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Abstract—several studies have suggested that by selecting 

relevant features for intrusion detection system, it is possible to 

considerably improve the detection accuracy and performance of 

the detection engine. Nowadays with the emergence of new 

technologies such as Cloud Computing or Big Data, large amount 

of network traffic are generated and the intrusion detection 

system must dynamically collected and analyzed the data 

produce by the incoming traffic. However in a large dataset not 

all features contribute to represent the traffic, therefore reducing 

and selecting a number of adequate features may improve the 

speed and accuracy of the intrusion detection system. In this 

study, a feature selection mechanism has been proposed which 

aims to eliminate non-relevant features as well as identify the 

features which will contribute to improve the detection rate, 

based on the score each features have established during the 

selection process. To achieve that objective, a recursive feature 

elimination process was employed and associated with a decision 

tree based classifier and later on, the suitable relevant features 

were identified. This approach was applied on the NSL-KDD 

dataset which is an improved version of the previous KDD 1999 

Dataset, scikit-learn that is a machine learning library written in 

python was used in this paper. Using this approach, relevant 

features were identified inside the dataset and the accuracy rate 

was improved. These results lend to support the idea that 

features selection improve significantly the classifier 

performance. Understanding the factors that help identify 

relevant features will allow the design of a better intrusion 

detection system. 
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intrusion detection system; NSL-KDD; scikit-learn 

I. INTRODUCTION 

With the recent advance in technologies where concepts 
like Cloud Computing, Big Data, and Social Media Network 
have emerged, our society produce enormous quantity of data. 
Finding useful information among this immense data 
generated by these technologies became critical for marketers, 
data scientist and even business corporate. With this amount 
of data transmitted over a network or internet, security 
becomes a major concern, although multiple intrusion 
prevention technologies have been built in the past decade to 
eliminate potential threats despite that, attacks still continue 
and increase in complexity, this is the reason there is a need of 
a mechanism to detect any suspicious or unwanted traffic 
which may cause damage on a particular network. 

This security mechanism can be implemented using an 
Intrusion Detection System (IDS) which can be describe as a 
collection of software or hardware device able to collect, 
analyze and detect any unwanted, suspicious or malicious 
traffic either on a particular computer host or network[1]. 
Therefore to achieve its task, an IDS should use some 
statistical or mathematical method to read and interpret the 
information it collects and subsequently reports any malicious 
activity to the network administrator [2]. 

There still exist one main issue regarding the actual 
intrusion detection technique that is the involvement of human 
interaction when it comes to label the traffic between an 
intrusion and a normal one, another major concern is the new 
challenge of “Big Data” and “Cloud Computing”. These two 
ubiquitous technologies produce a large amount of data that 
must be collected and analyzed by the intrusion detection 
engine dynamically and often the IDS needs to deal with a 
multi-dimensional data generated by these large quantities of 
data. It is necessary to consider that the intrusion dataset can 
be huge in size, not only the number of observations grown, 
but the number of observed attributes can also increase 
significantly and may generated a considerably amount of 
false positives results as it can contain many redundant or 
duplicate records [3]. 

A data clean process can require a tremendous human 
effort, which is an extensive time consuming and expensive 
[4]. A machine learning approach and data mining technique 
which is the application of machine learning methods to large 
database are widely known and used to reduce or eliminate the 
need of a human interaction. 

Machine learning helps to optimize performance criterion 
using example data or past experience using a computer 
program, models are defined with some parameters, and 
learning is the execution of the programming computer to 
optimize the parameters of the model using a training data. 
The model can be predictive to make predictions in the future, 
or descriptive to gain knowledge from data. To perform a 
predictive or descriptive task, machine learning generally use 
two main techniques: Classification and Clustering. In 
classification, the program must predict the most probable 
category, class or label for new observation into one or 
multiple predefined classes or label while clustering, the 
classes are not predefined during the learning process.  
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However if the purpose of the IDS is to differentiate 
between normal or intrusion traffic, classification is 
recommended and if we seeks to identify the type of intrusion, 
clustering can be more helpful [5]. 

However, a lot of researchers have suggested to use the 
KDD dataset to detect an attack [6][7] in the past. 
Unfortunately, these proposal have failed to ensure a good 
performance in terms of detection rate. Moreover those 
existing IDS aims to analyze all features which can result a 
misclassification of intrusion and quite amount of time when 
building the model, despite some concern and critic about the 
system evaluation of the KDD dataset [8], research still use it 
to test their model. Thus, in this paper a method has been 
suggested for selecting and identifying relevant features on the 
NSL-KDD dataset which is an improvement of the previous 
one [9]. 

The rest of this paper is divided as followed: Section II – 
Description of the NSL-KDD Dataset, Section III- Previous 
works, Section IV – Methodology, Section V- Experiment and 
Results and finally the Section VI- Conclusion and Further 
Works. 

II. DESCRIPTION OF NSL-KDD 

The KDD 1999 dataset was developed by the MIT Lincoln 
Labs [10] and was extensively used by researchers during the 
last decade. The entire dataset is very large in size and 
contains many attributes variables. Therefore to improve the 
machine learning computation, 10 % of it was extracted and 
adopted as training dataset in the intrusion detection process. 
However, some inherent drawback was made about this 
dataset [8][9]. The KDD 99 contains an important quantities 
of redundant records which has as consequence to prevent the 
learning algorithm to perform well. In addition, duplicate 
records found in the test dataset cause the evaluation result to 
be biased by the method used during the detection rates 
results. 

To resolve some issues found in the previous KDD 99, an 
improved version was created, the NSL KDD dataset which 
can be available at [11]. The reason behind the use of this 
dataset has been reported at [9] among them the following are 
relevant to mention: 

 Elimination of redundant records in the training set will 
help our classifier to be unbiased towards more 
frequent records. 

 No presence of duplicate records in the test set, 
therefore, the classifier performance will not be biased 
by the techniques which have better detection rates on 
the frequent records. 

 The training and test set contains both a reasonable 
numbers of instances which is affordable for 
experiments on the entire set without the need to 
randomly choose a small portion. 

The NSL KDD dataset contains four main files as describe 
in the Table 1. 

TABLE I.  NSL KDD DATASET DESCRIPTION 

Name of the Files Description 

KDDTrain+.TXT 
It is the full training set including 
attack-type labels and difficulty 

level in csv format 

KDDTest+.TXT 

It is the full test set including 

attack-type labels and difficulty 
level in csv format 

KDDTrain+_20Percent.TXT 20% subset of the KDDTrain+.txt 

KDDTest-21.TXT 

A subset of the KDDTest+.txt file 

which does not include records 
with difficulty level of 21 out of 

21 

In this paper, the KDDTain+.TXT and the 
KDDTest+.TXT which consists of 126,620 and 22,850 
records respectively were used. The training and test set 
contain both 41 features labeled as normal traffic or specific 
attack types, all these features are subdivided in 4 categories 
[12][13]: basic features, time-based traffic features, content 
features and host-based traffic features. 

All categories are described below: 

 Basic features: It contains all features which derived 
from TCP/IP connection such as Protocol_type, 
Service, duration and etc. 

 Time-based traffic features: It is used to capture those 
features which are mature over a 2 second temporal 
window (e.g. count, srv_count, Rerror_rate and etc.) 

 Content features: Those features use domain 
knowledge to access the payload of the original TCP 
packets (e.g. hot, num_root, is_guest_login and etc.) 

 Host-based traffic features: all attacks which span 
longer than 2 second intervals that have the same 
destination host as the current connection are access 
using these features (e.g. dst_host_count, 
dst_host_srv_count and etc.) 

The classes or labels in the NSL KDD dataset are divided 
into four categories which represent the attack class and one as 
normal traffic [12]: 

1) Denial of Service (DoS): This attack aims to block or 

restrict a computer system or network resources or services. 

2) Probe: here the intruder aims to scan for information 

or vulnerabilities in a network or computer system which later 

on will be used to launch attacks. 

3) Remote to Local (R2L): Here the intruder gain 

remotely unauthorized access to a computer system over a 

network by sending data packet to that system. 

4) User to Root (U2R): Here the intruder gains access to 

a user with normal privilege and later on try to access a user 

with administrator or root privilege. 
The Table 2 and 3 describe and explain the analysis of the 

attack classes and types in the NSL_KDD dataset in details 
and shows the number of individual instances and records, 
both in the training and testing set. 
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TABLE II.  NUMBER OF INSTANCES IN THE TRAINING SET 

Attack Classes or 

Labels 

Attack types (number of 

instances) 
Total of instances 

 
 

DoS 

back (956), land(18), 

neptune(41,214), 

pod(201), smurf(2,646), 
teardrop(892) 

 
 

45,927 

 

Probe 

satan(3,633), 

ipsweep(3,599), 

nmap(1,493), portsweep 
(2,931) 

 

11,656 

 

R2L 

guess_passwd(53), 

ftp_write(8), imap(658), 
phf(4), multihop(7), 

warezmaster(20), 

warezclient(890), spy(2) 

 

1,642 

 
U2R 

buffer_overflow(30), 

loadmodule(9), 

rootkit(10), perl(3) 

 
52 

Grand Total                                         59,277 

The normal traffic contains 67,343 instances which brings 
a total of 126,620 instances in the training set. 

TABLE III.  NUMBER OF INSTANCES IN THE TEST SET 

Attack class or 
label 

Attack types (number of 
instances) 

Total of instances 

 
 

 

 
DoS 

back(359), land(7), 

neptune(4,657), 
apache2(737), pod(41), 

smurf(665), teardrop(12), 

udpstorm(2), 
processtable(685), 

worm(2), mailbomb(293) 

 
 

 

 
7,460 

 

 
Probe 

Satan(735), ipsweep(141), 

nmap(73), portsweep(157), 
mscan(996), saint(319) 

 

 
2,421 

 

 
 

 

 
R2L 

guess_passwd(1,231), 

ftp_write(3), imap(307), 
xsnoop(4), phf(2), 

multihop(18), 

warezmaster(944), 
xlock(9), snmpguess(331), 

snmpgetattack(178), 

httptunnel(133), 
sendmail(14), named(17) 

 

 
 

 

 
3,191 

 
 

U2R 

Buffer_overflow(20), 

loadmodule(2), xterm(13), 

rootkit(13), perl(2), 
sqlattack(2), ps(15) 

 
 

67 

Grand Total                                            13,139 

The normal traffic contains 9,711 instances which brings a 
total of 22,850 instances in the test set. More details on the 
features names and descriptions can be found at [13] 

III. PREVIOUS WORK 

Most of the proposed research system could effectively 
utilize feature selection process to improve detection rate of 
their system and minimize considerably the false alarm rate. 
Research usually missed to detect new intrusions, especially 
when the intrusion mechanism used differed from the previous 
intrusion. 

In 2009, Shi-Jinn [14] works revealed that not all research 
carried out feature selection before they trained their classifier, 
however based on [15][16], this processes takes a significant 

part to different types of intrusion identification and features 
can be excluded without the performance of the IDS to be 
dropped. Juan Wang et al., in their work [17] proposed a 
decision tree based algorithm for intrusion detection, even if 
during their experiments the C4.5 algorithm was achieving a 
good detection accuracy, the error rate was remaining 
identical. 

Back in 2010, Farid et al. [18], used a decision tree based 
learning algorithm to retrieve important features set from the 
training dataset for intrusion detection. Their techniques found 
relevant features using a combination of ID3 and C4.5 
decision tree algorithms. They assigned a weight value to each 
features. The weight is determined where the minimum depth 
of the decision tree at which each feature is checked inside the 
tree and the weights of features that do not appear in the 
decision tree are allocated a value of zero. Ektefa et al. [19], 
used different data mining method for intrusion detection and 
they found that the decision tree classifier was performing 
better than the SVM learning algorithm. 

Geetha Ramani et al. [20] used in their paper in 2011, a 
statistical method for analyzing the KDD 99 dataset. They 
identified the important features by studying the internal 
dependences between features. 

In their paper proposed in 2012, S. Mukherjee and N. 
Sharma [21] designed a technique called Feature- Vitality 
Based Reduction Method (FVBRM) using a Naïve Bayes 
classifier. FVBRM identifies important features by using a 
sequential search approach, starting with all features, one 
feature is removed at a time until the accuracy of the classifier 
reaches some threshold. Their method shows an improvement 
of the classification accuracy but takes more time and still 
complex when detecting the U2R attacks. 

In 2013, support vector machine classifier was used by 
Yogita B. Bhavsar et al. [22], for intrusion detection using the 
NSL KDD dataset. The drawback with this technique is the 
extensive training time required by the classifier, so to reduce 
the time, they applied a radial basis function (RBF) to reduce 
the extensive time. 

In 2014, O. Y. Al-Jarrah et al. [23], used an ensembles of 
decision-tree based voting algorithm with forward selection / 
backward elimination feature raking techniques using a 
Random Forest Classifier. Their method shows an 
improvement of detection accuracy when selected important 
features and it can be suitable for large-scale network. 

N. G. Relan and D. R. Patil [24] in their papers have tested 
two decision tree approach to classify attacks using the NSL 
KDD dataset. They have found that the C4.5 with pruning 
offers better accuracy than the C4.5 without pruning and it 
was necessary to reduce the number of features because using 
all features degrades the performance of the classifier also its 
time consuming. After analyzing some previous works, the 
reasons most of researchers are interested in selecting and 
identifying relevant features are described as follow: 

 In most learning algorithms, the complexity depends 
on the number of input dimensions, d, as well as on the 
size of the data sample, N, and for reduced memory 
and computation, researchers are interested in selecting 
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relevant and important feature to reduce the 
dimensionality of the problem. Decreasing d also 
decreases the complexity of the inference algorithm 
during testing. 

 When an input is decided to be unnecessary, the cost of 
extracting it is saved. 

 Simpler models are more robust on small datasets. 
Simpler models have less variance, that is, they vary 
less depending on the particulars of a sample, including 
noise, outliers, and so forth. 

 When data can be explained with fewer features, better 
idea about the process that underlies the data can be 
obtained and this allows knowledge extraction. 

When data can be represented in a few dimensions without 
loss of information, it can be plotted and analyzed visually for 
structure and outliers. 

IV. METHODOLOGY 

A. Scikit-Learn Description 

As stated before, during this experiment scikit-learn [25] 
was used, which is a machine learning library written in 
python. Most of the learning algorithm implement in scikit-
learn required data to be stored in a two-dimensional array or 
matrix. The size of the expected matrix is [samples, features]. 

The first parameter defines the number of samples, each 
sample is an item to be processed and the second parameter is 
the number of features that can be used to describe each item 
in a quantitative manner, generally real-valued but may be 
Boolean or discrete-valued in some cases. Data in scikit-learn 
is represented as a feature matrix and a label vector. Fig. 1 
shows the data representation in scikit-learn. 

 
Fig. 1. Data representation in scikit-learn 

Here, N are samples and D features 

B. Expriment Methodology 

The experiment methodology used in this paper, is 
illustrated in the Fig. 2 and describe as follow: 

Step 1: Data Cleaning and Pre-processing 

Basically in this step the dataset has to go through a 
cleaning process to remove duplicate records, as the NSL 
KDD dataset was employed which has already been cleaned, 
this step is not anymore required. Next a Pre-processing 
operation has to be taken in place because the dataset contains 
numerical and non-numerical instances. Generally the 

estimator (classifier) defines in the scikit-learn works well 
with numerical inputs, so a one-of-K or one-hot encoding 
method is used to make that transformation. This technique 
will transforms each categorical feature with m possible inputs 
to n binary features, with one active at the time only 

 
Fig. 2. Experiment methodology 

Step 2: Features scaling 

Features scaling is a common requirement of machine 
learning methods, to avoid that features with large values may 
weight too much on the final results. For each feature, 
calculate the average, subtract the mean value from the feature 
value, and divide the result by their standard deviation. 

After scaling, each feature will have a zero average, with a 
standard deviation of one. 

Step 3: Features Selection 

Feature selection is used to eliminate the redundant and 
irrelevant data. It is a technique of selecting a subset of 
relevant features that fully represents the given problem 
alongside a minimum deterioration of presentation [26], two 
possible reason were analyzed why it would be recommended 
to restrict the number of features: 

Firstly, it is possible that irrelevant features could suggest 
correlations between features and target classes that arise just 
by chance and do not correctly model the problem. This aspect 
is also related to over-fitting, usually in a decision tree 
classifier. Secondly, a large number of features could greatly 
increase the computation time without a corresponding 
classifier improvement. 

The feature selection process starts with a univariate 
feature selection with ANOVA F-test for feature scoring, 
univariate feature selection analyzes each feature individually 
to determine the strength of the relationship of the feature with 
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labels. The SelectPercentile method in the 
sklearn.feature_selection module were used, this method 
select features based on a percentile of the highest scores. 
Once, the best subset of features were found, a recursive 
feature elimination was applied which repeatedly build a 
model, placing the feature aside and then repeating the process 
with the remained features until all features in the dataset are 
exhausted. As such, it is a good optimization for finding the 
best performing subset of features. The idea is to use the 
weights of a classifier to produce a feature ranking. 

Step 4: Model 

Here, a decision tree model was built to partition the data 
using information gain until instances in each leaf node have 
uniform class labels. This is a very simple but yet an effective 
hierarchical method for supervised learning (classification or 
regression) whereby the local space (region) is recognized in a 
sequence of repetitive splits in a reduced number of steps 
(small). At each test, a single feature is used to split the node 
according to the feature's values. If after the split, for every 
branches, all the instances selected belong to the similar class, 
the split is considered complete or pure. 

One of the possible method to measure a good split is 
entropy or information gain. Entropy is an information-
theoretic measure of the ‘uncertainty’ found in a training set, 
because of the existence of more than one possible 
classification. The training set entropy is represented by H. It 
is calculated in ‘bits’ of information and it is described as: 

                    H = - ∑                 
 
     

The generation process of a decision tree done by 
recursively splitting on features is equivalent to dividing the 
original training set into smaller sets recursively until the 
entropy of every one of these subsets is zero (i.e everyone will 
have instances from a single class target). 

A Decision Tree is made up internal decision nodes and 
terminal leaves. A test function is implemented by each 
decision node with a discrete results labelling the branches. 
Providing an input, at every node, a test is constructed and 
based on the outcome, one of the branches will be considered. 
Here the learning algorithm starts at the root and until a leaf 
node is reached, the process will be done recursively at which 
moment the value represented in the leaf node is the output. 
Every leaf node possesses an outcomes label, which it is the 
class target in case of classification and numeric value for 
regression. A leaf node can describe a localized space or 
region where instances finding in this input space (region) 
possess the same labels for classification and similar numeric 
value for regression 

Step 5: Prediction and Evaluation 

The test data was used to make prediction of our model 
and for evaluation, multiple settings was considered such as 
the accuracy score, precision, recall, f-measure and a 
confusion matrix. A 10-fold cross-validation was performed 
during all the process. 

V. EXPERIMENT AND RESULTS 

A. Experiment 

The Decision Tree learning algorithm was used in the 
experiment. Decision Tree tends sometimes to over-fitting, so 
to find the best parameters to fit the model, an exhaustive grid 
search parameters tuning was computed and information gain 
is used to select features. Hence, building from the training 
data, a tree was obtained with its leaves being class labels. 
When building a decision tree, only one feature is used at a 
time to split the node and partition the data. Hence, features 
are used in a univariate manner. 

After obtaining the adequate number of features during the 
univariate selection process, a recursive feature elimination 
(RFE) was operated with the number of features passed as 
parameter to identify the features selected. During the RFE 
process, first, the classifier is trained on the original set of 
features and weights are attributed to each features. Then, 
features whose absolute weights are the smallest are pruned 
from the current set features. That process is recursively 
repeated on the pruned set until the desired number of features 
to choose is finally reached 

B. Discussions and Results 

Feature selection is utilized to discriminate the redundant 
and irrelevant data. It is a technique of selecting a subset of 
relevant attributes that completely represent the given problem 
alongside a minimum deterioration of presentation. As 
consequence, working with a small number of feature may 
bring better results. 

A general technique to achieve feature selection will be to 
retrieve the smallest set of features that can exactly 
characterize the training data. If an attribute always coincides 
with the label class (that is, it is an exact predictor), it is 
enough to characterize the data. On the other hand, if an 
attribute always has the same value, its prediction power will 
decrease and can be very low. A recursive feature elimination 
method which repeatedly build a model, placing the feature 
aside and then repeating the process with the remained 
features until all features in the dataset are exhausted. The 
objective of the recursive feature is to retrieve features by 

recursively keeping smaller and smaller group of features. 

A good feature ranking criterion does not necessarily 
produce a good feature subset generation. The some criteria 
estimate the effect of removing one feature at a time based on 
the goal to achieve. They become very sub-optimal when it 
comes to removing several features at a time, which is 
necessary to obtain a small feature subset. This problem can 
be overcome by using the following iterative procedure that is 
Recursive Feature Elimination: 

 Train the classifier (optimize the weights of features 
with respect to criterion). 

 Compute the ranking criterion for all features. 

 Remove the feature with smallest ranking criterion. 
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Firstly, the classifier is trained on the initial group of 
attributes and weights are assigned on each attributes. Then, 
absolute weights of some attributes that are the smallest are 
pruned from the current sets of attributes. That technique is 
recursively repeated on the pruned set until the desired 
number of attributes to select is eventually reached. As such, it 
is a good optimization for finding the best performing subset 
of features. In should be noted that RFE has no effect on 
correlation methods since the ranking criterion is computed 
with information about a single feature. 

An analysis was performed to determine the accuracy of 
our estimator after selecting relevant features as illustrate in 
the Fig. 3, 4, 5 and 6 and the detail is summarized in the Table 
4. When comparing the result alongside the performance 
evaluation with all features describe in the Table 5, a 
significant improvement of the overall performance of the 
proposed model has been observed. 

 
Fig. 3. DOS Recursive Feature Elimination 

 

Fig. 4. Probe Recursive Feature Elimination 

 
Fig. 5. R2L Recursive Feature Elimination 

 
Fig. 6. U2R Recursive Feature Elimination 

TABLE IV.  PERFORMANCE EVALUATION WITH SELECTED FEATURES 

  
 

 
 

 

99.90 99.69 99.79 99.74 12 Dos 

99.80 99.37 99.37 99.37 15 Probe 

99.88 97.40 97.41 97.40 13 R2L 

99.95 99.70 99.69 99.70 11 U2R 

TABLE V.  PERFORMANCE EVALUATION WITH 41 FEATURES 

    
 

 

99.66 99.505 99.71 99.61 41  Dos 

99.57 99.04 98.84 98.94 41 Probe 

97.03 95.83 95.59 95.71 41 R2L 

99.64 99.66 99.61 99.65 41 U2R 
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Table 6 shows a 2x2 confusion matrix after features 
selection on the dataset for a combination of two target classes 
(normal class and an attack class). 

TABLE VI.  DETAILS CONFUSION MATRIX AFTER FEATURES SELECTION 

 Predicted Label  

Confusion Matrix Normal DoS  

 

True 

Label 

Normal 9676 25 
Positive predictive 

value 

99.74 

% 

DoS 15 7445 
Negative predictive 

value 

99.79 

% 

 Predicted Label  

Confusion Matrix Normal Probe  

 

True 

Label 

Normal 9652 59 
Positive predictive 

value 

99.39 

% 

Probe 30 2391 
Negative predictive 

value 

98.76 

% 

 Predicted Label  

Confusion Matrix Normal R2L  

 

True 

Label 

Normal 9594 117 
Positive predictive 

value 

98.79 

% 

R2L 87 2798 
Negative predictive 

value 

96.98 

% 

 Predicted Label  

Confusion Matrix Normal U2R  

 

True 

Label 

Normal 9683 28 
Positive predictive 

value 

99.71 

% 

U2R 7 60 
Negative predictive 

value 

89.53 

% 

 
Fig. 7. Confusion Matrix 

TABLE VII.  CONFUSION MATRIX DETAILS 

99.84 2.368e-03    1.544e-03    1.153e-02 4.119e-04 

3.485e-03    99.691 9.38337802e-04    6.702e-04 0 

8.674e-03    2.891e-03    99.45 2.891e-03 4.130e-04 

4.540e-02 1.039e-03    2.079e-03 96.10 6.239e-03 

5.970e-02 0 0 2.089e-01 87.5 

The completed confusion matrix as illustrate in the Figure 
7 and Table 7 show the number of correct and incorrect 
predictions made by the classification model compared to the 
actual outcomes in the dataset. 

The Table 8 present the relevant features after a recursive 
features elimination was operated on the NSL KDD dataset. 
Features are retrieved based on their rank, relevant (i.e., 
estimated best) features are attributed a rank 1. During the 
selection process, some features have participated in 
improving the accuracy of the model, which it is called the 
important features selected. The important features or 
attributes are calculated as the reduction of the criterion 
brought by that attributes. Each time a split of a node is 
performed on a particular attributes, the criterion for the two 
children nodes is inferior to their parent. 

TABLE VIII.  RELEVANT FEATURES 

Target Features selected 

Dos 

diff_srv_rate,dst_bytes,dst_host_serror_rate,dst_host_sr

v_serror_rate ,flag_S0, 

rerror_rate,same_srv_rate,service_ecr_i,service_http,ser
vice_private,src_bytes, 

 wrong_fragment' 

Probe 

src_bytes, service_http, dst_bytes, service_ftp_data, 

dst_host_rerror_rate, service_smtp,service_finger, 

service_private , rerror_rate ,  dst_host_diff_srv_rate ,  
dst_host_same_srv_rate ,  service_telnet ,  

dst_host_count ,  service_auth ,  count  

R2l 

 dst_bytes , dst_host_same_src_port_rate , 

dst_host_same_srv_rate ,  dst_host_srv_count ,  

dst_host_srv_diff_host_rate ,  duration ,  hot ,  
num_access_files ,  num_fail_login ,  num_root ,  

service_ftp_data ,  service_r2l4 ,  src_bytes  

U2r 

 src_bytes , service_other , service_ftp_data ,  root_shell 

, num_shells ,num_file_creations ,  hot , 

dst_host_same_srv_rate ,  dst_host_count ,  dst_bytes ,  
count  

The Figure 8, 9, 10, 11 illustrate the subset features after 
the feature elimination process has been performed, the aim of 
this process is to elimination non-relevant features and only 
print out the relevant or important one. 
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Fig. 8. DOS Class Features Selected and Important 

 
Fig. 9. Probe Class Features Selected and Important 

The analysis for feature selection has been done in terms 
of the class that achieved good levels of entropy or Gini index 
from others in the training set and the analysis of feature 
relevancy in the training set. The importance of a feature is 
computed as the (normalized) total reduction of the criterion 
brought by that feature. From the Figure 8, 9, 10, 11 and the 
Table 7 shows that the most relevant features for Dos, Probes, 
R2L and U2R are respectively “same_srv_rate”, “src_bytes”, 
“dst_host_srv_count” and “root_shell” 

 
Fig. 10. R2L Class Features Selected and Important 

 

Fig. 11. U2R Class Features Selected and Important 

With the improvement the accuracy, the proposed model 
demonstrated that it performs well after selecting relevant 
features. And from the Figure 12, it is evident that the time 
taken to build classifier is decreased through feature selection, 
especially the proposed approach. Building Decision Tree 
classifier on the dataset with features selected by our approach 
takes only 0.956 seconds for DoS attack class, which is faster 
than building on the dataset with all of the 41 features by 
14.541s as shown on Table 9. 
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Fig. 12. Execution time of the classifier 

TABLE IX.  TIME TAKEN TO BUILD CLASSIFIER ON EACH FEATURE 

SUBSETS 

Attack Classes With all Features With selected Features 

Dos 15.5 seconds  0.959 seconds 

Probe 3.48 seconds 0.868 seconds 

R2L 3.31seconds 0.929 seconds 

U2R 2.10 seconds 0.530 seconds 

This result provided new insight using a classification 
learning algorithm and reduction technique to selection 
relevant and important feature in order to improve the 
accuracy detection rate of the system and to identify possible 
features which may contribute to this improvement. 

As our goal was to determine whether or not a features 
selection process will improve the accuracy detection of a 
model on different set of attacks class found in the dataset 
used for our experiment, each set of attacks class were treated 
individually as they present different characteristics and are 
different by nature. 

This decision was also made in order to identify all 
relevant features for each different attacks class and to 
compare the accuracy improvement from the original set of 
features. As relevant features which are appropriated to 
classify those different attacks class have been found, the 
result analysis has shown that the performance of the model 
has really been improved.  

As an example the R2L attack accuracy detection has been 
improvement from 97.03% to 99.88% as well as its execution 
time as shown on the Table 9. The Table 10 shows a 
comparison between our method and some previous one. 

TABLE X.  COMPARISON WITH OTHER FEATURES SELECTION 

TECHNIQUES 

Author 
Method 

used 

Classifi

er used 

Accuracy for Attack Classes 

(Nbr of selected features) 

DOS 
Prob

e 
R2L U2R 

(Dhanabal 

& 

Shantharaja

h 2015) 

[27] 

Correlatio

n based 

Feature 

Selection 

method 

J48 
99.1 

% (6) 

98.9 

% 

(6) 

97.9 

% (6) 

98.7 

%(6) 

(Senthilnay

aki et al. 

2015) [28] 

Optimal 

Genetic 

Algorithm 

SVM 

99.15 

% 

(10) 

99.0

8 % 

(10) 

96.50 

% 

(10) 

97.0

3 % 

(10) 

(Zhang & 

Wang 

2013) [29] 

Sequential 

search 

Naïve 

Bayes 

99.3 

% 

(11) 

97.4 

% 

(11) 

95.0 

% 

(11) 

59.6 

% 

(11) 

(Alazab et 

al. 2012) 

[30] 

Informatio

n gain 
J48 

99.7 

% 

(12) 

97.8 

% 

(12) 

91.3 

% 

(12) 

97.2

% 

(12) 

(Mukherjee 

& Sharma 

2012) [31] 

Feature 

vitality 

based 

Method 

Naïve 

Bayes 

98.7% 

(24) 

98.8

% 

(24) 

96.1

% 

(24) 

64% 

(24) 

(Parsazad 

et al. 2012) 

[32] 

Correlatio

n 

Coefficien

t 

K-

nearest 

neighbo

r  

98.34 

% 

(30) 

98.3

8 % 

(30) 

97.03 

% 

(30) 

83.3

3 % 

(30) 

(Parsazad 

et al. 2012) 

[32] 

Fast 

feature 

Reduction 

K-

nearest 

neighbo

r 

98.28 

% 

(10) 

98.5

0 % 

(10) 

97.79 

% 

(20) 

82.0

0 % 

(10) 

(Parsazad 

et al. 2012) 

[32] 

Least 

Square 

Regressio

n Error 

K-

nearest 

neighbo

r 

98.34 

% 

(30) 

98.9

8 % 

(20) 

97.62

% 

(20) 

82.6

1 % 

(20) 

(Parsazad 

et al. 2012) 

[32] 

Maximal 

Informatio

n 

Compressi

on Index 

K-

nearest 

neighbo

r 

98.03 

% 

(30) 

98.9

2 % 

(10) 

98.05

% 

(20) 

90.7

0 % 

(20) 

The 

proposed 

method 

Recursive 

Feature 

Eliminatio

n 

Decisio

n Tree 

Classifi

er 

99.90

% 

(12) 

99.8

0 % 

(15) 

99.88 

% 

(13) 

99.9

5 % 

(11) 

VI. CONCLUSION 

In this paper, the significance of using a set of relevant 
features with an adequate classification learning algorithm for 
modelling an IDS has been demonstrated.  
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A presentation and proposition of a feature selection 
method which consist of a univariate features selection 
associated with a recursive feature elimination using a 
decision tree classifier to identify important features have been 
done. This process repeatedly builds a model placing the 
feature aside and then repeating the process with the 
remaining features until all features present in the dataset are 
exhausted. The evaluation the effectiveness of the method 
using different classification metric measurement has been 
made and it has been proved that by reducing the number of 
feature, the accuracy of the model was improved. The feature 
selection method proposed in this paper had achieved a high 
result in term of accuracy and features were identified based 
on information gain and ranking technique. 
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