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Abstract—The phase correlation method is known to pro-
vide straightforward estimation of rigid translational mo-
tion between two images. It is often claimed that the origi-
nal method is best suited to identify integer pixel displace-
ments, which has prompted the development of numerous
subpixel displacement identification methods. However, the
fact that the phase correlation matrix is rank one for a noise-
free rigid translation model is often overlooked. This prop-
erty leads to the low complexity subspace identification tech-
nique presented here. The combination of non-integer pixel
displacement identification without interpolation, robust-
ness to noise, and limited computational complexity make
this approach a very attractive extension of the phase cor-
relation method. In addition, this approach is shown to be
complementary with other subpixel phase correlation based
techniques.

Keywords— phase correlation method, SVD, subpixel im-
age registration

I. Introduction

The ability to detect and estimate lateral shifts between
similar images is an integral part of many image processing
applications. For example, displacement estimation is often
needed in medical imaging to compensate for inter-image
motion of a patient during imaging sessions and for regis-
tration of features in image studies of multiple patients. In
response to this need, many methods have been developed
to estimate the translational bulk displacement between
similar images. The phase correlation method (PCM) [1]
is a popular choice due to its robust performance and com-
putational simplicity.

While the PCM technique is applicable to images ac-
quired via any modality, the emphasis here is on im-
ages acquired via magnetic resonance imaging (MRI). This
method is a natural fit with MRI because the acquired im-
age data is typically sampled in the spatial Fourier domain
[2,3]. Thus, image registration using phase correlation can
be applied directly to the raw MRI data before the spatial
images are reconstructed.

The phase correlation method is based on the well-known
Fourier shift property. Specifically, a shift in the coordinate
frame of two functions results in a linear phase difference
in the Fourier transform of the two functions [4]. Given
a pair of two dimensional functions, A and B, that are
related by a simple translational shift, the elements of the
Fourier transform of B, denoted B, are related to A by

B(k, l) = A(k, l)exp{−j(ka + lb)} (1)
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where (k, l) are the Fourier domain coordinates, and a and
b are the magnitude of the horizontal and vertical shifts
that occur between A and B.

To identify a and b using the PCM approach, one com-
putes a normalized cross power spectrum between A and
B to identify the phase correlation matrix :

Q(k, l) =
B(k, l)A(k, l)∗

|A(k, l)A(k, l)∗| = exp{−j(ka + lb)}. (2)

Once computed, the approach cited in the literature [5,6] is
to compute the inverse Fourier transform of Q. If the two
functions under comparison were in fact continuous, then
this representation would be a delta function,

Q(x, y) = δ(x− a, y − b), (3)

where the function peak identifies the magnitude of the
lateral shift.

However, in the case of images (which are 2D functions
sampled on a discrete grid), Q will only display a delta-like
function if a and b are integers. Non-integer translations
between two similar images cause the peak in Q(x, y) to
spread across neighboring pixels, subsequently degrading
the quality of the translation estimate. Furthermore, if
the images are not spatially band-limited when sampled,
aliasing will occur and (1) may not be strictly valid for all
(k, l). The sharpness and clarity of the peak can also be
degraded by image edge effects as discussed in Sec. II-B.

To identify non-integer shifts in the spatial domain, the
common approach is to apply bilinear, Lagrange, or other
interpolation methods. Alternatively, one can work di-
rectly in the Fourier domain to identify the subpixel shift.
Two methods that follow this approach were recently de-
scribed in [4] and [7]. While focused on the effects of alias-
ing on the shift estimation, the translation parameter es-
timation in [7] is performed using a least-squares fit to a
two dimensional data set — which the authors of [4] claim
is difficult because it requires fitting a plane to noisy phase
difference data. As shown below, the dimensionality of the
least squares fit can be reduced through a subspace iden-
tification of the phase correlation matrix itself. Thus, the
method described below is complementary to both of the
methods cited above.

II. Strategy

A close inspection of (2) reveals that the noise-free model
forQ is in fact a rank one matrix. Each element inQ can be
separated as Q(k, l) = exp{−jka}exp{−jlb}. This allows
the definition of two vectors,

qa(k) = exp{−jka} and qb(l) = exp{+jlb}. (4)
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and the phase correlation matrix can be rewritten as Q =
qaqH

b . This allows one to rewrite (1) in matrix notation as

B = (qaqH
b ) ◦ A (5)

where {·}H denotes a complex-conjugate transpose, and
◦ indicates an element-by-element product, also known as
the Schur or Hadamard product [9].

A. The Algorithm

The illuminating feature of (5) is that the problem of
finding the exact lateral shift between two images is recast
as finding the rank one approximation of the normalized
phase correlation matrix, Q. A straight-forward approach
to finding the dominant rank one subspace ofQ is to use the
singular value decomposition (SVD) [9]. The linear phase
coefficients can then be identified independently in the left
and right dominant singular vectors. From these, estimates
of the vertical and horizontal shift can be derived, even for
non-integer translational motion over a large range.

To identify the linear phase coefficients in each of the
right and left dominant singular vectors of Q, a least-
squares fit (LSF) to the unwrapped phase component of
the dominant singular vectors is used. For a matrix A of
size M ×N , k = 2πx/M and l = 2πy/N . For a given sin-
gular vector, v, we construct the set of normal equations
R [ µ c ]T = unwrap{6 v} where the rows of R are equal
to [ r 1 ] for r = {0, 1, 2, · · · , (s − 1)}, with s equal to the
length of v. Here, µ and c are the slope and abscissa of the
fitted line, respectively. This system is then solved to give

[
µ
c

]
= (RT R)−1RT unwrap{6 v}. (6)

The slope of the fitted line, µ, maps to the translational
shift. Specifically, a = µ(M/2π) for the case v = qa, and
b = µ(N/2π) for the case v = qb.

The quality of the linear fit depends on the linearity
of the unwrapped phase vector. In practice, the implicit
eigen-filtering nature of identifying the dominant singular
vectors of Q provides the unwrapping algorithm with less-
noisy data. Furthermore, because the unwrapping need
only be done along one dimension, it is inherently less com-
plicated than a two-dimensional phase unwrapping of the
matrix Q. However, two dominant spectrum corruption
sources in image registration remain, and the ability of the
algorithm described above to handle both is detailed below.

B. Aliasing and Edge Effects

In the identification of translational shifts between two
similar images, there are two dominant sources of phase
correlation corruption: aliasing and edge effects. This sec-
tion details how the subspace identification extension to
the phase correlation method (SIE-PCM) described above
can be adapted to deal with each.

In optical systems, the path of light from the imaged
scene to a digital sampling image plane typically contains
non-ideal low-pass filters. The result is that any signal
energy present above the Nyquist frequency of the spatial

sampling system is aliased to lower frequencies. This fact
was the driving motivation for the subpixel identification
method described in [7, 8].

Medical images are not immune to aliasing, although the
spatial-frequency aliasing found in optical systems is not a
concern in well-formed MR images. This is because MRI
data acquisition typically samples the spatial Fourier spec-
trum of the field of view (FOV) directly. Along the fre-
quency encoding direction, spatial spectrum energy at fre-
quencies above the maximum sampled are truncated, with
the visible result of Gibbs ringing in the reconstructed im-
age if the truncation occurs at a sufficiently low spatial
frequency [3]. Aliasing can occur in MRI when the spacing
between phase encode lines is not dense enough to com-
pletely cover the region of excited spins. The immediately
noticeable effect is multiple copies of the aliased spatial
components in the reconstructed image — a very different
result than aliasing in optical systems.

Nonetheless, the SIE-PCM algorithm is completely com-
plementary to the aliasing compensation approaches de-
scribed in [7]. Stone, et. al., recommend masking the
phase-correlation matrix, Q, to restrict the spectrum com-
ponents corrupted by aliasing from the shift estimation.
This mask captures the components of A with magnitude
larger than a given threshold α that are present within a
radius r = 0.6(L/2) of the spectrum origin. Here, L is the
minimum number of samples in the vertical and horizontal
dimensions. This masking approach can be applied to the
SIE-PCM method, where only those components in each
vector within a prescribed distance from the D.C. compo-
nent is utilized in the linear phase angle determination.
Alternatively, one could potentially mask the phase corre-
lation matrix first, and then use the SVD approach on the
sparse matrix to identify the shift parameters.

Additionally, image features close to the image edge can
have a negative effect on the ability to identify translational
motion between two images. The discrete Fourier trans-
form (DFT) imposes a cyclic repetition on finite length
signals. For images, these edge effects imply that pixels
on the right (top) will be appended to the left (bottom)
in an infinite cyclic pattern when constructing the DFT of
the image, [10,11]. Discontinuities between the right (top)
and left (bottom) sides of the image will result in energy
appearing in high frequency components of the Fourier do-
main representation of the image. This energy may be
aliased to low frequency components as well. These spec-
trum components are a feature of the image boundary, and
not the image itself. Consequently, the spectra of the two
images under comparison will differ by much more than the
phase shift described in (2), causing subsequent difficulty
in shift identification based on phase correlation.

For images acquired via optical methods, Stone, et. al.,
recommend applying a 2D spatial Blackman or Blackman-
Harris window to the image before transforming the image
to the Fourier domain. Unfortunately, this spatial window
removes a significant amount of the signal energy, and is
typically not needed for MR images, where edge effects are
minimal due to large regions of low signal intensity on the
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image periphery. In cases where edge effect aliasing has
occurred, masking the low frequency components of the
SIE-PCM individual singular vectors as well as the high
provides accurate estimates. Simulation studies of alias-
ing and edge effects using LANDSAT data show compara-
ble performance between masked SIE-PCM and the results
presented in [7], but are not presented here for brevity.

III. Example

The example presented here demonstrates the effective-
ness of the SIE-PCM approach on real MRI data. Fig. 1(a)
shows a T1 weighted image of a grapefruit that was ac-
quired using a production quality Fast Spin Echo (FSE)
sequence on a GE (Fairfield, CT, USA) Signa Lx 1.5 Tesla
MRI scanner. The 256 × 256 pixel image covers a 16 cm2

FOV. Thus, the extent of each pixel is 0.0625mm square.
The echo repetition time for each of the acquired images
was TR = 500ms, resulting in relatively low SNR.

Five images were acquired with the fruit at different
positions in the FOV, as identified in Table I. Vertical
translation of the fruit in the FOV was achieved by manu-
ally moving the scanner table. Horizontal translations were
achieved by modifying the encoding parameters of the FSE
protocol. Phantom placement in the MRI scanner (in this
case, the grapefruit on the movable scanner table) has a
direct effect on the magnetic field homogeneity within the
scanner core, whereas changing the protocol FOV param-
eters affects only the phase of the sampled output data.
Subsequently, one can anticipate that the horizontal shift
estimates will not be as well matched to the true displace-
ment as the vertical shift estimates.

Registration of the images was compared for three meth-
ods: using knowledge of the “physical” shift that occurred
before each image acquisition; the SIE-PCM method of
Sec. II-A; and the method given in [7], labeled here as ’2D
LSF’. This distinction is given because both of the trans-
lation estimate methods use frequency masking. The pri-
mary difference is that SIE-PCM estimates the shifts sep-
arately across a large non-integer range, whereas 2D LSF
first uses a coarse integer registration (based here on the
SIE-PCM estimate), then uses a two-dimensional least
squares fit for sub-pixel refinement of the estimate. The
grapefruit images have significant regions of low intensity
near the image boundary, so no spatial envelope was needed
(or used) to limit edge effect noise in the phase correlation
matrix, Q.

Figure 1 shows various stages of the SIE-PCM method
for one image pair’s phase correlation matrix, Q. Inspec-
tion of Fig. 1(b) shows significant noise in Q directly at-
tributable to the low SNR in the compared images. Fig-
ure 1(c) shows the rank-one approximation of Q formed
from the dominant singular vectors. The phase-stripes that
were only faintly defined in Fig. 1(b) are now clearly visible.
The high spatial frequency components (above r = 0.6(s/2)
from D.C.) of the phase vectors were masked to prevent the
visibly noisy regions of Fig. 1(c) from effecting the SIE-
PCM shift estimation.

Table II shows the registration details for the comparison

between Image 1 and 2 in the series. The physical trans-
lation between the images (see Table I) in the FOV corre-
sponds to a pixel displacement of a = −2.4 and b = −4.0.
The estimation of the horizontal displacement estimate is
correct to within hundredths of a pixel. And while the
two estimate methods are consistent, variation from the
prescribed physical vertical displacement is on the order
of tenths of a pixel. This is consistent with expectations,
given that the vertical displacement was achieved using
physical scanner table motion which affects the magnetic
field homogeneity, and subsequently the Fourier encoding
and acquisition. Note however that image registration error
measures show that the estimate methods give a better reg-
istration result than knowledge of the physical shift, with
SIE-PCM marginally better than the 2D LDF method of
[7]. The measures shown are [12] the actual estimate error,
AE(A1, A2) = ‖A1 − A2‖F , and the relative estimate er-
ror, RE(A1, A2) = ‖A1−A2‖F /‖A1‖F , with the Frobenius
norm defined as ‖A‖F = [

∑
ij a2

ij ]
−1/2.

Image: 1 2 3 4 5
Vertical Pos. (in mm): 3.0 1.5 0.0 -1.5 -1.5

Horizontal Pos. (in mm): 0.0 2.5 5.0 2.7 7.5

TABLE I: Table showing position of each acquired grapefruit

image relative to the series landmark
Vertical Horizontal

physical translation -1.5 mm -2.5 mm
image distance (in pixels) -2.4 -4.0
SIE-PCM estimate (in pixels) -2.0613 -4.0241
SIE-PCM estimate error -0.3387 0.0241
2D LSF estimate (in pixels) -2.0627 -4.0252
2D LSF estimate error -0.3373 0.0252

registration error AE RE
expected shift: 2518.0261 0.2060

2D LSF estimated shift: 2378.9403 0.1946
SIE-PCM estimated shift: 2378.8575 0.1946

TABLE II: Registration results between grapefruit images 1

and 2. The quality of the registration is measured using the

absolute error (AE) and relative error (RE) measures.

Figure 2 displays the relative error (RE) for each possible
comparison of the images listed in Table I. Note that for
the exception of two cases, both shift estimation methods
provide more accurate registration than knowledge of the
prescribed shift. The two anomalous 2D LSF results are
attributed to the fact that the 2D LSF method must un-
wrap the phase data in two dimensions before estimating
the fitted plane parameters. In the anomalous cases shown,
there was insufficient unwrapping of the noisy phase corre-
lation matrix before translation estimation. Because phase
unwrapping need only occur along one dimension in the
SIE-PCM approach, this example clearly demonstrates the
utility of separately estimating the shift parameters.

IV. Summary

This manuscript presents a method to identify bulk
translational motion between two images. The method is
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Fig. 1: Acquired MR Image Example: (a) Grapefruit MR Image acquired using a Fast Spin Echo Sequence (Image 1 of Table I),

(b) Phase correlation matrix, Q, for grapefruit images 1 and 2, and (c) the rank one approximation constructed from the

dominant singular vectors of Q. The D.C. component of the frequency domain coordinate system is at the center of the

phase correlation matrices.
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Fig. 2: Comparison of relative error across registration

methods. The registration methods shown are (1) knowledge

of the “physical” shift, (2) the 2D LSF method of Stone, et.

al., [7], and (3) the SIE-PCM method. Each data point in the

figure shows the relative error after registering one grape-

fruit image to a second grapefruit image. The image pairs

registered are (a) 1:2, (b) 1:3, (c) 1:4, (d) 1:5 (e) 2:3, (f) 2:4,

(g) 2:5, (h) 3:4, (i) 3:5, and (j) 4:5.

an extension of the popular phase correlation technique,
with the added advantage of non-integer translational shift
identification over a wide range of potential shift values.
The primary feature is that an SVD factorization of the
phase correlation matrix is used to separate the horizontal
and vertical components of the translation. A linear fit to
the phase of these separate components is then performed
in order to identify the magnitude of the translation.

The advantage of the method is threefold. First, non-
integer or subpixel displacement can be directly determined
without spatial domain interpolation or two-step course-
then-fine registration. Second, by separating the horizontal
and vertical displacement estimation, phase unwrapping of
the data is reduced to one dimension. Finally, this ap-
proach is complementary to other subpixel image registra-
tion approaches. Sec. II-B presented frequency masking to
compensate for aliasing and boundary effects, complement-
ing the method presented in [7]. One could also potentially
combine this approach with the method described in [4].

The presented example shows that the method is robust
in the presence of noise. While only translational motion
is addressed here, the methods described in [13] suggest
that applying the subspace identification to PCM based
rotational motion estimation may be beneficial as well.

V. Acknowledgments

My thanks to Drs. Eric L. Miller, Dana H. Brooks, and
Hassan Foroosh for their comments in regards to this work.
Thanks goes as well to the anonymous reviewers for their
instructive and informative comments that strengthened
this paper.

References

[1] C. D. Kuglin and D. C. Hines, “The phase correlation image
alignment method,” in Proc. Int. Conf. on Cybernetics and So-
ciety, pp. 163–165, IEEE, Sep. 1975.

[2] G. A. Wright, “Magnetic resonance imaging,” IEEE Sig. Proc.
Mag., vol. 14, no. 1, pp. 56–66, Jan. 1997.

[3] E. M. Haacke, R. W. Brown, M. R. Thompson, and R. Venkate-
san, Magnetic Resonance Imaging: Physical Principles and Se-
quence Design. John Wiley and Sons, 1999.

[4] H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase
correlation to subpixel registration,” IEEE Trans. Image Pro-
cessing, vol. 11, no. 3, pp. 188–200, Mar. 2002.

[5] A. M. Tekalp, Digital Video Processing. Upper Saddle River,
NJ, USA: Prentice Hall, 1995.

[6] C. Stiller and J. Konrad, “Estimating motion in image se-
quences,” IEEE Sig. Proc. Mag., vol. 16, no. 4, pp. 70–91, Jul.
1999.

[7] H. S. Stone, M. Orchard, E.-C. Chang, and S. Martucci, “A
fast direct Fourier-based algorithm for subpixel registration of
images,” IEEE Trans. Geosci. Remote Sensing, vol. 39, no. 10,
pp. 2235–2243, Oct. 2001.

[8] H. Stone, M. Orchard, and E.-C. Chang, “Subpixel registration
of images,” in Rec. of 33rd Asilomar Conf. on Signals, Systems,
and Computers, vol. 2, pp. 1446–1452, 1999.

[9] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. New
York, NY: Cambridge University Press, 1991.

[10] F. J. Harris, “On the use of windows for harmonic analysis
with the discrete Fourier transform,” Proc. IEEE, vol. 66, no. 1,
pp. 51–83, Jan. 1978.

[11] S. Alliney and C. Morandi, “Digital image registration using
projections,” IEEE Trans. Pattern Anal. Machine Intell., vol. 8,
no. 2, pp. 222–233, Mar. 1986.

[12] G. W. Stewart and J. Sun, Matrix Perturbation Theory. Aca-
demic Press, 1990.

[13] B. S. Reddy and B. N. Chatterji, “An FFT-based technique
for translation, rotation, and scale-invariant image registration,”
IEEE Trans. Image Processing, vol. 5, no. 8, pp. 1266–1271,
Aug. 1996.

(c) 2003 IEEE.  IEEE Trans. Medical Imaging, 22(2):277-280, Feb 2003


	Introduction
	Strategy
	The Algorithm
	Aliasing and Edge Effects

	Example
	Summary
	Acknowledgments

