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A practical suboptimal (variable source coding) algorithm for lossy data compression is

presented. This scheme is based on approximate string matching, and it naturally extends

the lossless Lempel-Ziv data compression scheme. Among others we consider the typical

length of approximately repeated pattern within the first n positions of a stationary mixing

sequence where D% of mismatches is allowed. We prove that there exists a constant ro(D)

such that the length of such an approximately repeated pattern converges in probability to

1/ro(D) log n (pr.) but it almost surely oscillates between l/r-oo(D) log nand 2/rl(D) log n,

where T-oo(D) > ro(D) > rl(D)/2 are some constants. These constants are natural gener

alizations of Renyi entropies to the lossy environment. More importantly, we show that the

compression ratio of a lossy data compression scheme based on such an approximate pattern

matching is asymptotically equal to ro(D). We also establish the asymptotic behavior of

the so called approximate waiting time Nf- which is defined as the time until a pattern of

length .e repeats approximately for the first time. We prove that log Nd.e ---+ TO (D) (pr.) as

.e ---+ 00. In general, To(D) > R(D) where R(D) is the rate distortion function. Thus, for

stationary mixing sequences we settle in the negative the problem recently investigated by

Steinberg and Gutman by showing that a lossy extension of Wyner-Ziv scheme cannot be

optimal.

Index Terms: Lossy data compression, approximate pattern matching, generalized Lempel

Ziv scheme, rate distortion, generalized Renyi entropy, mixing probabilistic model.
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1. INTRODUCTION

Data compression is an important and much-studied area, and therefore fairly mature.

It could be traced in the past at least to the seminal papers of Shannon. On the one

hand, today many powerful trends are converging to make data compression even more

crucial: The rapid growth of multimedia, of genetic and other huge on-line databases, and

especially the convergence of computing and communications that has been accelerating

since the triumph of digital HDTV over analog HDTV. On the other hand, recent theoretical

developments (cf. [14, 20, 24, 25, 30, 32]) bring to light unexplored so far new areas of

research. This was initiated by a marvelous paper of Wyner and Ziv [32], and continued

by its followers (cf. [14, 20, 25, 28, 30, 31, 34]) who brought into play "stringology", i.e.,

algorithms on strings. For example, a suffix tree was used in [30] to solve an open problem

posed by Wyner and Ziv [32] (cf. see also [25, 31]), while recently digital search trees (and

analytical analysis of algorithms on words) were used in [14] and [20] to obtain the limiting

distribution of the number of phrases in the lossless Lempel-Ziv parsing scheme and its

redundancy.

In this paper, we plan to adopt approximate pattern matching to lossy data compres

sion. An approximate pattern matching searches for an approximate occurrence of a given

pattern in a text string, where the "approximation" is measured by some distance between

the pattern and the text strings (e.g., Hamming distance, edit or Levenshtein distance,

squared error, etc.). In information theory, in particular in data compression, the distance

is measured by distortion. Thus, we first briefly review some aspects of the rate distortion

theory to put our results in proper perspective. The reader is referred to [6] for more details.

Consider a stationary and ergodic sequence {Xdk=-oo taking values in a finite alphabet

A. For simplicity of presentation, we consider only the binary alphabet A = {O, I}. We

write X ~ to denote XmXm+1 ..• X n. The fundamental problem of data compression can be

presented as follows: Imagine a source of information generating a block Xl = (Xl, ... , x n )

which is a realization of a stochastic process xr. We encode xl into a compression code

Cn, and the decoder produces an estimate xl of xl' We assume for simplicity that the

reproduction alphabet A = A. More precisely, a code Cn is a function ¢: An --+ {0,1}*,

thus, Cn = ¢(xl ). On the decoding side, the decoder function 'ljJ: {O, 1}* --+ An is applied to

find Xl = 'ljJ(cn). Let f( cn) be the length of a code representing xl' Then, the compression

ratio is defined as r(xI) = f(cn)/n (e.g., for image compression r(xl ) is expressed in bits

per pixel), and the average compression ratio is E(r(Xr)) = Ef(cn(Xr))/n. What are the

achievable values of the average compression ratio? The answer depends on whether lossless
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(1)

(i.e., exact reconstruction of the original code is possible) or lossy (i.e., one assumes some

degradation relative to the original code) is considered.

It is well known [6, 15, 38] that the average compression ratio in a lossless data com

pression can asymptotically reach the entropy rate, h. For a lossy transmission, one needs

to introduce a measure of fidelity. We restrict our discussion to the Hamming distance (but

subadditive distortion measures such as the ones adopted in [28] can be easily accommo

dated into our main results as shown in [4]) defined as

dn(x~,xn = ~ 'tdl(Xi,Xi)
n i=l

where dl(x,x) = 0 for x = x and 1 otherwise (x,x E A). Let us now fix D > O. Then, a

code Cn is D-semifaithful (e.g., for lossy compression) if dn( x~, xl) = dn(Xl, '¢'(cn(xl))) ::; D

(cf. [24] for a more precise definition).

The optimal compression ratio depends on the rate-distortion function R(D). This is

defined as follows (we give the definition of the operational rate-distortion function): Let

BD(wn ) be the set of all sequences of length n whose distance from the center W n is smaller

or equal to D, that is, BD(Wn) = {xl: dn(xl,wn)::; D}. We call the set BD(Wn) aD-ball

with the center at W n. Consider now the set An of all sequences oflength n, and let Sn be

a subset of An. We define N(D,Sn) as the minimum number of D-balls needed to cover

Sn' Then l

R (D )
. log N(D, Sn)

n ,E = mIn
Sn: P ( S n ) ~ l - £ n

and the operational rate-distortion is defined as R(D) = lim£--+o limn --+oo Rn ( D, E) (cf. [15,

24]). Kieffer [15], and Ornstein and Shields [24] proved that the optimal compression ratio

in a lossy data compression is asymptotically equal to R(D) (a.s.), and this cannot be

improved. (Observe that R(O) = h where h is the entropy of the underlying sequence.)

In this paper, we propose a practical (i.e., of a polynomial complexity) suboptimal

lossy data compression scheme that extends the Lempel-Ziv scheme [38]. It achieves rate

ro(D) which is asymptotically optimal only for D -+ 0 and symmetric memoryless source.

Although in general ro(D) 2: R(D), the quantity ro(D) is close to R(D) for small values of

D, at least for memoryless sources (cf. Figure 1 in Section 2). Our scheme reduces to the

following approximate pattern matching problem: Let the "training sequence" or "database

sequence" Xl be given. Find the largest Ln such that there exists 1 ::; io ::; n - Ln + 1

of the database satisfying d( x~~-l+Ln , x~tfn) ::; D. This naturally extends Wyner and Ziv

[32] idea to the lossy situation (cf. also [28]).

1 All logarithms in this paper are with base 2 unless otherwise explicitly stated.
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For D = 0 Wyner and Ziv [32] proposed the following data compression scheme based

on Ln : The encoder sends the position io in the database, the length L n and possibly

one more symbol, namely Xn+Ln+l' Using this information the decoder reconstructs the

original message, and both the encoder and the decoder enlarge the database. Based on

a probabilistic analysis the authors of [32] (d. also [25, 30]) concluded that with high

probability the compression ratio of such an algorithm is equal to the entropy, thus it is

asymptotically optimal. An efficient algorithm based on a suffix tree (d. [30]) can find L n

in 0 (n) steps in the worst case and in G(1og n) steps on average (we shall use 0(·) to denote

average case complexity while 0(·) is reserved for the worst case complexity).

The situation is more complicated in the lossy case considered in this paper (d. also

[28, 34]) since one cannot use suffix trees to find the approximate longest prefix L n , and

a decoder at any time might have as a database a sample of the distorted process not the

original process. We propose, however, an algorithm that finds the approximate prefix of

length L n in O(n 2
) steps in the worst case. We only briefly address algorithmic issues

at the end of Section 2.2, and the reader is referred to Atallah, Genin and Szpankowski

[4] for a detailed discussion. It is worth mentioning here that the authors of [4] applied a

significantly enhanced version of the lossy scheme described above to image compression. In

[4] some promising results for pattern matching image compression are reported, especially

when variable (adaptive) D is used. Similar conclusions for image compression were drawn

by Constantinescu and Storer [8] who implemented a lossy extension of another Lempel-Ziv

scheme, namely the parsing scheme LZ78 [39]. However, no theoretical justifications were

provided in [8] (d. Remark l(iv)).

While our data compression scheme is suboptimal, it is only of a polynomial complexity,

thus having a chance to be of some practical importance. The trade-off between optimality

and implementability is a common issue in engineering, and often optimal algorithms are

either NP-hard or too expensive to construct. Optimal lossy data compression algorithms

so far proposed (d. [15, 24, 33, 36, 37]) are expensive. However, recently proposed locally

(suboptimal) lossy data compression schemes are of reasonable complexity (d. [7, 9, 18,

19]). Actually, one can envision an optimal data compression scheme based on approximate

pattern matching (d. [11,27]). It is an interesting and challenging theoretical problem that

needs to be addressed. But one may wonder whether a practical (i.e., of good computational

complexity) and optimal lossy compression exists at all? Yang and Kieffer in their recent

paper [33] expressed the following opinion: " ... it is our belief that a universal lossy source

coding scheme with attractive computational complexity aspects will never be found." We

share this view, and we believe that further investigations of suboptimal and practical
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heuristics for lossy compression are needed.

We further generalize our problem and we search for largest L ~ b ) such that there exist

at least b substrings in the database within distance D, that is, for some iI, i2 , ••• , ib where

. . (b) . ( ) (b) (b) (il-l+L~b) n+L~))
1 :S Zl :S Z2 - Ln :S ... :S Zb - b - 1 Ln :S n - bLn + 1, we have d XiI ,xn+1 :S

. l+L(b) +L(b)
D, ..., d(x~~- n, X ~ + l n ) :S D, where b is a parameter (d. [31] for lossless equivalent

of this scheme and its implementation through the so called b-suffix trees). Observe that

b = 1 corresponds to the original problem. A recent work of Louchard et. al. [21] pointed

out that the average redundancy rate can slightly decrease for b > 1.

Actually, the real engine behind this study is a probabilistic analysis of an approximate

pattern matching problem, which we discuss next. Our probabilistic results are confined

to the stationary mixing model in which two random events defined on two a-algebra

separated by g symbols behave almost like independent events as g --+ 00; thus memoryless,

stationary and ergodic Markov, and finite-state sources are included (d. [34]). We first

introduce the generalized Renyi entropies denoted as rb(D) which we prove to exist in our

mixing model, where -00 :S b :S 00 is a parameter. We show that Ln/ log n --+ l/ro(D) in

probability (pr.) where ro(D) represents the rate distortion. Observe that limD-+o ro(D) =

limD-+oR(D) = h. Surprisingly enough, Ln/logn does not converge almost surely (a.s.)

but rather fluctuates between two different constants, namely l/r-oo(D) < 2/r1(D) (cf.

Theorem 1). This kind of behavior was already observed in the lossless case (d. [30,31]).

Finally, for memoryless source (Le., Bernoulli model) we compute explicitly the entropies

rb(D) (d. Theorem 3). In passing, we should add that our ro(D) is related to the [-entropy

(d. [26]) and/or r-entropy (d. [10]), however, we define ro(D) with respect to the source

distribution instead of the optimal one. Such an entropy seems to have other applications

outside the data compression area (d. Remark l(iv)).

It turns out that the fluctuation of L n is related to the probabilistic behavior of two other

interesting parameters that we call shortest path Sn and height Hn due to an analogy between

these parameters and similar ones studied in [30, 31] for the lossless case. Roughly speaking,

Sn is the largest J( such that all strings of length J( occur approximately somewhere in the

training sequence of length n, while H n is the length of the longest substring that can be

approximately recopied, that is, occurs twice. We prove that sn/logn --+ l/r_oo(D) (a.s.)

and Hnjlogn --+ 2/r1(D) (a.s.) (d. Theorem 2). Observe that sn:S Ln:S Hn.

In a related paper Steinberg and Gutman [28]2 analyzed the so called waiting time Nt

2We should point out that the model of [28] (introduced in Wyner-Ziv [32]) differs slightly from ours. In

[28, 32] the database is counted backward and a substring is compressed always at position n = 0 (in [30] it

was called the left domain asymptotics model). This describes well the finiteness of the database but fails
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which is defined as length of the shortest string that contains approximately a string of

length f at the beginning and at the end (or equivalently string of length f reoccurs approx

imately for the first time after Nf. symbols). The authors of [28] proved that for a stationary

and ergodic sequence lim sUPf.-+oo log Ndf ::; R(D /2) (pr.). As a corollary of one of our re

sults we show that in the mixing modellimf.-+oo log Ndf = TO(D) (pr.), and this settles the

problem of [28] (d. Corollary 1) at least for the mixing model.3 This also implies that a

lossy extension of Wyner-Ziv scheme cannot be optimal. We should also mention here some

recent results of Shields [29] who analyzed the waiting time Nf. but only for D ----7 0 which

differs significantly from the lossy situation with D > O. Finally, rate of convergence for

lossy source coding are discussed in [18, 19].

There is a substantial literature on probabilistic analysis of problems on pattern match

ing (d. [2,3,14,29,28,30,31] but with exception of [2,3,28] (d. also [29] for D ----7 0 case)

only lossless case (i.e., exact pattern matching) is discussed. The two papers [2, 3] on the

approximate pattern matching explore only the height Hn which is not of prime interest to

data compression. Thus, to the best of our knowledge our results are novel not only in the

context of data compressions.

2. MAIN RESULTS

This section contains our main results. After presenting some definitions, we formulate

the probabilistic model, and we introduce generalized Renyi entropies that are proved to

exist in our probabilistic model (d. Section 2.1). Finally, we present our main theoretical

results (d. Section 2.2) together with algorithmic results and applications (d. Section 2.3).

2.1 Probabilistic Model and Preliminary Results

Let {Xd ~-oo be a stationary and ergodic sequence generated over a binary alphabet

A = {O, I}. Throughout the paper we shall work only with the one-sided sequence { X d ~ l '

We write xl for a realization of Xl = X 1X 2 ..• X n and call it a training sequence or a

database sequence. For a partial sequence x ~ = (x m , ... , xn ) with m ::; n we define the

to capture a dynamic nature of the sliding window mechanism. In our model, which was introduced in [30]

and called the right domain asymptotics model, this dynamic nature of data compression schemes is well

captured, but it does not describe well the finiteness of the database.

3During the revision of this paper, we have learned that Yang and Kieffer [34] have recently analyzed

N£ in the Wyner-Ziv model (i.e., for the left domain asymptotics) under a similar mixing model, and the

authors of [34] proved - under stronger assumptions regarding mixing coefficients - that log Ndf -+ ro(D)

(a.s.).
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(n - m)-order probability distribution as P ( x ~ J = Pr{Xk = Xk , m ~ k ~ n, Xk E A}.

We also use P(X;;:') as a random variable defined on the Borel sets generated by X;;:,.

We start with a precise definition of some parameters, namely: depth L n , the M-th

depth Ln(M), height Hn, shortest path Sn, and waiting time Ne. As in (1) we write

d(xlJil ) for the relative Hamming distance, that is, the ratio ofthe number of mismatches

between xl and xl' and the length n. The depth L n is defined as follows:

Let Ln be the largest J( such that a prefix of X ~ l oflength J( is within distance

D from Xi-l+K for 1 < i < n - J( + 1 that is d(X~-l+K X n+K) < D.
, - - "" n+l -

Thus, it is the longest prefix of { X d ~ n + l which is within distance D of a substring in the

database Xl' On the other hand, the M-th depth, Ln(M), is the longest prefix of X'M for

a given M which is within distance D of a substring in the database. That is:

For fixed M ~ n, let Ln(M) be the length J( of the longest prefix of X'M for

which there exists M + J( ~ i ~ n +1 such that d(Xf+K, Xkf+K) ~ D.

The probabilistic behavior of L n is related to two other parameters, namely the height H n

and the shortest path Sn' The height Hn is the length of the longest substring in the

database Xl for which there exists another substring in the database within distance D.

More precisely:

The height H n is equal to the largest J( for which there exist 1 ~ i < j ~ n + 1

such that d(Xf-l+K, Xj-l+K) ~ D.

In order to define Sn, we let A k to be the set of all words of length k, and Wk E A k
. Then:

The shortest path Sn is the largest k such that for every Wk E A k there exists

1 ~ i ~ n+ 1 such that d(Xf- 1
+k,Wk) ~ D.

The waiting time Ne is also of interest to data compression, and it was already studied

in [28, 32]. It is the length of the shortest sequence for which the first £ symbols repeats

approximately for the first time. That is:

The waiting time Ne is the smallest N 2 2£ such that d(Xf,X}f_f.+l) ~ D.

We observe that the waiting time is related to the first depth L n (1). In the lossless

case D = 0 it was shown in [30] that
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which directly implies probabilistic behavior of Nf. once we know characteristics of Ln (1).

The situation is more intricate in the lossy case D > 0 where the above should be replaced

by the following two implications:

and {Ln (1) ~ f} C U{Nk ::; n} .
k>f.

(2)

Our plan is to investigate the behavior of the above parameters in a general probabilistic

framework. We assume that {Xdk=l is a stationary and ergodic sequence of symbols

generated from a finite alphabet A satisfying a mixing condition as defined below. We

should point out that our results cannot hold in a general stationary and ergodic model due

to some negative results of Shields discussed in [30, 31] for the lossless case.

(A) MIXING MODEL

Let F ~ be a a-field generated by {Xk}k=m for m ::; n. There exists a function o{)

of 9 such that: (i) limg -+oo o:(g) = 0, (ii) 0:(1) < 1, and (iii) for any m, and two events

A E F:::oo and B E F:::+g the following holds

(1- o:(g))Pr{A}Pr{B} ::; Pr{AB} ::; (1 +o:(g))Pr{A}Pr{B}. (3)

In some statements of our results we have to restrict the mixing model either to the

Markovian model or to the Bernoulli model as defined below:

(M) MARKOVIAN MODEL

The sequence {Xk} forms a stationary, aperiodic and irreducible Markov chain where

the (k+1)st symbol in {Xk} depends on the previously selected symbol. The transition

probability of the Markov chain is Pi,j = Pr{Xk+l = j E A/Xk = i E A} > 0 with the

transition matrix denoted by P = {Pi,j H,j=l.

(B) BERNOULLI MODEL

The sequence {Xd forms an Li.d. sequence with Pr{Xl = O} = P and Pr{Xl = 1} =

q = 1 - p.

As expected, probabilistic behaviors of the above parameters depend on some kind

of entropies, which we define next. We first need some additional notation. By aD-ball

BD(Wk) with center Wk E Ak we mean a set of all strings oflength k that are within distance

D from Wk, that is, BD(Wk) = {x~: d(wk,x~)::; D}. We simple write P(BD(Xf)) for the

probability measure of the set of all sequences of length n within distance D from a random

sequence Xf.
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Definition: GENERALIZED b-ORDER RENYI ENTROPY. For any -00 ~ b ~ 00

where for b = 0 we understand ro(D) = limb-+o rb(D), that is,

(D)
- li -E log P(BD(Xf))

ro - m k 'k-+oo

provided the above limits exist.

Remark 1. (i) Special Cases. For b = -00 and b = 00 we obtain

(5)

r -oo(D)
lim -log (minwkEAdP(BD(Wk)), P(Wk) > O})

k-+oo k

lim -log (maxWkEAdP(BD(Wk)), P(Wk) > O})

k-+oo k

(6)

(7)

The above follows from the inequality on means (d. [13]) by taking the appropriate limits

with respect to b.

(ii) Lossless case D = O. In the lossless case D = 0, the generalized b-order Renyi's entropies

rb(D) reduces to the b-order Renyi entropies Mb) studied in Szpankowski [31].

(iii) Related Entropies. To the best of our knowledge the entropies rb(D) were not previously

used or studied in the information theory community. However, the entropy ro(D) is close

in spirit to the so called c-entropy of Posner and Rodemich [26] or Feldman's r-entropy [10].

Observe that c-entropy corresponds to an optimal cover of the space An with D-balls,

while from Lemma 1 below we conclude that using ro(D) the space is covered with typical

D-balls centered at the source distribution. In other words, the probability of a typical

D-ball centered at the source distribution is asymptotically equal to 2-nro (D), while from

Ornstein and Shields [24] one concludes that the probability of a typical D-ball centered

at the optimal output distribution is asymptotically equal to 2-nR(D) (see also the end of

Section 2.2).

(iv) Other Applications of Generalized Renyi Entropies. Generalized Renyi entropies rb(D)

find other applications in approximate pattern matching problems. The entropy rl (D) was

used by Arratia and Waterman [2] to study similarities between molecular sequences, while

r -oo(D) might be used to analyze an approximate "signature" of a sequence (d. [31]). We

believe we can prove that ro( D) is also the asymptotic compression ratio for a lossy extension

of another Lempel-Ziv scheme, namely the Lempel-Ziv (LZ78) incremental parsing scheme
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[39] (i.e., in this case the next phrase is the longest phrase that is within distance D from a

previous phrase). Finally, a lossy extension of the so called Shortest Common Superstring

problem (i.e., for a given set of strings find the shortest string that contains approximately

all of the original strings as substrings) brings into light the entropy 1'1 (D) and possibly

ro(D) (d. [12, 35]). 0

Lemma 1. (i) Under assumption (A), the generalized b-th order entropy rb(D) is well

defined (i.e., the limit in (4) exists) for any -00 ~ b ~ 00. In addition,

ro(D) = lim -logP(BD(Xf)) (a.s.).
k--+CXJ k

(8)

(ii) The entropies rb(D) are non-increasing functions of D for all -00 < b < 00. In

addition, the following property holds

for any -00 ~ b < c ~ 00.

b < c (9)

Proof. We only consider 0 ~ b < 00 leaving the proof of other cases to the interested reader

who can follow our line of arguments. For (i) it suffices to show that for some constant c > 0

(10)

Provided (10) is true we simply use the Subadditive Theorem [16] applied to the sequence

an = -clog Epb(Xf) to establish our claim. In the course of proving (10) we shall see that

pb(BD(Xn+m)) ~ cpb(BD(Xn))pb(BD(Xm)) which by Subadditive Ergodic Theorem [16]

will imply (8).

Let us now wrestle with (10). Observe that for any string W n+m of length n + m we

have

pb(BD(Wn+m)) C+_EEIW"+-I P(zn+m)) b :> c C+-EEW"+_l P(zn)P(zm)) b

> c ( L P(zn)) b ( L P(zm)) b

znEBD(wn) zmEBD(wm)

cpb(BD(wn))pb(BD(wm))

where c is an universal constant whose value can change from line to line. The first inequality

of the above follows from the mixing condition of (A) (observe that we actually require only
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that o{) in (3) is bounded away from 1), and the second one is a simple consequence of

the Hamming distance property. In fact, this inequality is satisfied by any fidelity measure

having subadditivity property (d. conditions in [28]). To complete the proof we use again

the mixing condition to get

> c L pb(BD(Wn))P(Wn) L pb(BD(Wm))P(Wm)
wnEAn wmEAm

Thus (10) is proved. The prooffor b = -00 and b = 00 (d. Remark 1(i)) follows the same

line of arguments as above.

Part (ii) is a direct consequence of the increase of BD(Wk) and its probability with the

increase of D. Clearly, (9) follows directly from the inequality on means [13]. This completes

the proof.•

2.2 Theoretical Results

Throughout we assume that 0 < rOCJ(D) ::; r-OCJ(D) < 00. The main result presented

below describes a probabilistic behavior of L n under the mixing model assumption (A). Its

proof can be found in Section 3.1.

Theorem 1. DEPTH AND M-TH DEPTH. Assume the mixing model (A), and 0 < rOCJ(D) ::;

r-OCJ(D) < 00.

(i) Convergence in Probability. For any given M the following holds

(11)(pr.)lim Ln(M) = lim ~ = _1_
n-+OCJ log n n-+OCJ log n ro(D)

provided O'.(g) -7 0 as 9 -700, and the rate of convergence oflog P(BD(Xf))/k in Lemma 1

is at least O(1/k1+c5) for some 8 > O.

(ii) Almost Sure Convergence. Assume additionally that the rate of convergence of

logP(BD(Xf))/k in Lemma 1 is exponential. Then, for any fixed M

lim Ln(M) = _1_
n-+OCJ logn ro(D)

(a.s.) (12)

provided L : ~ 1 O'.(g) < 00. Nonetheless, one can claim only that the following is true for Ln

li . f Sn < li . f Ln li Ln li Hnmm -- mm -- < msup -- < msup--
n-+OCJ log n - n-+OCJ log n - n-+OCJ log n - n-+OCJ log n

(a.s.) . (13)

11



Let us add that the limits sn/ log nand Hn/ log n exist under some stronger assumptions

on the convergence of o(g) (cf. Theorem 2 below) and, in general, do not coincide.

Remark 2. Blowing-up Property. Using recent results of Marton and Shields [23J one

can prove that the exponential rate of convergence in Lemma 1 follows from the so called

blowing-up property. To recall: a stationary and ergodic process { X d ~ l has the blowing

up property if for any c > 0 there exists a 8 > 0 and integer N such that for any n 2: N

and any BeAn

Pr{B} 2: e n6
Pr{[BJeJ 2: 1 - c

where [BJe = {yf: d(yf, xl) ::; c for some xl E B}. The case D = 0 was analyzed

in Marton and Shields [23J. One can follow their proof to show a similar conclusion for

D > O. For example, in order to see how the blowing-up property implies the exponential

convergence in Lemma 1, let us consider for simplicity of presentation only a subset of

"bad" states, namely B = {Xl: P(Bv(XI )) 2: 2-n
(ro(V)-i1)} for some () > O. From

Lemma 1 we know that Pr{B} ----7 0 as n ----7 00. Due to continuity of ro(D) (d. [34]),

one proves that for sufficiently small c > 0 the following holds Pr{[BJe} ----7 0 as n ----7 00.

Assume now contrary that the rate of convergence in Lemma 1 is not exponential. Then,

for all 8 > 0 we must have Pr{B} 2: e-n6 . By blowing-up property this would imply that

Pr{[BJe} > 1 - c, which is the desired contradiction. A proof of exponential convergence

for l3 = {Xl: P(Bv(XI ))::; 2-n (ro(V)+i1)} for some () > 0 is a little bit more intricate

but follows the line of arguments as in Shields and Marton [23], so we omit it here. (One

should first establish the exponential convergence for the empirical distribution of frequency,

and then translate it into exponentiality of Pr{l3}). In passing, we should mention that

in [23J Marton and Shields shown that aperiodic Markov sources, finite-state sources, and

m-dependent processes have the blowing-up property. For details the reader is referred to

[23J.D

The bounds for L n / log n in the almost sure convergence of the above theorem follows

directly from the simple observation that Sn ::; Ln ::; H n. Furthermore, one can follow ideas

of [30, 31J and show that a.s. the value of Ln/logn does not tend to a limit, i.e. almost

surely we have lim inf L n / log n < lim sup L n / log n. As a matter of fact we conjecture that

in the first and the last inequality of (13) the equality holds. This was proved for the lossless

case D = 0 in [30, 31]).

Now we are in position to present our second main result concerning the height and the

shortest path. The height was previously studied by Arratia and Waterman [2J and we use

their result to set the issue with the height. The proof for Sn is presented in Section 3.2,

12



while a discussion of H n can be found in Section 3.3.

Theorem 2. SHORTEST PATH AND THE HEIGHT. Assume that (A) holds, and 0 < rco(D) :::;

r -co(D) < 00.

(i) If for every K, ~ 0 we have

lim g"o:(g) = 0
g-+co

(14)

then

li
Sn

m -
n-+co log n

(ii) For the Bernoulli model (B)

li
Hn

m -
n-+co log n

1

r -co(D)
(a.s.)

(a.s.) .

(15)

(16)

In addition, the above holds for the Markovian model (M) if only non-overlapping substrings

are considered.

Steinberg and Gutman [28] following the idea of Wyner and Ziv [32] proposed a subop

timal block source coding scheme for a lossy data compression based on the analysis of the

waiting time Nt. The authors of [28] were able to establish an upper bound on log Nd.e,

namely they proved that asymptotically logNd.e :::; R(D/2) (pI.) for any stationary and

ergodic sequence {Xd. A more refined bound was obtained for the memoryless source (the

so called Bernoulli model). Corollary 1 (d. also [34]) below gives a precise limiting behavior

of log Nt in terms of ro(D), and in our next finding we compute - among others - explicit

formula for rb(D) for the Bernoulli model. The lower bound in Corollary 1 (which in fact

is also true for the almost sure convergence) follows directly from (2), while for the upper

bound we must use some arguments from the proof of the lower bound for Ln (I). Hence,

we delay the proof of Corollary 1 until Section 3.4.

Corollary 1. WAITING TIME. The following holds

lim log Nt = ro(D)
t-+co .e

(pr.) (17)

under assumptions of Theorem 1(i), that is, limg -+co o:(g) = 0 and the rate of convergence

in Lemma 1 is O(l/nl+b
) for some fJ > O.

One may wonder how the generalized Renyi's entropies depend on the parameters of

the underlying model. Can we derive explicit formulas for rb(D) in the Bernoulli and/or

Markovian model, as it was accomplished for the lossless case D = 0 (d. [2, 30, 31])? The

13



theorem below provides an explicit formula for Tb(D) in the Bernoulli model (B). The proof

can be found in Section 3.5.

Theorem 3. BERNOULLI MODEL. Defineh(D,x) = (I-D)log((I-D)/x)+Dlog(D/(I

x)) for 0 < D, x < 1. Then:

(i) Let Pmin = min{p, q} and Pmax = max{p, q}, then

T-oo(D) = { ho(D,Pmin) for D ~ Pmax

for D > Pmax .

and

Too(D) = { oh(D,Pmax) faT D ~ Pmin

for D > Pmin .

In addition, T-oo(D) and Too(D) are convex functions of D.

(ii) If P = q = 1/2 then, for every -00 ~ b ~ 00 and D ~ Pmin, we have Tb(D) = h(D, 1/2).

(iii) Let P =I q and -00 < b < 00. Then, Tb(D) = 0 whenever D > 2pq, while for

o ~ D ~ 2pq and b =I 0

= (l/b) min {xlog(x/p) + (1- x)log((I- x)/q) - b(Dlog(p/q)
O<x<l

+ xlog(px) + (1- x)log(q(l- x)) - xlog(x - F(x))

- Dlog(D - F(x)) - (1- x - D)log(l- x - D +F(x)))} ,

where F( x) is defined as

(18)

F(x) = x + D + J(p2 + (x + D)(q - p))2 + 4xq2D(p _ q) _ p
2

2 2(p _ q) (19)

In particular, we have

( )
_ { h(D, P) faT D ~ 1 - P = 2pq

Tl D -
o for D > 1 - P = 2pq

where P = p2 + q2. The function rl (D) is convex with respect to D.

(iv) If p =I q then ro(D) = 0 for D > 2pq, and for 0 ~ D ~ 2pq

ro (D) = - (D log(p/ q) +2p log p +2q log q - p log(p - F(p))

- Dlog(D - F(p)) - (q - D)log(q - D +F(p))) , (20)

where F is the function defined by (19). In addition, ro(D) is convex with respect to D.
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Remark 3. Degenerate Behaviors. It is interesting to see how the functions Sn, H n and

L n grow with D for the Bernoulli model. Theorem 3 states that for D > 2pq we have

rb(D) = 0, so Hn/logn ----+ 00 and Ln/logn ----+ 00. It is not hard to find a reason behind

such a behavior. If D > 2pq = 1 - P, then with probability tending to 1 as k ----+ 00 the

distance between every two randomly chosen strings of length k is less than D. Thus, for

such a large D (a.s.) both H n and L n are of the order of n. Similarly, one can easily see

that Sn is of the order of n whenever D > Pmax' D

A second-order improvement in the data compression scheme can be obtained if one

implements a simple generalization of our construction (d. [31] for D = 0) that might lead

to a better compression code redundancy. The main idea is to search for the longest prefix

of X ~ l that occurs at least b times in the database, where b is a parameter. More precisely:

Let L ~ b ) be the largest I( such that a prefix of X ~ l of length I( is within

distance at most D from at least b disjoint substrings of Xf, i.e. there exist

iI, i2, ... , ib such that 1 ~ i l ~ i2 - I( ~ .,. ~ ik - (b - 1)I( ~ n - bI( + 1, and

d ( X ~ l - l + K X n+K ) < D d(X~k-l+K X n+K ) < D
~1 'n+l - , ... , ~k 'n+l - .

In a similar manner we define L ~ ) ( M ) , s ~ ) and HA
b
) = maxI::;M::;n{L~\M)}.

We can prove the following generalization of Theorem 1 and Theorem 3:

GENERALIZED DEPTH, HEIGHT AND SHORTEST PATH. Under appropriate assumptions of

Theorems 2 we have

(b)

li
sn

m -
n--+oo log n

1

r -oo(D)
(a.s.)

H(b) ( 1) 1
lim _n_ - 1 +- --

n--+oo log n - b rb(D)'
(21)

Furthermore, under hypotheses of Theorem 1, L~) and L ~ ) ( M ) behave as expressed in

(i1}-(i3). For example:

L(b)(M)
lim _n----'----'-

n--+oo log n

L(b)

li
n

m -
n--+oo log n

1

ro(D)
(pr.) (22)

for all bounded b.

(23)
c = length of the compression code in bits

uncoded length of L n

Our findings concerning Ln and Ng can be used to predict the performance of a lossy

data compression scheme based on Wyner-Ziv algorithm (cf. [32]). In the lossless case, a

data compression scheme works as follows (d. [32]): After identifying the largest prefix of

length L n of X ~ l ' we encode it by a position of its occurrence in the database sequence

Xf which costs logn bits, and its length which costs 10gLn = O(1oglogn)). Thus, the

compression ratio
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Figure 1: Comparison of compression rates for p = 0.2

becomes C = h(l + o(log log nj log n) (pr.), which is asymptotically optimal for lossless

compression.

In view ofthe above, one may ask how close is the rate (compression ratio) ro(D) of our

scheme to the optimal compression ratio R(D). For a memoryless source (Le., Bernoulli

model) it can be proved that R(D) = h - h(D) where h = -plogp - qlog q is the entropy

of the memoryless source, and h(D) = -D log D - (1- D) log(l- D). Note that R(O) = h.

From Theorem 3 we conclude that the scheme is:

• asymptotically optimal in the limiting case, namely

lim R(D) = lim ro(D) = h ,
D---+O D---+O

(24)

• asymptotically optimal in the symmetric Bernoulli case (p = q = 0.5) since

ro(D) = R(D) = log 2 - h(D) . (25)

In general, ro(D) > R(D). In Figure 1 the rate distortion function R(D) and ro(D) are

plotted versus D for a memoryless source with p = 0.2. While ro(D) is close to the optimal

rate R(D) for small D, one would still like to know whether an optimal scheme based on

an approximate pattern matching exists. Recently, there have been some attempts in this

direction (d. [11, 17, 27]), though a definite answer was not yet established.
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We end up this section with some remarks concerning algorithmic issues and applications

of our scheme to lossy data compressions. With respect to the latter problem, one should

observe that in the lossy case the decoder and encoder have different database (i.e., the

decoder has as a database a sample of the distorted process), and this might lead to some

complications. We can identify two general approaches to overcome this problem:

• Adaptive Update of Database (AUD) in which we keep the same database on

both sides of a transmission channel that is updated either periodically or adaptively

(e.g., still image compression) The undistorted (reference) database is transmitted

faithfully (e.g., by Lempel-Ziv scheme). As a compression code we use the position

in the database (cost: log n bits) and the length of approximately repeated pattern

(cost: log L n = 0 (log log n)), thus according to Theorem 1 and (23) the compression

ratio is C = ro(D)(l + O(loglogn/logn) (pr.) .

• Distorted Version of Database (DVD) in which we modify the original database

Xf to a distorted one, say Xf that replaces substrings of length 0 (log n) of Xf

by centers of a D-ball. The distorted database Xf is transmitted faithfully, say by

Lempel-Ziv scheme or Wyner-Ziv scheme. We discuss this scheme in more details

below. It should be pointed out that the idea of this scheme was first suggested by

Steinberg and Gutman [28].

As mentioned above, when the database is varying quickly, Distorted Version Database

(DVD) scheme is more appropriate. The algorithm of [28] can be used, and it is based on

NR. for a block source coding: Fix block length.e. Let y=i where V = lAIR. be a sequence

generated by the information source. We append it at the left end, so the new sequence

y=iv is of length 2V. We first partition Xl into blocks of size f, say X 1(f), X 2(f) , etc.

For given block, say Xi(f) we find the smallest J(i) such that Xi(f) E BD(YJ(i)(f)) where
R." - - - -

Yj(f) = y·~Aj-l)-l· The distorted database is: X = Xl (f)X2(f) ... where Xi(f) = YJ(i)(f).

The distorted sequence X is send faithfully.

If we want to design a DVD version of our scheme based on Ln we need only some modi

fications. We use the sequence {Vi} but we re-number it from 1 to 2V, that is, our reference

is yiv . The sequence Xl is parsed into distorted variable blocks of length l = 0 (log n)

as before. More precisely: We find the longest prefix of X that occurred approximately in

{yd, say at position J, that is, xi E BD(y:J-HI) Then, we replace xi by xi = y:J-HI.

And so on. The distorted sequences X is send faithfully. By our construction and Theorem

1 we conclude that the compression ratio is ro(D) with high probability.
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Finally, we briefly address the algorithmic issues. In the lossless case, the prefix of length

Ln can be found in O(n) time-complexity (and O(log n) on average) by a simple application

of the suffix tree structure (d. [30]). In the lossy case, the situation is more intricate. To

simplify our discussion, let yr = x~t;n be an uncompressed subsequence of length m ~ n.

An (intelligent) brute force algorithm can find the longest prefix of yr that approximately

occurs in Xl in O(nm) steps in the worst case. (Indeed, for every prefix of yr we check

if it approximately occurs in Xl by comparing symbols of the involved substrings.) In the

worst case, one should set m = n which leads to 0 (n2
) algorithm. However, based on

Theorem 1 we can restrict m = O(1og n), and then the average complexity of the algorithm

is O(nlogn). While it seems to be an algorithmic challenge to be beat the O(n2
) worst case

complexity, Atallah , Genin and Szpankowski [4] reported several approximate algorithms

of as good worst case complexity as O(nlog2 n) (cf. also [5,22]).

3. ANALYSIS AND PROOFS

In this section we present proofs of Theorem 1 for the depth (d. Section 3.1), Theorem 2

for the shortest path (d. Section 3.2) and the height (d. Section 3.3), Corollary 1 (d.

Section 3.4), and Theorem 3 for evaluating the Renyi entropies in the Bernoulli model (d.

Section 3.5).

Throughout we use the first moment method and the second moment method which we

briefly review now. If Zn is a sequence of nonnegative random variables, then for every n

from Markov's and Chebyshev's inequalities we have (d. [1])

Pr{Zn > O} <

Pr{Zn = O} <

(26)

(27)

In applications, Zn is a function of a parameter k (e.g., length k of the depth L n ) such

that for appropriately chosen k the average EZn -t 0 in the case (26), while for (27) one

requests that Var Zn/(EZn )2 -t O.

3.1 The Depth

We now prove Theorem l(i) concerning the probabilistic behavior of the depth Ln. We

start with an upper bound, and use the first moment method. Let Zn be the number of

positions 1 ~ i ~ n - k + 1 such that the prefix of Xf+k-l is within distance D from x ~ t t ,

l.e.

Z = 1{1 < i < n - k +1: d ( X ~ + k - l Xn+k) < D}/ .n - _ t' n+l -
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The main idea behind our argument will be to condition on the structure of X::tf. First

observe that (8) of Lemma l(i) can be translated into a generalization of the Asymptotic

Equipartition Property (AEP) as follows: For a mixing sequence Xl satisfying (A) with

O'.(g) bounded and any fixed £ > 0, the state space An can be partitioned into two subsets

B ~ ("bad set") and g ~ ("good set") such that sufficiently large n we have P(B~) :<:; £, and

2-nro (D)(1+e) < P(B (xn)) < 2-nro (D)(1-e) for xn E ge. Thus Be is the set of "bad"
- D 1 - J' 1 n 'n

centers x ~ for which either P(BD(Xf)) ~ 2-nro (D)(1-e) or P ( B D ( X ~ ) ) :<:; 2-nro (D)(1+e).

Observe first that, unlike the lossless case (D = 0), in the lossy case the following can

be claimed

Then,

(28)

(29)

Pr{Ln ~ k}

n-JI.

< '" '" Pr{d(XnH X ~ H - l ) < D X nH E "e/2} + '" P(B
e
/
2
)L..J L..J n+l' t -, n+l ""JI. L..J JI.

Qk~l Qk

n-JI.

LL L Pr{d(X::ti,xjH-l):<:; D, x::ti = we} + LP(B;/2)
JI.>k i=l E",<j2 JI.>k

- Wi "i -

00 n-JI.
< L L(1 +0'.(n +2 - £ - i))TJl.ro(D)(1-e/2) +L p(B;/2)

JI.=ki=l JI.>k

< nCTkro(D)(1-e/2) + L p(B;/2).

JI.>k

where C > Ois a constant. Set k = l(1+£)ro1
(D)lognj, and assume LJI.>kP(B;/2):<:; £ for

sufficiently large n (which holds for example when p(B;/2) = 0(1/£1+5
) for some 8 > 0),

we finally arrive at

for some constant c. This completes the prove of an upper bound.

For the lower bound, we use the second moment method. Let k = l(l - £ )ro1
( D) log nj,

and define

Z~ = 1{1:<:; i:<:; n/(k+g): d ( X N : ~ ; ~ : ~ g , X : : t f ) : < : ; D}I

and g = 0(1ogn) is a gap between In/(k +g)j = 0(n/logn) non-overlapping substrings of

length k. In words, instead oflooking at all strings oflength k we consider only m = In/(k+

g)j strings with gaps oflength g among them. These gaps are used to "weaken" dependency

between the substrings of length k. Observe now that Pr{Ln < k} :<:; Pr{Z~ = O}. Indeed,
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if Z ~ > 0 then by definition Ln 2 k. Note also that

P r { Z ~ = O} Pr{Z' = 0 X n+k E ge/2} +Pr{Z' = 0 X n+k E Se/2)n 'n+l k n' n+l k

< 2: P r { Z ~ = OIX:tf = wdPr{wk E g~/2} +Pr{S%/2}

E
r".</2

Wk "'k

where

Z ~ ( W k ) = 1{1::; i::; n/(k+g): d ( X N : : ~ ~ : ~ g , W k ) : : ; D}I,

and P r { Z ~ ( w k ) = O} = Pr{Z~ = OIX:tf = wd. Thus, it is suffices to show that

Pr{ Z ~ ( Wk) = O} ---+ 0 uniformly for all Wk E g~/2. Hereafter, we assume that Wk E g~/2.

Let now m = n / k = 0 (n /log n). From the definition of the set g ~ / 2 for every Wk E g~/2

(31)

we have
ne/2{l+e)

EZ' (w ) = mP(B (w )) > mTkro{D){l+e/2) > c---
n k D k - - log n

for a constant c. We now compute the variance Var Z ~ ( wn) for Wk E g~/2. Let Z ~ = 1 if Wk

occurs approximately at position i(k+g), otherwise Z ~ = o. Certainly, Z ~ ( w n ) = L~1 Z~,

and Var Z ~ ( wn) = L~1 Var Z ~ + L~1 L0=1 C o v ( Z ~ , Z ~ ) . A simple algebra reveals that

m

2:Var Z ~ ::; mEZ~ = mP(BD(wk)) = EZ~(Wk) .
i=1

(32)

To compute the second term in the sum above, we split it as L ~ j = 1 C o v ( Z ~ , Z ~ )

SI + S2 where

m

SI 2: 2: C o v ( Z ~ , Z ~ )
i=1 li-jl::;n</4

m

S2 2: 2: C o v ( Z ~ , Z ~ ) .
i=1 li-jl2:n</4

Observe that

COV(Zi zj) = Pr{Zi zj = 1} - Pr{Zi = l}Pr{Zj = 1} < Pr{Zi = 1} = EZi
n' n n n n n - n n .

Hence SI ::; 2ne
/

4 EZ~( Wk).

On the other hand, proceeding as the above and using the mixing condition from (A)

we also have C o v ( Z ~ , Z ~ ) ::; a(g)Pr{Z~ = l}Pr{Z~ = 1} where 9 = O(ne/4
). Thus,

S2 ::; 2a(g)(EZ~( Wk))2. Consequently, for every Wk E g~/2 we have (£ < 1)

, Var Z ~ ( W k ) ( n
e
/

4
) (lOgn)

Pr{Zn(wk) = 0) ::; (EZ~(Wk))2 ::; 2a(g) + 0 EZ~(Wk) ::; 2a(g) +0 ne/4 ' (33)
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and finally by (32) and the above we obtain

Pr{Ln < l(l- c:)ro1(D) log nj} -+ °
as n -+ 00 which completes the lower bound.

The proof of Theorem l(i) concerning Ln ( M) follows exactly the same path as above. To

establish Theorem l(ii) dealing with the almost sure convergence of Ln(M) we first observe

that Ln(M) is anondecreasing sequence ofn (in contrast to Ln), that is, Ln+I(M) 2:: Ln(M).

Taking into account the definition of Ln (M) for fixed M, and using our rate of convergence

for the upper and the lower bounds proved above, together with the Borel-Cantelli Lemma

along an exponentially increasing skeleton such as nk = 2k, we obtain the almost sure

convergence as in [2, 30, 31] provided L ~ = l L l ~ n P(B%) < 00. For example, the latter

condition holds for sequences for which P(B%) decays exponentially with f (e.g., sequences

satisfying the blowing-up property discussed in Remark 2).

3.2 Shortest Path

We now deal with the shortest path Sn and establish Theorem 2(i). The proof is along

the lines suggested in [30, 31]. Therefore, we only briefly sketch it.

We start with the upper bound which is quite simple in this case. Let Pmin(k) =

minwkEAk{P(BD(Wk))}' From Lemma 1 we conclude that Pmin(k) ~ 2-kr
- oo (D)(1-E:) (more

precisely: log Pmin rv -kr_=(D)). Observe that - unlike the lossless case - by definition of

Sn we have

{Sn > f} (34)

In words, if Sn > f then there exists k > f such that for each Wk E Ak the ball BD(Wk) must

contain at least one of the string Xf-I+k where 1 ~ i ~ n +1. Thus, in particular, Pr{ Sn >

f} ~ (n+1) Lk>l P(BD( w ~ n ) ) , where w ~ n is a word from Ak for which log(P(BD( w ~ n ) ) rv

-kr_=(D). Hence, for f = l(l + c:)r=~(D)lognj we have

Pr{s > f} ~ (n + 1) L Pmin(k) = O(l/nE:) .
k>l

(35)

The lower bound requires a bit more work. Let us set k = l(l- c : ) r = ~ ( D ) l o g n j and

consider a set of non-overlapping substrings of Xl of length k = O(1og n) between which

one inserts gaps oflength g = O(1ogn). Thus, there are m = l(n+1)/(k+g)j = O(n/logn)

substrings { X N : : ~ ~ : ~ g } r ; , l ' We show that with probability tending to 1 as n -+ 00 for every

Wk E Ak one can find among these m substrings at least one which are within the distance

D from Wk and consequently Sn 2:: k.
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Indeed, from the mixing condition from (A) we get that the probability that such an

event does not hold is bounded from above by

m

Pr{sn < k} < Pr{ U n (xN::;~:~g # Wk)}
wkEAk i=l

< L (1 +a(g)r(1- P(BD(Wk)))m ~ 2k(1 +a(g)r(1- Prnin(k)r .
wkEAk

Thus, taking into account our condition (14) we immediately prove that

Pr{sn < l(l-E)r=~(D)lognj} ~ O(exp(-nej2 j log n))

which completes the proof of the convergence in probability of Sn.

The rate of convergence for the upper bound does not yet justify to apply Borel-Cantelli

lemma. But, as before taking exponentially increasing skeleton such as nl = 21
, we obtain

almost sure convergence for the shortest path.

3.3 The Height

We establish now Theorem 2 (ii). The lower bound for the Bernoulli model for the height

follows directly from Theorem 2 of Arratia and Waterman [2], while for the Markovian model

we must use Theorem 6 of [2].

The upper bound is more intricate (especially that there is a minor recoverable error in

[2] which has some subtlies for the upper bound proof). To show this, let us estimate the

probability of {Hn ;::: k}. Observe that

{Hn ;::: k} = U U {d(XfH,Xr£) ~ D}
£?k l:Si<j:Sn+I

U ( U {d(XfH,XjH) ~ D} U U {d(XfH,XjH) ~ D}) . (36)

£?k li-j/:S£ li-jl>£

Let us first estimate the second term of (36) which we denote as T2(k). We obtain in

the sequel

T2 (k) < L L Pr{d(XfH,xjH) ~ D}
£?k li-jl>£

L L L Pr{d(XfH,xjH) ~ D, xj+£ = w£}
£?k li-jl>£ wtEAt

< (n +1)2(1 +a(li - j/)) L L Pr{d(XfH, w£) ~ D}P(w£)
£?k wtEAt

< (n +1)2(1 +a(li - j/)) L EP(BD(Xi))
£>k
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Using Lemma 1 and setting k = 2(1 + c)r1
1(D)10gn, one immediately sees that T2(k) =

O(1/n2e
). This is true for any mixing model with bounded o:(g).

The first term in (36) is much harder to deal with. The main contribution to the

probability of this term comes form self-overlaps of substrings of Xl. For the Bernoulli

model, using Theorem 4 of Arratia and Waterman [2J we can estimate that the contribution

of the self-overlaps is smaller than nlogn2-krdD )/2, and for k = 2(1 + c)r1
1(D)10gn we

obtain O(logn/ne
). Unfortunately, there is no equivalence of Theorem 4 in [2J for the

Markovian model, and the authors of [2] gave some good reasons why this is so. We

conjecture, however, that (16) holds for D --7 0 (d. [30, 31] for D = 0 case). If self-overlaps

are ignored, then the upper bound works fine for the Markovian model, and together with

Theorem 6 of [2] it proves (16).

3.4 Waiting Time

To prove Corollary 1, we observe that a lower bound for NR follows directly from property

(2) and Theorem 1. Indeed, from {NR :::; n} C {L n (1) ?: £} of (2) we conclude that for

n = 2(1-e)ro(D)R there exists b> 0 such that

{
logn }

Pr{log NR :::; ro(D)(l - c)} :::; Pr Ln (l)?: (1 + b) ro(D) --7 0

where the convergence to zero of the latter probability follows from Theorem 1 (Le., the

upper bound on L n proved in Section 3.1; d. (29)). In order to derive an upper bound for

NR, it is enough to argue as in the proof of the lower bound for L n of Theorem l(i). Thus,

one should consider a random variable Z ~ that counts the number of strings lying within

distance D from xi that occur at places of Xl separated by gaps of length £. Then, we use

the second moment method as above to show that Z ~ > 0 with probability tending to 1.

Since the argument and all calculations are the same as in the case of the random variable

Z ~ (only now we consider substrings of length precisely £) we omit the details.

3.5 Renyi Entropies in the Bernoulli Model

In this section, we present explicit formulce for rb(D) in the Bernoulli model, that is, we

prove Theorem 3.

We must compute the probability of the D-ball P(BD(Wk)). Consider first b = -00.

It is not hard to see the P(BD(Wk)) is minimized for Wk = Wrnin, where Wrnin consists of

symbols that appear with probability Prnin. Then
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If D > Pmax then the above sum tends to 1 as k ---+ 00, and, consequently, r-oo(D) = O.

Suppose then that 0 S; D S; Pmax. Then, the last term in the sum is the largest one.

Furthermore, by Stirling's formula for every x E (0,1) we have

(37)

Thus, for large k and D S; Pmax

and this leads to our formula on r-oo(D). The entropy roo(D) can be computed in a similar

manner.

In order to see (ii) it is enough to notice that Lemma 1(ii) and the above imply that for

D S; 1/2, P = q = 1/2 and -00 < b < 00, we have

h(D, 1/2) = roo(D) S; rb(D) S; r-oo(D) = h(D, 1/2) .

Now, let P =J. q and -00 < b < 00, b =J. O. From the definition of the expectation, for

Epb(BD(Xf)) we have

where i counts the number of ones in Xf, j stays for the overall number of mismatches

and £ is the number of disagreements among ones. Let us look first at the sum

s(k,i) =
lDkj rnin{i,j} (') (k ")?= L. ; ,=; pi+j-Uqk-i-j+U

J=O £=max{O,t+J-k} J

lDkj rnin{i,j}

L L r(k,i,j,£).
j=O £=max{O,i+j-k}

Since there are at most k2 terms in the sum, certainly we have

maxr(k,i,j,£) S; s(k,i) S; k2rn.axr(k,i,j,£).
J ~ J ~

(Note that all ratios which grows polynomially with k will disappear if we divide the loga

rithm of s(k, i) by k, thus they will not affect the value of rb(D).) Similarly,

mrx ( ~ ) p i q k - i i ( k , i ) S; Epb(BD(Xf)) S; kmrx (~)piqk-ii(k,i).
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Thus, if we use Stirling's formula (37) to estimate the binomial coefficients and set i = xk,

j = yk, .e = zk, we arrive at the following asymptotic formula for Epb(BD(Xf))

where A(x, D) C JR2 is defined as

A(x, D) = {(y, z) E JR2 : 0 S; y S; D, max{O, x + y - I} S; z S; min{x, y}} .

Consequently, for the entropy

(D)
= li -log Epb(BD(Xf)))

~ m kbk-+oo

we get the following formula

(ljb) min {xlog(xjp) + (1- x)log((l- x)jq)
O<x<l

b max {(x + y - 2z) log(p j q) + log q + x log x
A(x,D)

+ (1- x)log(l- x) - zlogz - (x - z)log(x - z)

(y - z) log(y - z) - (1 - x - y + z) 10g(1 - x - y + z)}} .

(38)

A simple algebra reveals that (18) follows from (38). Indeed, let us assume first that

D > 2pq. Then, the value of the maximum in (38) is 0 and is achieved for y - z = (1- x)p

and z = qx. Furthermore, the first two terms vanish for x = p. Hence, for such a D, we

have Tb(D) = 0 for every -00 < b < 00.

If D S; 2pq then the function which appears under the maximum in (38) grows with y,

so we must put y = D. Furthermore, easy calculations show that to choose an optimal

value of z one must solve the equation

(p - q)z2 + (p2 + (q - p)(x +D))z - xDq2 = 0 .

Thus, we should set z = F(x), where F is defined by (19), and (18) follows.

In order to get Tl(D) it is better to start directly from (38). As we have already observed,

the maximum is achieved for y = D. Hence

IlJ;?;X {2(x - z) log(pjq) +D log(pjq) + 2 log q - z log z

(x - z) log(x - z) - (D - z) 10g(D - z)

(1 - x - D + z) log(1 - x - D + z)} .
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It is convenient to maximize first with respect to x, setting x - z = p2(1 - D)/(p2 + q2),

and then with respect to z, putting z = D/2. Then, elementary calculations give rl(D) =

h(D,p2 +q2).

Finally, let us notice that the case when b = 0 can be easily deduced from (18). Indeed,

for b ---t 0 the sum of the first two terms x log(x / p) and (1 - x) log( (1 - x) / q) must vanish,

which is possible only for x = p. Thus, (20) follows.
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