proposed for comparing a tandem mass spectrum with a peptide sequence. In order to derive a good scoring
function, environmental parameters, such as the probability of random noise, have to be identi� ed. The
database approach gives an accurate identi� cation of peptides if they are in the database, but it cannot
handle peptides that are not in the database.

When high-quality spectral data are given, the de novo peptide sequencing is another approach (Dancik
et al., 1999; Taylor and Johnson, 1997; Chen et al., 2001). The de novo peptide sequencing problem is as
follows: given a spectrum S and a de� ned scoring function f ./, � nd a peptide sequence q to maximize
f .Sjq/. The de novo peptide sequencing is the only solution for applications such as � nding novel proteins,
studying proteome before genome, and amino acid mutations. A de novo peptide sequencing program can
also be used as a pre-processing tool for tandem mass spectral data. Combining such a program with
a database search program like BLAST and FASTA, we can extract partial sequences directly from the
spectral data and then validate them in the databases for complete protein sequences.

A dynamic programming algorithm for de novo peptide sequencing was proposed by Chen et al. (2001).
The algorithm � rst transforms a spectrum into a spectrum graph, in which (1) a node corresponds to a
mass peak, and an edge, labeled by some amino acids, connects two nodes that differ by the total mass
of the amino acids in the label; and (2) a mass peak is transformed into a pair of N-terminal nodes in the
graph, representing two possible but mutually exclusive assumptions of this mass peak: an N-terminal ion

FIG. 1. A tandem mass spectrum of the peptide RQPKL(622.39 Daltons).
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or a C-terminal ion. Then, the dynamic programming algorithm is called to � nd the highest-scoring path in
the graph that goes through every pair of nodes corresponding to the same mass peak at most once. In its
solution, the algorithm interprets every mass peak mutual-exclusively to an N-terminal ion, a C-terminal
ion, or an uninterpretable ion. The concatenation of the amino acids of the edge labels in the path gives
one or multiple candidate peptide sequences.

The focus of this paper is on � nding suboptimal solutions (peptides) for the de novo peptide sequencing
problem. The dynamic programming algorithm � nds the optimal solution only, but the optimal solution may
not be the real sequence that produces the spectrum in the experiment. Even database search programs
sometimes report several sequences with similar scores. One reason is that the scoring function could
misinterpret the spectral data because the physical and chemical processes that occur during the peptide
fragmentation are not completely known. Noise and unknown ions may be interpreted as real ions by
the programs. For these reasons, the suboptimal solutions are of great interest, especially when the real
sequence cannot be clearly determined by the optimal solution.

In this paper, we introduce the notion of a matrix spectrum graph G D .V ; E/ for a given tandem
mass spectrum of k mass peaks, where V D O.k2/ and jEj D O.k3/. In conjunction with this graph, we
develop a tree search algorithm to � nd all suboptimal solutions in O.pjEj/ time, where p is the number
of solutions.

METHODS

Spectrum graph and dynamic programming algorithm

Details of the construction of a spectrum graph and the dynamic programming algorithms are given by
Chen et al. (2001). We will now summarize the ideas of that paper in the following.

Construction of a spectrum graph. Tandem mass spectrometry measures mass/charge ratios of selected
peptides and then measures their fragmented ions (see Fig. 1). Assume that the charges are known and
the masses can be derived. Assume that an unknown peptide q has molecular weight W (uncharged) and
k fragmented ions I1; : : : ; Ik with masses w1; : : : ; wk , respectively. A spectrum graph Gs D .Vs ; Es/ is
created as follows.

Let m D 2k C 1. We � rst create two nodes, z0 and zm, on a line to represent the zero mass and the total
residue mass, W ¡ 18, of q , respectively. The 18 daltons are for the two extra hydrogens and one extra
oxygen in q, besides the residues. All other nodes are created on the line between z0 and zm such that
their distances to z0 correspond to the associated masses. For each Ij , because it is unknown whether it is
a b-ion or a y-ion, we create a pair of nodes, zj and zm¡j , placed at the mass of wj ¡ 1 and W ¡ .wj ¡2/,
respectively, to represent two mutually exclusive assumptions: (1) Ij is a b-ion, and zj represents the node
with the residue mass of this b-ion; and (2) Ij is a y-ion, and zm¡j represents the node with the residue
mass of its complementary b-ion. If this ion is real, either zj or zm¡j , but not both, represents the real
b-ion.

The edges of the spectrum graph Gs always point from the lower mass nodes to the higher mass nodes.
If the mass difference between two nodes zi and zj equals the total mass of some amino acid residues, we
draw a directed edge between zi and zj , pointing from the low-mass node to the high-mass node. Thus,
the spectrum graph Gs is a directed acyclic graph along a line, and all edges point to the right on the real
line. See Fig. 2 for an example of a spectrum graph constructed based on the spectrum shown in Fig. 1.

Let f .¢/ be a pre-de� ned edge (and node) scoring function. Then the peptide sequencing problem can
be de� ned as follows: given a spectrum graph Gs D .Vs; Es / and an edge scoring function f .¢/, how can
we � nd a maximum score path from z0 to zm, such that at most one of zj and zm¡j for every 1 · j · k

is on the path.

Dynamic programming algorithm. The dynamic programming algorithm, Algorithm Compute-Q, in
Chen et al. (2001) solves the peptide sequencing problem. In summary, the nodes of Gs are � rst renamed
in an order from left to right as x0; x1; : : : ; xk; yk; : : : ; y1; y0, where every pair, xi and yi , 1 · i · k,
corresponds to two mutually exclusive assumptions of the same mass peak. A matrix Q.i; j / is used to store
the maximum path score from x0 to y0 that contains the edge .xi ; yj /, i 6D j . The dynamic programming
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FIG. 2. An NC-spectrum graph, constructed from the spectrum shown in Fig. 1.

algorithm computes Q from lower indexes to higher indexes. Without loss of generality, assume i < j ,
then Q.i; j / D maxfQ.i; l/ C f .yj ; yl/; l D 1; ¢ ¢ ¢ ; j ¡ 1g. All elements of Q can be calculated by this
recursion. The maximum score path can be found by tracing the elements of Q. In the following section,
we develop an algorithm to � nd all suboptimal solutions, rather than just the optimal solution.

Matrix spectrum graph

Construction of a matrix spectrum graph. Let x0; x1; : : : ; xk; yk; : : : ; y1; y0 be the nodes of the spec-
trum graph Gs D .Vs; Es / listed in the order from left to right. Let f .¢/ > 0 be the edge weight function
of Gs . De� ne X D fx0; x1; : : : ; xkg and Y D fy0; y1; : : : ; ykg. De� ne a directed weighted matrix spectrum
graph as G D .V ; E/, where V µ X £ Y and E µ V £ V . De� ne a node < xi ; yj >2 V , i 6D j , as vij .
For any i, vii 62 V . There are two types of edges in E:

1. .vij ; vim/ 2 E if m > i and m > j and .ym; yj / 2 Es . The edge function f .vij ; vim/ D f .ym; yj /.
2. .vij ; vmj / 2 E if m > i and m > j and .xi ; xm/ 2 Es . The edge function f .vij ; vmj / D f .xi ; xm/.

Obviously, G is a directed acyclic graph with jV j D O.k2/ nodes and jEj D O.k3/ edges because each
node has at most O.k/ outgoing edges. An example of matrix spectrum for the spectrum graph in Fig. 2
is shown in Fig. 3.

Feasible path. Let v00 be the starting node of G. Let T be the set of terminal nodes. Each terminal
node vij 2 T satis� es that .xi ; yj / 2 Es and vij has no outgoing edges in E. The terminal nodes in the
example matrix spectrum graph are colored grey in Fig. 3. A feasible path for G is a path that starts from
v00 and ends at a terminal node. Two feasible paths of the example of the matrix spectrum graph are

FIG. 3. An example of a matrix spectrum graph, constructed from the spectrum graph shown in Fig. 2. The terminal
nodes are colored gray. The two feasible paths are bolded.
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shown by bold lines. A feasible path (or solution) for Gs is de� ned as a path from x0 to y0 that goes
through every pair of xl and yl , 1 · l · k, at most once (Chen et al., 2001). Obviously, every feasible
path for Gs can be mapped to a unique feasible path in G, and vice versa. Therefore, there is a one-to-one
mapping between the feasible paths for G and the feasible paths for Gs . Since every feasible path for Gs

corresponds to a unique suboptimal solution to the de novo peptide sequencing problem, we can � nd every
feasible path for G to obtain all suboptimal solutions.

Suboptimal solution. Assume that P is the maximum score path for G, which can be found by a
depth-� rst-search (DFS) algorithm. Let fmax D f .P /. Given a ratio ®, 0 < ® · 1, if a feasible path Q

satis� es f .Q/ ¸ ® ¢fmax , then Q is a ®-suboptimal feasible path for G—or we say that Q is a suboptimal
solution. Therefore, the suboptimal de novo peptide sequencing problem is this: given a matrix spectrum
graph G, � nd all ®-suboptimal feasible paths.

Suboptimal algorithm

De� ne l.vij / to be the maximum path score among all paths between v00 and vij . Similarly, let r.vij /

be the maximum path score among all paths between vij and the terminal nodes. If no path exists, set both
l¡ and r¡ scores to be negative in� nite. Let Oij be the set of the outgoing edges of vij . The suboptimal
algorithm consists of the following steps.

Step 1: Constructing the matrix spectrum graph. Given a tandem mass spectrum of k mass peaks,
the spectrum graph Gs D .Vs; Es/ can be constructed in O.k2/ time, and the matrix spectrum graph
G D .V ; E/ can be directly constructed from Gs in O.k3/ time because jEj D O.k3/.

Step 2: Computing l.¢/ and r.¢/. The computation of l.¢/ is similar to the algorithm of � nding the
single-source shortest paths in a directed acyclic graph that can be solved in O.k3/ time (Cormen et al.,
2000). First we topologically sort all the nodes of G and compute l.u/ D f .v00; u/ for every edge
.v00; u/ 2 E. Then, for each vertex u 2 V taken in the topologically sorted order, we update l.w/ D
maxfl.w/; l.u/ C f .u; w/g for all .u; w/ 2 E. Thus, all l-scores can be computed in O.k3/ time. The
computation of r.¢/ is similar to this algorithm except that the scores are computed in the reversed
topologically sorted order. The total time is O.k3/. The maximum path score fmax of G equals the
maximum l-score. The l.¢/ and r.¢/ values of the example matrix spectrum graph (Fig. 3) are shown in
Tables 1 and 2, respectively.

Table 1. The l.¢/ Values Computed According to the
Matrix Spectrum Graph Shown in Fig. 3

l ( ) 0 1 2 3

0 0 1 ¡1 2
1 1 ¡1 ¡1 ¡1
2 1 2 ¡1 3
3 2 3 ¡1 ¡1

Table 2. The r.¢/ Values Computed According to the
Matrix Spectrum Graph Shown in Fig. 3

r () 0 1 2 3

0 3 2 ¡1 ¡1
1 ¡1 ¡1 1 0
2 ¡1 1 ¡1 0
3 ¡1 0 0 ¡1
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FIG. 4. A topological sort of the matrix spectrum graph shown in Fig. 3. Again, the terminal nodes are colored gray.
The r() values are shown here for the audience’s convenience.

Step 3: Depth-� rst-search and backtracking for suboptimal solutions. We use the depth-� rst-search
(DFS) algorithm to � nd all suboptimal solutions. The nodes are sorted topologically, starting with v00. Let
the current path be Q D .v00; : : : ; u/ and the path score of Q be f .Q/. There are two possible operations
for u:

² Backtracking: if f .Q/ C r.u/ < ® ¢ fmax , there does not exist an ®-suboptimal path with Q as the
pre� x subpath, so u is deleted from Q. Let s be the next-to-last node of Q and .s; u/ 2 E. The next
node t after u in the topological order is selected and added to Q if .s; t/ 2 E. For example, in Fig. 4,
fmax D 3. Suppose that the current path is Q D .v00; v01; v03/, where the last node u D v03 with
r.u/ D ¡1, f .Q/ C r.u/ < ® ¢ fmax for any positive ®-value. In this case, u D v03 is deleted from the
path Q and the next node t D v21 is selected and added to Q.

² Exploring: if f .Q/ C r.u/ ¸ ® ¢ fmax , there exists an ®-suboptimal path with Q as its pre� x subpath,
so the � rst node w in the topological order is selected and added to Q if .u; w/ 2 E. Again, see Fig. 4;
Q is now .v00; v01; v21/, f .Q/ C r.u/ D 2 C 1 D 3 D fmax ¸ ® ¢ fmax for any ® less than 1. Thus, v21

is included in Q, and the next node v23 is added to Q.

The algorithm iterates this process until Q is empty. In each iteration, if the last node u of Q is in the set
of the terminal nodes T and f .Q/ ¸ ® ¢ fmax , Q is reported as a suboptimal solution and the algorithm
continues.

The algorithm wastes no time in exploring any feasible path that is not ®-suboptimal. The � rst solution is
found in O.jEj/ time by the DFS algorithm because each edge is explored at most once and backtracked
at most once. From one solution to the next solution, each edge is also backtracked at most once and
explored at most once. Therefore, if there are p suboptimal solutions, this step takes O.pjEj/ time.

The complexity for this suboptimal algorithm is O.pjEj/ time and O.jV j C jEj/ space.

Correctness of the algorithm

We show in the following that the above suboptimal algorithm correctly � nds all ®-suboptimal feasible
paths for G. The algorithm trims the total search space by the following heuristics corresponding to the
two operations, Backtracking and Exploring, respectively, in Step 3:

² If Q D .v00; : : : ; vij / is the current path in the algorithm and f .Q/ C r.vij / ¸ ® ¢ fmax , then there
exists at least one ®-suboptimal path with Q as its pre� x. So, the algorithm should further explore the
outgoing edges of vij .

² If f .Q/Cr.vij / < ®¢fmax , then any feasible path P with Q as its pre� x satis� es f .P / · f .Q/Cr.vij / <

® ¢ fmax . So, the algorithm should not further explore Q but rather should backtrack vij from Q.

The correctness proof is as follows. Obviously, any output path of the algorithm is a feasible path.
On the other hand, any ®-suboptimal feasible path P , satisfying f .P / ¸ ® ¢ fmax , can be found by the
algorithm. For every edge .vij ; vmn/ 2 P , let Q µ P be the pre� x subpath from v00 to vij , and let R µ P

be the suf� x subpath from vmn to the terminal node of P . Then,

f .Q/ C f .vij ; vmn/ C r.vmn/ ¸ f .Q/ C f .vij ; vmn/ C f .R/ D f .P / ¸ ® ¢ fmax;

which means that if the pre� x subpath Q is explored by the algorithm, the next edge .vij ; vmn/ 2 E will be
explored later. By inference, eventually P will be found by the algorithm. Meanwhile, no two outputs are
the same, because all of the nodes are added in the topologically sorted order. Once a path Q is explored,
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all solutions containing Q as the pre� x subpath will be found. If the last node of Q is deleted, Q will
never appear in the algorithm again.

Ranking the suboptimal solutions

The suboptimal solutions are ranked using the following procedure: (1) a hypothetical mass spectrum
is generated for each candidate peptide; (2) each hypothetical spectrum is then scored against the real
mass spectrum using a simpli� ed scoring function described below and (3) the candidate peptides are then
ranked according to the scores.

The hypothetical spectra are generated as follows. For each suboptimal solution represented by a sequence
of edges in the matrix spectrum graph, we � rst generate all of the possible candidate peptides, and then
we construct a hypothetical spectrum for each of them. Only three types of ions are considered in the
hypothetical spectrum: b-ions, y-ions, and b–H2O ions. The abundance levels of the b-ions and the y-ions
are set at 50 while the abundance levels of the b–H2O ions are set at 25.

Each hypothetical spectrum is then compared against the experimental spectrum using the following
scoring function. Let S1 be the sum of the abundance levels of all of the ions in the hypothetical spectrum
and let S2 be the sum of the abundance levels of the ions (in the hypothetical spectrum) that match with
some mass peaks in the experimental spectrum. We then compute the ratio S2/S1 for each hypothetical
spectrum. The ratio S2/S1 shows how good each hypothetical spectrum � ts the experimental spectrum.
The candidate peptides are ranked according to the S2/S1 ratios.

Algorithm considering b–H2O ions

The CID fragmentation will produce mainly b-ions and y-ions. However, other ions, such as b–H2O
ions (the type of ion formed when a b-ion loses one molecule of water) or y–H2O ions, will also be
present, usually with lower probability. We present here a suboptimal algorithm to consider the occurrence
of b–H2O in the spectra. The same idea can be applied to take other ions into account.

When we consider b–H2O ions, each peak in the spectrum will be interpreted as a b-ion, a y-ion,
or a b–H2O ion. As a consequence, in the NC-spectrum graph, every simple N-node will become a
supernode, consisting of one subnode where we interpret the peak as a b-ion and another subnode where
we interpret the peak as a b–H2O ion. Thus, without loss of generality, assuming i < j , the recursion
for dynamic programming will become (recall that the original recursion for the Q matrix is Q.i; j / D
maxfQ.i; l/ C f .yl; yj /; l D 1; ¢ ¢ ¢ ; j ¡ 1g):

S.xi ; yj / D max

»
S.xi; yl/ C 1; ifE.yj ; yl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1
S.xi; zl/ C 1; ifE.yj ; zl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1

S.zi ; yj / D max

»
S.zi ; yl/ C 1; ifE.yj ; yl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1
S.zi; zl/ C 1; ifE.yj ; zl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1

S.zi ; zj / D max

»
S.zi ; yl/ C 1; ifE.zj ; yl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1
S.zi; zl/ C 1; ifE.zj ; zl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1

S.xi ; zj / D max

»
S.xi; yl/ C 1; ifE.zj ; yl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1
S.xi; zl/ C 1; ifE.zj ; zl/ D 1; l D 1; ¢ ¢ ¢ ; i ¡ 1

Here, we use matrix S instead of matrix Q. Because each node can have two subnodes, we need to consider
four possible connections between the two nodes. One thing that needs to be pointed out here is that for
N-terminal nodes, each node has a subnode—a z-node representing a b–H2O ion; while for C-terminal
nodes, although each node still contains two subnodes, the coordinate of the second node (z-node) is set to
0. Confusion is avoided by this straightforward method because there will be no edge to end in a subnode
with a 0 coordinate. We can then build an NC-spectrum graph based on matrix S. From the NC-spectrum
graph, we can further build a matrix spectrum graph and perform our suboptimal algorithm on the matrix
spectrum graph to � nd all suboptimal solutions. The suboptimal solutions are then ranked by the scoring
function to � nd the candidate peptides.
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RESULTS AND DISCUSSION

We implemented the suboptimal algorithm and tested it on the experimental tandem mass spectra of
BSA proteins. The BSA proteins were � rst digested with trypsin and then injected into a reverse phase
HPLC interfaced with a Finnigan LCQ ESI-MS/MS mass spectrometer.

The BSA protein was then digested in silico, i.e., by the computer, to produce all possible trypsin-digested
peptides. Each peptide was compared with the experimental tandem mass spectral data pertaining to the
mass of the parent ion of each spectrum. The parent ion masses of the following peptides do not match
with those of the experimental spectral data: CCTKPESER, YICDNQDTISSK, LCVLHEK, LVTDLTK,
EYEATLEECCAK, YNGVFQECCQAEDK, CCAADDKEACFAVEGPK, LKPDPNTLCDEFK, DDPHA-
CYSTVFDKLK, RPCFSALTPDETYVPK, LFTFHADICTLPDTEK, MPCTEDYLSLILNR, GLVLIAFSQ-
YLQQCPFDEHVK, GACLLPK. Some other peptides whose parent ion masses match with the mass spec-
tral data do not match well with the mass peaks in the mass spectral data. For example, the parent ion mass
of the peptide SLHTLFGDELCK matches with the parent ion mass of some mass spectrum. However, none
of the hypothetical y-ions of the peptide match with any peak in the real mass spectrum. The real mass
spectrum might come from a contaminating protein in the BSA proteins. It is known that a good ladder of
b-ions and/or y-ions is important for de novo peptide sequencing. Thus, these peptides are considered to
have very poor matching spectra. They are excluded from our test: TCVADESHAGCEK, SHCIAEVEK,
ETYGDMADCCEK, ECCHGDLLECADDR, CCTESLVNR, SLHTLFGDELCK, QTALVELLK.

For the rest of the peptides, the best matching mass spectrum for each peptide was chosen for out
study. Some features of the spectra against the corresponding peptide were � rst studied and summarized in
Table 3. On average, the spectra contain 61% of hypothetical b-ions and y-ions. These spectra are used for
the test of our suboptimal program. The test results are summarized in Table 4. Among the 14 tandem mass
spectra chosen for the test, the program successfully identi� ed 5 peptides with scores that ranked them at
the top among all suboptimal solutions. For the remaining 9 mass spectra, the program also successfully
identi� ed the correct peptides. The rankings of these peptides varied from 2 to 16, but all are in the top
0.1% among all the suboptimal solutions.

We also explored the possibility of considering b–H2O ions in our suboptimal algorithm. The results are
shown in Table 5. We can see that when b–H2O ions are considered, the results are not as good. One reason
is that when the program considered b–H2O ions, it misinterpreted noise peaks as some kinds of b–H2O
ions. This suggests that the more ion types that are considered, the larger is the number of suboptimal
solutions that exist, and the more likely it is that the real peptides hide among the many possible solutions.
For the de novo sequencing to be successful, it is important to experimentally improve the predictability
of the peptide fragmentation process.

Here, we chose a simpli� ed scoring function to test the correctness of our algorithm. Obviously, there
exist better and more sophisticated scoring functions. We will consider them in a later version of our
program.
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