
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

148 | P a g e

www.ijacsa.thesai.org

A Subset Feature Elimination Mechanism for

Intrusion Detection System

Herve Nkiama

Faculty of Computing

University Technology Malaysia

Skudai 81310, Johor Barhu -

Malaysia

Syed Zainudeen Mohd Said

Faculty of Computing

University Technology Malaysia

Skudai 81310, Johor Barhu -

Malaysia

Muhammad Saidu

Faculty of Computing

University Technology Malaysia

Skudai 81310, Johor Barhu –

Malaysia

Abstract—several studies have suggested that by selecting

relevant features for intrusion detection system, it is possible to

considerably improve the detection accuracy and performance of

the detection engine. Nowadays with the emergence of new

technologies such as Cloud Computing or Big Data, large amount

of network traffic are generated and the intrusion detection

system must dynamically collected and analyzed the data

produce by the incoming traffic. However in a large dataset not

all features contribute to represent the traffic, therefore reducing

and selecting a number of adequate features may improve the

speed and accuracy of the intrusion detection system. In this

study, a feature selection mechanism has been proposed which

aims to eliminate non-relevant features as well as identify the

features which will contribute to improve the detection rate,

based on the score each features have established during the

selection process. To achieve that objective, a recursive feature

elimination process was employed and associated with a decision

tree based classifier and later on, the suitable relevant features

were identified. This approach was applied on the NSL-KDD

dataset which is an improved version of the previous KDD 1999

Dataset, scikit-learn that is a machine learning library written in

python was used in this paper. Using this approach, relevant

features were identified inside the dataset and the accuracy rate

was improved. These results lend to support the idea that

features selection improve significantly the classifier

performance. Understanding the factors that help identify

relevant features will allow the design of a better intrusion

detection system.

Keywords—classification; decision tree; features selection;

intrusion detection system; NSL-KDD; scikit-learn

I. INTRODUCTION

With the recent advance in technologies where concepts
like Cloud Computing, Big Data, and Social Media Network
have emerged, our society produce enormous quantity of data.
Finding useful information among this immense data
generated by these technologies became critical for marketers,
data scientist and even business corporate. With this amount
of data transmitted over a network or internet, security
becomes a major concern, although multiple intrusion
prevention technologies have been built in the past decade to
eliminate potential threats despite that, attacks still continue
and increase in complexity, this is the reason there is a need of
a mechanism to detect any suspicious or unwanted traffic
which may cause damage on a particular network.

This security mechanism can be implemented using an
Intrusion Detection System (IDS) which can be describe as a
collection of software or hardware device able to collect,
analyze and detect any unwanted, suspicious or malicious
traffic either on a particular computer host or network[1].
Therefore to achieve its task, an IDS should use some
statistical or mathematical method to read and interpret the
information it collects and subsequently reports any malicious
activity to the network administrator [2].

There still exist one main issue regarding the actual
intrusion detection technique that is the involvement of human
interaction when it comes to label the traffic between an
intrusion and a normal one, another major concern is the new
challenge of “Big Data” and “Cloud Computing”. These two
ubiquitous technologies produce a large amount of data that
must be collected and analyzed by the intrusion detection
engine dynamically and often the IDS needs to deal with a
multi-dimensional data generated by these large quantities of
data. It is necessary to consider that the intrusion dataset can
be huge in size, not only the number of observations grown,
but the number of observed attributes can also increase
significantly and may generated a considerably amount of
false positives results as it can contain many redundant or
duplicate records [3].

A data clean process can require a tremendous human
effort, which is an extensive time consuming and expensive
[4]. A machine learning approach and data mining technique
which is the application of machine learning methods to large
database are widely known and used to reduce or eliminate the
need of a human interaction.

Machine learning helps to optimize performance criterion
using example data or past experience using a computer
program, models are defined with some parameters, and
learning is the execution of the programming computer to
optimize the parameters of the model using a training data.
The model can be predictive to make predictions in the future,
or descriptive to gain knowledge from data. To perform a
predictive or descriptive task, machine learning generally use
two main techniques: Classification and Clustering. In
classification, the program must predict the most probable
category, class or label for new observation into one or
multiple predefined classes or label while clustering, the
classes are not predefined during the learning process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

149 | P a g e

www.ijacsa.thesai.org

However if the purpose of the IDS is to differentiate
between normal or intrusion traffic, classification is
recommended and if we seeks to identify the type of intrusion,
clustering can be more helpful [5].

However, a lot of researchers have suggested to use the
KDD dataset to detect an attack [6][7] in the past.
Unfortunately, these proposal have failed to ensure a good
performance in terms of detection rate. Moreover those
existing IDS aims to analyze all features which can result a
misclassification of intrusion and quite amount of time when
building the model, despite some concern and critic about the
system evaluation of the KDD dataset [8], research still use it
to test their model. Thus, in this paper a method has been
suggested for selecting and identifying relevant features on the
NSL-KDD dataset which is an improvement of the previous
one [9].

The rest of this paper is divided as followed: Section II –
Description of the NSL-KDD Dataset, Section III- Previous
works, Section IV – Methodology, Section V- Experiment and
Results and finally the Section VI- Conclusion and Further
Works.

II. DESCRIPTION OF NSL-KDD

The KDD 1999 dataset was developed by the MIT Lincoln
Labs [10] and was extensively used by researchers during the
last decade. The entire dataset is very large in size and
contains many attributes variables. Therefore to improve the
machine learning computation, 10 % of it was extracted and
adopted as training dataset in the intrusion detection process.
However, some inherent drawback was made about this
dataset [8][9]. The KDD 99 contains an important quantities
of redundant records which has as consequence to prevent the
learning algorithm to perform well. In addition, duplicate
records found in the test dataset cause the evaluation result to
be biased by the method used during the detection rates
results.

To resolve some issues found in the previous KDD 99, an
improved version was created, the NSL KDD dataset which
can be available at [11]. The reason behind the use of this
dataset has been reported at [9] among them the following are
relevant to mention:

 Elimination of redundant records in the training set will
help our classifier to be unbiased towards more
frequent records.

 No presence of duplicate records in the test set,
therefore, the classifier performance will not be biased
by the techniques which have better detection rates on
the frequent records.

 The training and test set contains both a reasonable
numbers of instances which is affordable for
experiments on the entire set without the need to
randomly choose a small portion.

The NSL KDD dataset contains four main files as describe
in the Table 1.

TABLE I. NSL KDD DATASET DESCRIPTION

Name of the Files Description

KDDTrain+.TXT
It is the full training set including
attack-type labels and difficulty

level in csv format

KDDTest+.TXT

It is the full test set including

attack-type labels and difficulty
level in csv format

KDDTrain+_20Percent.TXT 20% subset of the KDDTrain+.txt

KDDTest-21.TXT

A subset of the KDDTest+.txt file

which does not include records
with difficulty level of 21 out of

21

In this paper, the KDDTain+.TXT and the
KDDTest+.TXT which consists of 126,620 and 22,850
records respectively were used. The training and test set
contain both 41 features labeled as normal traffic or specific
attack types, all these features are subdivided in 4 categories
[12][13]: basic features, time-based traffic features, content
features and host-based traffic features.

All categories are described below:

 Basic features: It contains all features which derived
from TCP/IP connection such as Protocol_type,
Service, duration and etc.

 Time-based traffic features: It is used to capture those
features which are mature over a 2 second temporal
window (e.g. count, srv_count, Rerror_rate and etc.)

 Content features: Those features use domain
knowledge to access the payload of the original TCP
packets (e.g. hot, num_root, is_guest_login and etc.)

 Host-based traffic features: all attacks which span
longer than 2 second intervals that have the same
destination host as the current connection are access
using these features (e.g. dst_host_count,
dst_host_srv_count and etc.)

The classes or labels in the NSL KDD dataset are divided
into four categories which represent the attack class and one as
normal traffic [12]:

1) Denial of Service (DoS): This attack aims to block or

restrict a computer system or network resources or services.

2) Probe: here the intruder aims to scan for information

or vulnerabilities in a network or computer system which later

on will be used to launch attacks.

3) Remote to Local (R2L): Here the intruder gain

remotely unauthorized access to a computer system over a

network by sending data packet to that system.

4) User to Root (U2R): Here the intruder gains access to

a user with normal privilege and later on try to access a user

with administrator or root privilege.
The Table 2 and 3 describe and explain the analysis of the

attack classes and types in the NSL_KDD dataset in details
and shows the number of individual instances and records,
both in the training and testing set.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

150 | P a g e

www.ijacsa.thesai.org

TABLE II. NUMBER OF INSTANCES IN THE TRAINING SET

Attack Classes or

Labels

Attack types (number of

instances)
Total of instances

DoS

back (956), land(18),

neptune(41,214),

pod(201), smurf(2,646),
teardrop(892)

45,927

Probe

satan(3,633),

ipsweep(3,599),

nmap(1,493), portsweep
(2,931)

11,656

R2L

guess_passwd(53),

ftp_write(8), imap(658),
phf(4), multihop(7),

warezmaster(20),

warezclient(890), spy(2)

1,642

U2R

buffer_overflow(30),

loadmodule(9),

rootkit(10), perl(3)

52

Grand Total 59,277

The normal traffic contains 67,343 instances which brings
a total of 126,620 instances in the training set.

TABLE III. NUMBER OF INSTANCES IN THE TEST SET

Attack class or
label

Attack types (number of
instances)

Total of instances

DoS

back(359), land(7),

neptune(4,657),
apache2(737), pod(41),

smurf(665), teardrop(12),

udpstorm(2),
processtable(685),

worm(2), mailbomb(293)

7,460

Probe

Satan(735), ipsweep(141),

nmap(73), portsweep(157),
mscan(996), saint(319)

2,421

R2L

guess_passwd(1,231),

ftp_write(3), imap(307),
xsnoop(4), phf(2),

multihop(18),

warezmaster(944),
xlock(9), snmpguess(331),

snmpgetattack(178),

httptunnel(133),
sendmail(14), named(17)

3,191

U2R

Buffer_overflow(20),

loadmodule(2), xterm(13),

rootkit(13), perl(2),
sqlattack(2), ps(15)

67

Grand Total 13,139

The normal traffic contains 9,711 instances which brings a
total of 22,850 instances in the test set. More details on the
features names and descriptions can be found at [13]

III. PREVIOUS WORK

Most of the proposed research system could effectively
utilize feature selection process to improve detection rate of
their system and minimize considerably the false alarm rate.
Research usually missed to detect new intrusions, especially
when the intrusion mechanism used differed from the previous
intrusion.

In 2009, Shi-Jinn [14] works revealed that not all research
carried out feature selection before they trained their classifier,
however based on [15][16], this processes takes a significant

part to different types of intrusion identification and features
can be excluded without the performance of the IDS to be
dropped. Juan Wang et al., in their work [17] proposed a
decision tree based algorithm for intrusion detection, even if
during their experiments the C4.5 algorithm was achieving a
good detection accuracy, the error rate was remaining
identical.

Back in 2010, Farid et al. [18], used a decision tree based
learning algorithm to retrieve important features set from the
training dataset for intrusion detection. Their techniques found
relevant features using a combination of ID3 and C4.5
decision tree algorithms. They assigned a weight value to each
features. The weight is determined where the minimum depth
of the decision tree at which each feature is checked inside the
tree and the weights of features that do not appear in the
decision tree are allocated a value of zero. Ektefa et al. [19],
used different data mining method for intrusion detection and
they found that the decision tree classifier was performing
better than the SVM learning algorithm.

Geetha Ramani et al. [20] used in their paper in 2011, a
statistical method for analyzing the KDD 99 dataset. They
identified the important features by studying the internal
dependences between features.

In their paper proposed in 2012, S. Mukherjee and N.
Sharma [21] designed a technique called Feature- Vitality
Based Reduction Method (FVBRM) using a Naïve Bayes
classifier. FVBRM identifies important features by using a
sequential search approach, starting with all features, one
feature is removed at a time until the accuracy of the classifier
reaches some threshold. Their method shows an improvement
of the classification accuracy but takes more time and still
complex when detecting the U2R attacks.

In 2013, support vector machine classifier was used by
Yogita B. Bhavsar et al. [22], for intrusion detection using the
NSL KDD dataset. The drawback with this technique is the
extensive training time required by the classifier, so to reduce
the time, they applied a radial basis function (RBF) to reduce
the extensive time.

In 2014, O. Y. Al-Jarrah et al. [23], used an ensembles of
decision-tree based voting algorithm with forward selection /
backward elimination feature raking techniques using a
Random Forest Classifier. Their method shows an
improvement of detection accuracy when selected important
features and it can be suitable for large-scale network.

N. G. Relan and D. R. Patil [24] in their papers have tested
two decision tree approach to classify attacks using the NSL
KDD dataset. They have found that the C4.5 with pruning
offers better accuracy than the C4.5 without pruning and it
was necessary to reduce the number of features because using
all features degrades the performance of the classifier also its
time consuming. After analyzing some previous works, the
reasons most of researchers are interested in selecting and
identifying relevant features are described as follow:

 In most learning algorithms, the complexity depends
on the number of input dimensions, d, as well as on the
size of the data sample, N, and for reduced memory
and computation, researchers are interested in selecting

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

151 | P a g e

www.ijacsa.thesai.org

relevant and important feature to reduce the
dimensionality of the problem. Decreasing d also
decreases the complexity of the inference algorithm
during testing.

 When an input is decided to be unnecessary, the cost of
extracting it is saved.

 Simpler models are more robust on small datasets.
Simpler models have less variance, that is, they vary
less depending on the particulars of a sample, including
noise, outliers, and so forth.

 When data can be explained with fewer features, better
idea about the process that underlies the data can be
obtained and this allows knowledge extraction.

When data can be represented in a few dimensions without
loss of information, it can be plotted and analyzed visually for
structure and outliers.

IV. METHODOLOGY

A. Scikit-Learn Description

As stated before, during this experiment scikit-learn [25]
was used, which is a machine learning library written in
python. Most of the learning algorithm implement in scikit-
learn required data to be stored in a two-dimensional array or
matrix. The size of the expected matrix is [samples, features].

The first parameter defines the number of samples, each
sample is an item to be processed and the second parameter is
the number of features that can be used to describe each item
in a quantitative manner, generally real-valued but may be
Boolean or discrete-valued in some cases. Data in scikit-learn
is represented as a feature matrix and a label vector. Fig. 1
shows the data representation in scikit-learn.

Fig. 1. Data representation in scikit-learn

Here, N are samples and D features

B. Expriment Methodology

The experiment methodology used in this paper, is
illustrated in the Fig. 2 and describe as follow:

Step 1: Data Cleaning and Pre-processing

Basically in this step the dataset has to go through a
cleaning process to remove duplicate records, as the NSL
KDD dataset was employed which has already been cleaned,
this step is not anymore required. Next a Pre-processing
operation has to be taken in place because the dataset contains
numerical and non-numerical instances. Generally the

estimator (classifier) defines in the scikit-learn works well
with numerical inputs, so a one-of-K or one-hot encoding
method is used to make that transformation. This technique
will transforms each categorical feature with m possible inputs
to n binary features, with one active at the time only

Fig. 2. Experiment methodology

Step 2: Features scaling

Features scaling is a common requirement of machine
learning methods, to avoid that features with large values may
weight too much on the final results. For each feature,
calculate the average, subtract the mean value from the feature
value, and divide the result by their standard deviation.

After scaling, each feature will have a zero average, with a
standard deviation of one.

Step 3: Features Selection

Feature selection is used to eliminate the redundant and
irrelevant data. It is a technique of selecting a subset of
relevant features that fully represents the given problem
alongside a minimum deterioration of presentation [26], two
possible reason were analyzed why it would be recommended
to restrict the number of features:

Firstly, it is possible that irrelevant features could suggest
correlations between features and target classes that arise just
by chance and do not correctly model the problem. This aspect
is also related to over-fitting, usually in a decision tree
classifier. Secondly, a large number of features could greatly
increase the computation time without a corresponding
classifier improvement.

The feature selection process starts with a univariate
feature selection with ANOVA F-test for feature scoring,
univariate feature selection analyzes each feature individually
to determine the strength of the relationship of the feature with

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

152 | P a g e

www.ijacsa.thesai.org

labels. The SelectPercentile method in the
sklearn.feature_selection module were used, this method
select features based on a percentile of the highest scores.
Once, the best subset of features were found, a recursive
feature elimination was applied which repeatedly build a
model, placing the feature aside and then repeating the process
with the remained features until all features in the dataset are
exhausted. As such, it is a good optimization for finding the
best performing subset of features. The idea is to use the
weights of a classifier to produce a feature ranking.

Step 4: Model

Here, a decision tree model was built to partition the data
using information gain until instances in each leaf node have
uniform class labels. This is a very simple but yet an effective
hierarchical method for supervised learning (classification or
regression) whereby the local space (region) is recognized in a
sequence of repetitive splits in a reduced number of steps
(small). At each test, a single feature is used to split the node
according to the feature's values. If after the split, for every
branches, all the instances selected belong to the similar class,
the split is considered complete or pure.

One of the possible method to measure a good split is
entropy or information gain. Entropy is an information-
theoretic measure of the ‘uncertainty’ found in a training set,
because of the existence of more than one possible
classification. The training set entropy is represented by H. It
is calculated in ‘bits’ of information and it is described as:

 H = - ∑

The generation process of a decision tree done by
recursively splitting on features is equivalent to dividing the
original training set into smaller sets recursively until the
entropy of every one of these subsets is zero (i.e everyone will
have instances from a single class target).

A Decision Tree is made up internal decision nodes and
terminal leaves. A test function is implemented by each
decision node with a discrete results labelling the branches.
Providing an input, at every node, a test is constructed and
based on the outcome, one of the branches will be considered.
Here the learning algorithm starts at the root and until a leaf
node is reached, the process will be done recursively at which
moment the value represented in the leaf node is the output.
Every leaf node possesses an outcomes label, which it is the
class target in case of classification and numeric value for
regression. A leaf node can describe a localized space or
region where instances finding in this input space (region)
possess the same labels for classification and similar numeric
value for regression

Step 5: Prediction and Evaluation

The test data was used to make prediction of our model
and for evaluation, multiple settings was considered such as
the accuracy score, precision, recall, f-measure and a
confusion matrix. A 10-fold cross-validation was performed
during all the process.

V. EXPERIMENT AND RESULTS

A. Experiment

The Decision Tree learning algorithm was used in the
experiment. Decision Tree tends sometimes to over-fitting, so
to find the best parameters to fit the model, an exhaustive grid
search parameters tuning was computed and information gain
is used to select features. Hence, building from the training
data, a tree was obtained with its leaves being class labels.
When building a decision tree, only one feature is used at a
time to split the node and partition the data. Hence, features
are used in a univariate manner.

After obtaining the adequate number of features during the
univariate selection process, a recursive feature elimination
(RFE) was operated with the number of features passed as
parameter to identify the features selected. During the RFE
process, first, the classifier is trained on the original set of
features and weights are attributed to each features. Then,
features whose absolute weights are the smallest are pruned
from the current set features. That process is recursively
repeated on the pruned set until the desired number of features
to choose is finally reached

B. Discussions and Results

Feature selection is utilized to discriminate the redundant
and irrelevant data. It is a technique of selecting a subset of
relevant attributes that completely represent the given problem
alongside a minimum deterioration of presentation. As
consequence, working with a small number of feature may
bring better results.

A general technique to achieve feature selection will be to
retrieve the smallest set of features that can exactly
characterize the training data. If an attribute always coincides
with the label class (that is, it is an exact predictor), it is
enough to characterize the data. On the other hand, if an
attribute always has the same value, its prediction power will
decrease and can be very low. A recursive feature elimination
method which repeatedly build a model, placing the feature
aside and then repeating the process with the remained
features until all features in the dataset are exhausted. The
objective of the recursive feature is to retrieve features by

recursively keeping smaller and smaller group of features.

A good feature ranking criterion does not necessarily
produce a good feature subset generation. The some criteria
estimate the effect of removing one feature at a time based on
the goal to achieve. They become very sub-optimal when it
comes to removing several features at a time, which is
necessary to obtain a small feature subset. This problem can
be overcome by using the following iterative procedure that is
Recursive Feature Elimination:

 Train the classifier (optimize the weights of features
with respect to criterion).

 Compute the ranking criterion for all features.

 Remove the feature with smallest ranking criterion.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

153 | P a g e

www.ijacsa.thesai.org

Firstly, the classifier is trained on the initial group of
attributes and weights are assigned on each attributes. Then,
absolute weights of some attributes that are the smallest are
pruned from the current sets of attributes. That technique is
recursively repeated on the pruned set until the desired
number of attributes to select is eventually reached. As such, it
is a good optimization for finding the best performing subset
of features. In should be noted that RFE has no effect on
correlation methods since the ranking criterion is computed
with information about a single feature.

An analysis was performed to determine the accuracy of
our estimator after selecting relevant features as illustrate in
the Fig. 3, 4, 5 and 6 and the detail is summarized in the Table
4. When comparing the result alongside the performance
evaluation with all features describe in the Table 5, a
significant improvement of the overall performance of the
proposed model has been observed.

Fig. 3. DOS Recursive Feature Elimination

Fig. 4. Probe Recursive Feature Elimination

Fig. 5. R2L Recursive Feature Elimination

Fig. 6. U2R Recursive Feature Elimination

TABLE IV. PERFORMANCE EVALUATION WITH SELECTED FEATURES

99.90 99.69 99.79 99.74 12 Dos

99.80 99.37 99.37 99.37 15 Probe

99.88 97.40 97.41 97.40 13 R2L

99.95 99.70 99.69 99.70 11 U2R

TABLE V. PERFORMANCE EVALUATION WITH 41 FEATURES

99.66 99.505 99.71 99.61 41 Dos

99.57 99.04 98.84 98.94 41 Probe

97.03 95.83 95.59 95.71 41 R2L

99.64 99.66 99.61 99.65 41 U2R

C
la

ss

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

N
 o

f
F

ea
tu

re
s

C
la

ss

A
cc

u
ra

cy

P
re

ci
si

o
n

R
ec

al
l

F
-m

ea
su

re

N
 o

f
F

ea
tu

re
s

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

154 | P a g e

www.ijacsa.thesai.org

Table 6 shows a 2x2 confusion matrix after features
selection on the dataset for a combination of two target classes
(normal class and an attack class).

TABLE VI. DETAILS CONFUSION MATRIX AFTER FEATURES SELECTION

 Predicted Label

Confusion Matrix Normal DoS

True

Label

Normal 9676 25
Positive predictive

value

99.74

%

DoS 15 7445
Negative predictive

value

99.79

%

 Predicted Label

Confusion Matrix Normal Probe

True

Label

Normal 9652 59
Positive predictive

value

99.39

%

Probe 30 2391
Negative predictive

value

98.76

%

 Predicted Label

Confusion Matrix Normal R2L

True

Label

Normal 9594 117
Positive predictive

value

98.79

%

R2L 87 2798
Negative predictive

value

96.98

%

 Predicted Label

Confusion Matrix Normal U2R

True

Label

Normal 9683 28
Positive predictive

value

99.71

%

U2R 7 60
Negative predictive

value

89.53

%

Fig. 7. Confusion Matrix

TABLE VII. CONFUSION MATRIX DETAILS

99.84 2.368e-03 1.544e-03 1.153e-02 4.119e-04

3.485e-03 99.691 9.38337802e-04 6.702e-04 0

8.674e-03 2.891e-03 99.45 2.891e-03 4.130e-04

4.540e-02 1.039e-03 2.079e-03 96.10 6.239e-03

5.970e-02 0 0 2.089e-01 87.5

The completed confusion matrix as illustrate in the Figure
7 and Table 7 show the number of correct and incorrect
predictions made by the classification model compared to the
actual outcomes in the dataset.

The Table 8 present the relevant features after a recursive
features elimination was operated on the NSL KDD dataset.
Features are retrieved based on their rank, relevant (i.e.,
estimated best) features are attributed a rank 1. During the
selection process, some features have participated in
improving the accuracy of the model, which it is called the
important features selected. The important features or
attributes are calculated as the reduction of the criterion
brought by that attributes. Each time a split of a node is
performed on a particular attributes, the criterion for the two
children nodes is inferior to their parent.

TABLE VIII. RELEVANT FEATURES

Target Features selected

Dos

diff_srv_rate,dst_bytes,dst_host_serror_rate,dst_host_sr

v_serror_rate ,flag_S0,

rerror_rate,same_srv_rate,service_ecr_i,service_http,ser
vice_private,src_bytes,

 wrong_fragment'

Probe

src_bytes, service_http, dst_bytes, service_ftp_data,

dst_host_rerror_rate, service_smtp,service_finger,

service_private , rerror_rate , dst_host_diff_srv_rate ,
dst_host_same_srv_rate , service_telnet ,

dst_host_count , service_auth , count

R2l

 dst_bytes , dst_host_same_src_port_rate ,

dst_host_same_srv_rate , dst_host_srv_count ,

dst_host_srv_diff_host_rate , duration , hot ,
num_access_files , num_fail_login , num_root ,

service_ftp_data , service_r2l4 , src_bytes

U2r

 src_bytes , service_other , service_ftp_data , root_shell

, num_shells ,num_file_creations , hot ,

dst_host_same_srv_rate , dst_host_count , dst_bytes ,
count

The Figure 8, 9, 10, 11 illustrate the subset features after
the feature elimination process has been performed, the aim of
this process is to elimination non-relevant features and only
print out the relevant or important one.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

155 | P a g e

www.ijacsa.thesai.org

Fig. 8. DOS Class Features Selected and Important

Fig. 9. Probe Class Features Selected and Important

The analysis for feature selection has been done in terms
of the class that achieved good levels of entropy or Gini index
from others in the training set and the analysis of feature
relevancy in the training set. The importance of a feature is
computed as the (normalized) total reduction of the criterion
brought by that feature. From the Figure 8, 9, 10, 11 and the
Table 7 shows that the most relevant features for Dos, Probes,
R2L and U2R are respectively “same_srv_rate”, “src_bytes”,
“dst_host_srv_count” and “root_shell”

Fig. 10. R2L Class Features Selected and Important

Fig. 11. U2R Class Features Selected and Important

With the improvement the accuracy, the proposed model
demonstrated that it performs well after selecting relevant
features. And from the Figure 12, it is evident that the time
taken to build classifier is decreased through feature selection,
especially the proposed approach. Building Decision Tree
classifier on the dataset with features selected by our approach
takes only 0.956 seconds for DoS attack class, which is faster
than building on the dataset with all of the 41 features by
14.541s as shown on Table 9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

156 | P a g e

www.ijacsa.thesai.org

Fig. 12. Execution time of the classifier

TABLE IX. TIME TAKEN TO BUILD CLASSIFIER ON EACH FEATURE

SUBSETS

Attack Classes With all Features With selected Features

Dos 15.5 seconds 0.959 seconds

Probe 3.48 seconds 0.868 seconds

R2L 3.31seconds 0.929 seconds

U2R 2.10 seconds 0.530 seconds

This result provided new insight using a classification
learning algorithm and reduction technique to selection
relevant and important feature in order to improve the
accuracy detection rate of the system and to identify possible
features which may contribute to this improvement.

As our goal was to determine whether or not a features
selection process will improve the accuracy detection of a
model on different set of attacks class found in the dataset
used for our experiment, each set of attacks class were treated
individually as they present different characteristics and are
different by nature.

This decision was also made in order to identify all
relevant features for each different attacks class and to
compare the accuracy improvement from the original set of
features. As relevant features which are appropriated to
classify those different attacks class have been found, the
result analysis has shown that the performance of the model
has really been improved.

As an example the R2L attack accuracy detection has been
improvement from 97.03% to 99.88% as well as its execution
time as shown on the Table 9. The Table 10 shows a
comparison between our method and some previous one.

TABLE X. COMPARISON WITH OTHER FEATURES SELECTION

TECHNIQUES

Author
Method

used

Classifi

er used

Accuracy for Attack Classes

(Nbr of selected features)

DOS
Prob

e
R2L U2R

(Dhanabal

&

Shantharaja

h 2015)

[27]

Correlatio

n based

Feature

Selection

method

J48
99.1

% (6)

98.9

%

(6)

97.9

% (6)

98.7

%(6)

(Senthilnay

aki et al.

2015) [28]

Optimal

Genetic

Algorithm

SVM

99.15

%

(10)

99.0

8 %

(10)

96.50

%

(10)

97.0

3 %

(10)

(Zhang &

Wang

2013) [29]

Sequential

search

Naïve

Bayes

99.3

%

(11)

97.4

%

(11)

95.0

%

(11)

59.6

%

(11)

(Alazab et

al. 2012)

[30]

Informatio

n gain
J48

99.7

%

(12)

97.8

%

(12)

91.3

%

(12)

97.2

%

(12)

(Mukherjee

& Sharma

2012) [31]

Feature

vitality

based

Method

Naïve

Bayes

98.7%

(24)

98.8

%

(24)

96.1

%

(24)

64%

(24)

(Parsazad

et al. 2012)

[32]

Correlatio

n

Coefficien

t

K-

nearest

neighbo

r

98.34

%

(30)

98.3

8 %

(30)

97.03

%

(30)

83.3

3 %

(30)

(Parsazad

et al. 2012)

[32]

Fast

feature

Reduction

K-

nearest

neighbo

r

98.28

%

(10)

98.5

0 %

(10)

97.79

%

(20)

82.0

0 %

(10)

(Parsazad

et al. 2012)

[32]

Least

Square

Regressio

n Error

K-

nearest

neighbo

r

98.34

%

(30)

98.9

8 %

(20)

97.62

%

(20)

82.6

1 %

(20)

(Parsazad

et al. 2012)

[32]

Maximal

Informatio

n

Compressi

on Index

K-

nearest

neighbo

r

98.03

%

(30)

98.9

2 %

(10)

98.05

%

(20)

90.7

0 %

(20)

The

proposed

method

Recursive

Feature

Eliminatio

n

Decisio

n Tree

Classifi

er

99.90

%

(12)

99.8

0 %

(15)

99.88

%

(13)

99.9

5 %

(11)

VI. CONCLUSION

In this paper, the significance of using a set of relevant
features with an adequate classification learning algorithm for
modelling an IDS has been demonstrated.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

157 | P a g e

www.ijacsa.thesai.org

A presentation and proposition of a feature selection
method which consist of a univariate features selection
associated with a recursive feature elimination using a
decision tree classifier to identify important features have been
done. This process repeatedly builds a model placing the
feature aside and then repeating the process with the
remaining features until all features present in the dataset are
exhausted. The evaluation the effectiveness of the method
using different classification metric measurement has been
made and it has been proved that by reducing the number of
feature, the accuracy of the model was improved. The feature
selection method proposed in this paper had achieved a high
result in term of accuracy and features were identified based
on information gain and ranking technique.

REFERENCES

[1] A. Alazab, M. Hobbs, J. Abawajy, and M. Alazab, “Using feature
selection for intrusion detection system,” 2012 Int. Symp. Commun. Inf.
Technol., pp. 296–301, 2012.

[2] M. P. K. Shelke, M. S. Sontakke, and A. D. Gawande, “Intrusion
Detection System for Cloud Computing,” Int. J. Sci. Technol. Res., vol.
1, no. 4, pp. 67–71, 2012.

[3] S. Suthaharan and T. Panchagnula, “Relevance feature selection with
data cleaning for intrusion detection system,” 2012 Proc. IEEE
Southeastcon, pp. 1–6, 2012.

[4] S. Suthaharan and K. Vinnakota, “An approach for automatic selection
of relevance features in intrusion detection systems,” in Proc. of the
2011 International Conference on Security and Management (SAM 11),
pp. 215-219, July 18-21, 2011, Las Vegas, Nevada, USA.

[5] L. Han, "Using a Dynamic K-means Algorithm to Detect Anomaly
Activities," 2011, pp. 1049-1052.

[6] R. Kohavi, et al., "KDD-Cup 2000 organizers report: peeling the
onion," ACM SIGKDD Explorations Newsletter, vol. 2, pp. 86-93,
2000.

[7] I. Levin, "KDD-99 Classifier Learning Contest: LLSoft s Results
Overview," SIGKDD explorations, vol. 1, pp. 67-75, 2000.

[8] J. McHugh, “Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by
lincoln laboratory,” ACM Transactions on Information and System
Security, vol. 3, no. 4, pp. 262–294, 2000.

[9] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, “A Detailed
Analysis of the KDD CUP 99 Data Set,” Submitted to Second IEEE
Symposium on Computational Intelligence for Security and Defense
Applications (CISDA), 2009.

[10] KDD 99 dataset, Accessed December 2015,
http://kdd.ics.uci.edu/databases/kddcup99

[11] NSL KDD dataset, Accessed December 2015,
https://github.com/defcom17/NSL_KDD

[12] P. Ghosh, C. Debnath, and D. Metia, “An Efficient Hybrid Multilevel
Intrusion Detection System in Cloud Environment,” IOSR J. Comput.
Eng., vol. 16, no. 4, pp. 16–26, 2014.

[13] Dhanabal, L., Dr. S.P. Shantharajah, "A Study on NSL_KDD Daaset for
Intrusion Detection System Based on Classification Algorithms,"
International Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, issue 6, pp. 446-452, June 2015

[14] C. F. Tsai, et al., "Intrusion detection by machine learning: A review,"
Expert Systems with Applications, vol. 36, pp. 11994-12000, 2009.

[15] V. Bolón-Canedo, et al., "Feature selection and classification in multiple
class datasets: An application to KDD Cup 99 dataset," Expert Systems

with Applications, vol. 38, pp. 5947-5957, 2011.

[16] F. Amiri, et al., "Improved feature selection for intrusion detection
system," Journal of Network and Computer Applications, 2011.

[17] Juan Wang, Qiren Yang, Dasen Ren, “An intrusion detection algorithm
based on decision tree technology,” In the Proc. of IEEE Asia-Pacific
Conference on Information Processing, 2009.

[18] Dewan Md. Farid, Nouria Harbi, and Mohammad Zahidur Rahman,
"Combining Nave Bayes and Decision Tree for Adaptive Intrusion
Detection," International Journal of Network Security & Its
Applications, Vol. 2, No. 2, April 2010, pp. 12-25.

[19] Ektefa M, Memar S, Sidi F, Affendey L., "Intrusion detection using data
mining techniques," 2010 International Conference on Information
Retrieval & Knowledge Management(CAMP).
2010.doi:10.1109/infrkm.2010.5466919.

[20] Geetha Ramani R, S.SivaSathya, SivaselviK, "Discriminant
Analysisbased Feature Selection in KDD Intrusion Dataset," ,
International Journal of Computer Application VoI.31,No.ll, 2011

[21] S. Mukherjee and N. Sharma, “Intrusion Detection using Naive Bayes
Classifier with Feature Reduction,” Procedia Technol., vol. 4, pp. 119–
128, 2012.

[22] Bhavsar Y. B, Waghmare K. C. "Intrusion Detection System Using Data
Mining Technique: Support Vector Machine," International Journal of
Emerging Technology and Advanced Engineering, Vol.3, Issue 3,
pp.581-586(2013).

[23] O. Y. Al-Jarrah, a. Siddiqui, M. Elsalamouny, P. D. Yoo, S. Muhaidat,
and K. Kim, “Machine-Learning-Based Feature Selection Techniques
for Large-Scale Network Intrusion Detection,” 2014 IEEE 34th Int.
Conf. Distrib. Comput. Syst. Work., pp. 177–181, 2014.

[24] N. G. Relan and D. R. Patil, “Implementation of Network Intrusion
Detection System using Variant of Decision Tree Algorithm,” 2015 Int.
Conf. Nascent Technol. Eng. F., pp. 3–7, 2015.

[25] Scikit-Learn, Accessed December 2015, http://scikit-
learn.org/stable/index.html

[26] V. Bol´oN-Canedo, N. S´aNchez-Maro˜no, and A. Alonso-Betanzos,
“Feature selection and classification in multiple class datasets: an
application to kdd cup 99 dataset,” Expert System Application, vol. 38,
pp. 5947–5957, 2011.

[27] Dhanabal, L., Dr. S.P. Shantharajah, "A Study on NSL_KDD Daaset for
Intrusion Detection System Based on Classification Algorithms,"
International Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, issue 6, pp. 446-452, June 2015.

[28] Senthilnayaki, B., Venkatalakshmi, D.K. & Kannan, D.A., " Intrusion
Detection Using Optimal Genetic Feature Selection and SVM based
Classifier," 2015 3rd International Conference on Signal Processing,
Communication and Networking (ICSCN) Intrusion, pp.1–4.

[29] Zhang, F. & Wang, D., "An Effective Feature Selection Approach for
Network Intrusion Detection," 2013 Eighth International Conference on
Networking, Architecture and Storage, IEEE.

[30] Alazab, A. et al.," Using feature selection for intrusion detection
system," 2012 International Symposium on Communications and
Information Technologies (ISCIT), pp.296–301. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=638091
0.

[31] Mukherjee, S. & Sharma, N., " Intrusion Detection using Naive Bayes
Classifier with Feature Reduction," 2012 Procedia Technology, 4,
pp.119–128. Available at:
http://dx.doi.org/10.1016/j.protcy.2012.05.017.

[32] Parsazad, S., Saboori, E. & Allahyar, " Fast Feature Reduction in
intrusion detection datasets, " MIPRO 2012 Proceedings of the 35th
International Convention, pp.1023–1029.

