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Delibrate design of specific and sensitive molecular probes with distinctive 

physicial/chemical properties for analytes sensing is of great significance. Herein, by taking 

advantage of the position-dependent substituent effects, an aggregation induced emission 

(AIE) featured iron (III) probe from ortho-substituted pyridinyl-functionalized 

tetraphenylethylene (TPE-o-Py) was synthesized. It displayed high sensitivity and selectivity 

toward Iron (III) detection. The recognition arises from the position isomer of 

ortho-substitution, and the fact that TPE-o-Py has a low acid dissociation constant (pKa) that 

is close to that of hydrolyzed Fe3+. Importantly, TPE-o-Py as a light-up fluorescence probe 
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could be employed for iron (III) sensing in living cells with a pronounced red-shift in 

fluorescence color. 

1. Introduction 

Molecular recognition has attracted increasing attention because of its significant 

application in supramolecular chemistry and biological systems.[1] The association of two 

molecules interacting by self-assembly or self-organization processes, can exhibit distinctive 

photophysical properties, biological activities, as well as visible molecular dynamics.[2] 

However, optimizing molecular structure with appropriate affinity to achieve equilibration 

between sensitivity and selectivity for molecular recognition is still a great challenge. 

Iron is an abundant and inexpensive metal, which has been widely used in the field of 

synthetic chemistry.[3] It also plays an indispensable role for living organisms, such as 

haematopoiesis, enzyme production, metabolic energy conversion and immune function 

maintenance.[4a] An abnormal concentration of iron in living systems would harm their normal 

physiological function.[4] Therefore, it is necessary to develop an efficient approach to 

monitor Fe3+ both in vivo and in vitro.[4b,5] Comparing with the traditional strategies based on 

absorption colorimetry or electrochemical techniques,[6] fluorescent Fe3+ probes showed 

advantages in higher sensitivity, faster responsiveness as well as greater practicability. In 

particular, a light-up type fluorescent probe offers a superiority in signal to noise ratio in 

target analyte recognition. Voelcker et al., presented a light-up fluorescent sensor based on 

graphene quantum dots for Fe3+ imaging in cancer stem cells, which showed high sensitivity 

with a detection limit of 0.02 μM. The proposed mechanism of this fluorescent sensor 

depended on the switching of the spirolactam ring of rhodamine between on and off states in 

the presence and absence of Fe3+, respectively.[7] However, the design of reversible molecular 

conformation for the specific recognition of Iron (III) is still rare. 

On the other hand, the aggregation-induced emission (AIE) luminogens show unique 

turn-on fluorescence characteristics. They exhibit non-emissive behaviour when dissolved in 
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good solvents but emit strong fluorescence in poor solvents by forming aggregates.[8] The AIE 

phenomenon originates from the restriction of intramolecular rotations (RIR).[9] The unique 

light-up AIE properties have been widely applied in subcellular/cellular imaging, long-lasting 

tracking of bioactivity, and imaging guided therapy.[10] Our group previously demonstrated a 

4-position pyridinyl-functionalized tetraphenylethylene AIEgen as a turn-on fluorescent probe 

for detection of trivalent cations, but it showed similar fluorescence responsiveness toward 

Cr3+, Fe3+, and Al3+ without obvious selectivity.[11] In fact, although many AIE-active 

fluorescent probes had been reported for various cations/anions with special characteristics, 

there was little research focus on light-up type AIE probes for specific Fe3+ detection in live 

cells. 

Depending on the substitution effect for electronic density contribution, we designed and 

synthesized an ortho-substituted pyridinyl-functionalized tetraphenylethylene molecule 

(TPE-o-Py), which possessed pronounced AIE characteristics with high sensitivity and 

selectivity in Iron (III) detection in a THF/water mixture. More interestingly, when the 

TPE-o-Py meets Fe3+ in living cells, the strong orange-red fluorescence could be observed 

though a fluorescence microscope, indicating a potential application for iron monitoring in 

living systems. 

2. Results and discussion 

2.1. Synthesis 

The compound TPE-o-Py was synthesized by the Mizoroki-Heck coupling reaction 

as shown in Scheme 1. The target chemical structure was confirmed by 1H/13C NMR 

spectra, single crystal X-ray diffraction and high-resolution mass spectrometry, as well 

as elemental analysis. 

Insert Scheme 1 in here 

2.2. Crystal structure 
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The single crystal of TPE-o-Py was grown by slow evaporation of a solution in a mixture 

of CH2Cl2 and hexane (1:1, vol/vol). Single crystal X-ray diffraction analysis at 150K 

revealed that TPE-o-Py crystallized in the monoclinic crystal system in space group I2/a. 

There are two molecules in the asymmetric unit (Figure 1). In the packing of the crystal 

structure, C−H···π intermolecular interactions dominate the contacts between neighbouring 

molecules. For example, the phenyl rings between neighboring molecules were associated 

together via several weak C–H···π interactions along the c axis. 

Insert Figure 1 in here 

Generally, in TPE-based molecules, the four phenyl rings can rotate freely in solution or in 

the gas phase. This motion serves as a channel for the excited state to decay non-radiatively. 

However, in this case, due to the restricted rotation of the four peripheral phenyl moieties by 

C−H···π interactions between neighbouring molecules in the crystalline state, the C=C bond 

of TPE can only undergo in-plane reorientations, named pedal motion.[13] This inhibited 

rotation of the phenyl groups may have contributed to the static disorder observed in the 

structure. Both alkene groups are two-fold disordered in the first molecule, and the occupancy 

ratio of C(1)/C(2):C(1X)/C(2X) is 0.54:0.46(2); the occupancy ratio of 

C(9)/C(10):C(9X)/C(10X) is 0.719:0.218(16). Similarly, both alkene groups are two-fold 

disordered in the second molecule, and the occupancy ratio of C(34)/C(35):C(34X)/C(35X) is 

0.65:0.35(2); the occupancy ratio of C(42)/C(43):C(42X)/C(43X) is 0.637:0.036(16). In this 

system, the single-crystal X-ray diffraction analysis offered a visible manifestation of the 

consequences of a restriction of intramolecular motion (RIM) dependent AIE mechanism[9] at 

molecular level. One might imagine the molecules being unable to rotate freely during crystal 

growth and hence ending up disordered. 

2.3. Photophysical properties 

TPE-o-Py showed good solubility in various organic solvents, such as CH2Cl2, CHCl3, 

THF, and toluene, but aggregated in poor solvents (i.e. deionized water). Herein, the UV-vis 
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spectrum of TPE-o-Py was examined in tetrahydrofuran (THF) solution, and is shown in 

Figure S6. The compound exhibited a low energy absorption band at 348 nm with a molar 

absorption coefficient of 63734 cm–1 M–1, corresponding to the absorption of π–π* transitions 

of the conjugated π-electron system in the TPE unit. Previous work indicated the position of 

the pyridyl nitrogen atom has a strong effect on the photophysical properties both in solution 

and the solid state.[14] However, the location of the N atom at the 2-position or 4-position in 

TPE-Py system gives similar optical characteristics, so shows a limited effect on electron 

transitions.[14b]  

Insert Figure 2 in here 

To investigate the AIE characteristics in detail, different volume fractions of water (fw) 

were added to the pure THF solutions of TPE-o-Py (10 μM). Obviously, when fw < 70%, 

TPE-o-Py emitted relatively weak FL signals with the maximum peak located at 472 nm. 

However, after increasing above this point, the emission intensity enhanced dramatically, with 

about 10-fold enhancement at fw = 90% compared with that in pure THF solution (Figure 2b), 

indicating its pronounced AIE property.[9] Even in the solid state, this TPE-o-Py displayed 

strong sky-blue emission with a maximum at 486 nm. The fluorescence quantum yields 

dramatically increased from 0.06 (in THF solution) to 0.58 (in the solid state). 

Insert Figure 3 in here 

The pyridine moiety is an excellent ligand which prefers to coordinate with transition and 

lanthanide metals in the periodic table;[15] also, pyridine-containing fluorescent probes show 

considerable affiliation to metal cations both in vitro and vivo.[16] Due to the N atom of 

pyridine being in the 2-position instead of the 4-position, the compound tended to form 

complexes more easily with lanthanide metals, by coordinating via the N atom and olefin 

moieties.[17] However, after adding an amount of Ir3+ and Ru3+ to a mixture of THF-H2O (fw = 

70%) solution containing TPE-o-Py (10 mM), no obvious fluorescence changes were 

observed. As with our previous application of isomer TPE-p-Py as a colorimetric and 
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ratiometric fluorescent probe to Fe3+, Al3+ and Cr3+,[11] herein ,we attempt to use TPE-o-Py as 

a “turn-on” fluorescence probe to detect trivalent cations (Fe3+, Al3+, and Cr3+). As Figure 3 

shows, there were no obvious changes in the fluorescence spectra of TPE-o-Py after mixing 

with various cations (such as Na+, K+, Ca2+, Mg2+, Al3+, Cd2+, Co2+, Cr2+, Cu2+, Fe2+, Hg2+, 

Mn2+, Ni2+, Sr2+, Zn2+, Al3+, and Cr3+, etc.) even at concentrations up to 10–5 M. Notably, only 

the response to Fe3+ was highly selective. It is noticeable that the fluorescence spectra of 

TPE-o-Py showed a gradual red-shift from 450 nm to 578 nm with increasing concentrations 

of Fe3+. These interesting results inspired us to deeply explore the inherent relationship 

between molecular conformation and coordination ability to the Fe3+ ion. 

According to our report,[11] the M3+ (Fe3+, Al3+, and Cr3+) was intensively hydrolyzed in 

water which leads to a protonated TPE-p-Py, which exhibits a red emission by an 

intramolecular charge transfer (ICT) effect. To prove this concept, the stability of TPE-o-Py 

in THF solution and at different pH values was investigated by UV-vis and PL spectra. As 

shown in Figure 4, the maximum absorption of TPE-o-Py was at 348 nm in pure THF. Also, 

the absorption profile presented slightly changes at different pH values (from 3.0 to 10.0). 

However, when pH < 3.0, the absorption spectra displayed a slight red-shift with decreased 

intensity. The absorption maximum was further shifted to 372 nm when pH = 2.0, indicating 

the TPE-o-Py could be protonated in the presence of strong acidic solution and leads to the 

intramolecular charge transfer (ICT) effect. More detailed information was observed in the PL 

spectrum. The PL spectrum of TPE-o-Py exhibits a broad peak at 472 nm when the pH value 

was higher than 3.0, and no change was observed except the emission intensity slightly 

decreased. However, when the pH < 3.0, a new peak appeared at 573 nm with the broad 

spectrum covering the whole visible range (400-650 nm). With the pH value progressivly 

decreasing to 1.0, the emission peak was further shifted to 595 nm with an increased emission 

intensity. Indeed, the pH value played a significant role in the absorption and emission profile 

of the TPE-o-Py molecule. 
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Insert Figure 4 in here 

Further, we carefully examined the position isomer effect of the N atom for the acid 

dissociation constant (pKa) of TPE-o-Py.[18] According to our calculations from emission 

intensity ratios versus pH value, the pKa value is 3.27 for TPE-o-Py.[19] This suggested that 

the PL spectra would be changed greatly when the pH was lower than 3.27. Figure S7 

illustrates the fluorescence titration experiments of TPE-o-Py with the Fe3+ in a mixture of 

THF-H2O (fw = 70%) solution. Upon addition of Fe3+ to 2.0×10–5 M, a remarkable red-shift of 

the emission maximum from 472 nm to 564 nm was observed. In addition, as the 

concentration of Fe3+ was increased, the PL intensity red fluorescence centered at 564 nm 

decreased with a slight red-shift from 564 to 573 nm due to the enhanced TICT effect. The PL 

spectra feature exhibited a slight red-shift before and after the addition of Al3+ (Figure 4c and 

Figure S8). In addition, the fluorescene probe can recognize Fe3+ with a considerable 

detection limit (1.04×10–5 M). The pKa values of the metal ions were calculated and 

summarized in Table 1. Only the pKa (2.56) of Fe3+ was lower than that of TPE-o-Py (3.27). 

This is due to the hydrolyzation of Fe3+ in water and the ionized hydrogen protons that result 

from decreasing the pH of solution to lower than 3.27. On the other hand, owing to the nature 

of the different solubility products (Ksp) of the metal ions, it was difficult to decrease the pH 

to 3.27 and protonate TPE-o-Py in aqueous solution in the presence of Al3+ or Cr3+. In 

addition, because of the pKa of 5.62 and 4.98 for 4-Vinylpyridine and 2-Vinylpyridine, 

respectively,[18] we could also infer that the pKa of TPE-p-Py was higher than that of 

TPE-o-Py, making it easy to protonate in hydrolyzing M3+ (Fe3+, Al3+, and Cr3+) solution.  

To explore the proton effect for the electronic coupling of the TPE-o-Py molecule, the 

optimized molecular geometries in the ground-state of TPE-o-Py and H+@TPE-o-Py were 

calculated by Gaussian 09W using the B3LYP/6-31G* basis set.[20] In TPE-o-Py and 

H+@TPE-o-Py, the olefin bridge caused planarization of the π-system (torsion angle <2.1o) 

between the pyridine ring within the TPE fragment. As a result, the HOMO of TPE-o-Py is 
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primarily located on the donor (i.e. pyridine moiety), and the LUMO is mostly delocalized on 

the TPE and partially on the extended π-conjugation. Whereas, in H+@TPE-o-Py, the HOMO 

is mainly spread over the whole molecule and the LUMO localized on the protonated pyridine 

moieties and C=C bond. This result indicates that the H+@TPE-o-Py underwent an ICT 

transition through an extending π-conjugation. Indeed, the HOMO−LUMO gap value of 

H+@TPE-o-Py (Eg = 1.69 eV) was lower than that of TPE-o-Py (Eg = 3.43 eV), leading to the 

red shift in absorption and emission spectra, which is in accord with our observations in the 

above experiments. 

2.4. Cell imaging 

Depending on the pH value effect, the high sensitivity and selectivity TPE-o-Py for 

detecting Fe3+ was then explored in vitro cellular imaging by confocal fluorescence 

microscopy. The HeLa and MCF-7 (breast cancer) cells were incubated with and without Fe3+ 

in medium for 2 h at 37 oC, and then washed three times with PBS buffer (pH = 7.4) to 

eliminate extra Fe3+. The treated living cells were re-incubated with TPE-o-Py (10 μM) for 

0.5 h, before directly imaging under a confocal fluorescence microscope without further 

washing. In Figure 5 and Figure S10, the confocal section images of HeLa and MCF-7 cells 

exhibit normal morphology with good health. In the absence of Fe3+, the HeLa cells emitted 

deep blue fluorescence after being incubated with TPE-o-Py, while in the presence of Fe3+, 

blue and red fluorescence appeared simultaneously. As the concentration of Fe3+ was 

increased, the intensity of red fluorescence also enhanced, in agreement with the observation 

in THF/water. Further, the TPE-o-Py showed excellent biological compatibility even at 80 μm 

concentration (Figure 6). The results revealed that TPE-o-Py could be potentially utilized as a 

biolabel to respond to Fe3+ both in HeLa and MCF-7 cells. 

Insert Figure 5 in here 

In addition, the cytotoxicity of TPE-o-Py was further evaluated using Calcein 

acetoxymethyl ester (AM)/propidium iodide (PI) assay (live/dead) kit and CCK8 assay. As 
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shown in Figure 6, The HeLa cells and MCF-7 cells exhibited green fluorescence at various 

concentrations of TPE-o-Py ranging from 0 to 80 µM. The cells distributed in radial or swirl 

patterns covering the plate surface and displayed normal cell morphology with spindle shapes, 

without dead cells appearing. The cell viability results showed that the viability of both cells 

remains close to 100% (> 95%) over 24 h at a concentration of 80 μM, indicating the low 

cytotoxicity of TPE-o-Py. 

Insert Figure 6 in here 

3. Conclusions 

A novel, ortho-substituted, pyridinyl-functionalized tetraphenylethylene TPE-o-Py was 

successfully synthesized via the Mizoroki-Heck coupling reaction. The AIE-active TPE-o-Py 

molecule exhibited weak emission in solution but strong fluorescence intensity in the 

aggregated state. Among various metal ions, only Fe3+ can induce the alteration in the 

fluorescence emission feature of TPE-o-Py from weak blue to strong red color. Furthermore, 

only the hydrolyzed Fe3+ can induce the protonation of TPE-o-Py, because of its lower acid 

dissociation constant (pKa) which was close to that of hydrolyzed Fe3+. This is the first 

example of a TPE derived fluorescence probe possessing characteristics including 

pH-dependence, turn-on capability, and ratiometric fluorescence for Fe3+ detection in live 

cells. The novel AIE-active TPE-o-Py is expected to be promising in the application of 

biological imaging and biomedical research in the future. 

 
4. Experimental Section 

General: 1H/13C NMR spectra (400 MHz) were recorded on a Mercury plus 400MHz NMR 

spectrometer respectively, and referenced to 7.26 and 77.0 ppm for chloroform-D solvent with 

SiMe4 as an internal reference: J-values are given in Hz. High-resolution mass spectra 

(HRMS) were taken on a GCT premier CAB048 mass spectrometer operating in a 

MALDI-TOF mode. Elemental analysis was performed on a ThermoFinnigan Flash EA1112 
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apparatus. FL spectra were recorded on a Hitachi 4500 spectrofluorometer. UV-vis absorption 

spectra were obtained on a Milton Ray Spectrofluorometer. Fluorescence quantum yields 

were measured using absolute methods. The quantum chemistry calculation was performed on 

the Gaussian 09W (B3LYP/6–31G* basis set) software package.  

Crystallography: Crystallographic data for TPE-o-Py were collected on a Bruker APEX 2 

CCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) in the 

ω-scan mode. Crystal data. C33H25N, M = 435.54, monoclinic, a = 36.579(7), b= 5.6069(11), c 

= 47.597(13) Å, β = 100.227(3)°, U = 9607(4) Å3, T = 150(2) K, space group I2/a, Z = 16, 1.7 

≤ θ ≤ 22.5°, 38508 reflections measured, 6237 unique (Rint = 0.067), which were used in all 

calculations. The final R = 0.089 (4561 observed data with F2 > 2σ(F2), wR(F
2
) = 0.212 (all 

data) for 690 parameters, S = 1.04. Largest difference electron density features within ±0.64 e 

Å–3. H atoms were constrained in a riding model. There are two molecules in the asymmetric 

unit. Both alkene groups were modelled as two-fold disordered in both molecules with 

restraints on anisotropic displacement parameters. The major component occupation factors at 

the following sites were as follows: at C(1)/C(2) = 54(2)%; at C(9)/C(10) = 71.9(16)%; at 

C(34)/C(35) = 65(2)%; at C(42)/C(43) = 63.7(16)%. The disorder arises because the space 

occupied by these or adjacent groups is similar in two different orientations. CCDC 1836698 

contains the supplementary crystallographic data for this paper. These data can be obtained 

free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

Materials: Unless otherwise stated, all reagents used were purchased from J&K Chemicals or 

Sigma-Aldrich and were used without further purification. The solvent tetrahydrofuran (THF) 

was distilled prior to use. The 1-(4-Bromophenyl)-1,2,2-triphenylethylene was prepared as 

described previously.[12] The stock solutions of metal ions were prepared from CdCl2·2.5H2O, 

CoCl2·6H2O, CuSO4, FeCl3, HgCl2, LiCl, MgCl2·6H2O, NiCl2·6H2O, Pb(NO3)2, 

Zn(NO3)2·7H2O, AgNO3, AlCl3, CrCl3, IrCl3∙xH2O, KCl, NaCl and NH4Cl with doubly 

http://www.ccdc.cam.ac.uk/data_request/cif
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distilled water. Dulbecco modified eagle medium (DMEM), fetal bovine serum (FBS), 

penicillin G (100 U mL−1), streptomycin (100 U mL−1), and 0.25% trypsin-0.53 mM EDTA 

solution were from Gibco (USA). HeLa cells and MCF-7 cells were from the Cell Bank of 

Peking Union Medical College (China). Calcein AM/ PI was from Dojindo (Japan). 

Synthesis of compound (E)-2-(4-(1,2,2-triphenylvinyl)styryl) pyridine (TPE-o-Py): Into a 50 

mL, two necked, round-bottom flask were added 

(2-(4-bromophenyl)ethene-1,1,2-triyl)tribenzene (495 mg, 1.2 mmol, 1.0 eq), potassium 

phosphate (429 mg, 2 mmol, 2 eq), palladium(II) acetate (14 mg, 0.06 mmol, 0.05 eq). The 

flask was filled with nitrogen. Dimethylacetamide (3 mL) and 2-vinylpyridine (0.2 mL, 1.8 

mmol, 1.5 eq) were injected to the flask. The mixture was warmed to 145 oC for 72 h. After 

cooling to room temperature, the mixture was poured into 50 mL water and extracted with 

DCM (50 mL × 2). The collected organic layer was filtered and washed with brine twice, then 

dried over anhydrous magnesium sulfate. After solvent evaporation, the crude product was 

purified by silica-gel column chromatography using DCM/methanol (15:1 by volume) as 

eluent. A yellow solid of (E)-2-(4-(1,2,2-triphenylvinyl)styryl)pyridine (TPE-o-Py) was 

obtained. (320 mg, 61%). 1H NMR (400 MHz, CDCl3): δH = 7.01-7.12 (m, 19H), 7.30-7.34 

(m, 3H), 7.52 (d, J = 16.0 Hz, 1H), 7.63 (t, 1H), 8.57 (d, J = 4.0 Hz, 1H) ppm; 13C NMR (100 

MHz, CDCl3): δC = 155.07, 149.03, 143.36, 143.05, 143.01, 142.94, 140.69, 139.90, 135.86, 

134.02, 131.82, 131.11, 130.78, 130.72, 127.15, 127.09, 127.01, 125.95, 125.90, 125.83, 

121.33, 121.30 ppm; HRMS (MALDI−TOF) (ESI): m/z [M + H]+ calcd for C33H25N 

435.1987 [M+]; found 436.2. 

Cell fluorescence: HeLa cells and MCF-7 cells were incubated in DMEM medium 

supplemented with 10% FBS at 37°C in a humidified atmosphere of 5% CO2, which were 

seeded in confocal dishes (105 cells/well) in 2 mL culture medium. After incubation 24 h, the 

cells were treated with Fe3+ solutions (0 μM, 25 μM and 50 μM) for 2h and washed 3 times 

with PBS buffer (pH = 7.4) to remove any excess Fe3+. The treated HeLa cells and MCF-7 
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cells were then incubated with TPE-o-Py (10 μM) in medium for 0.5 h. Then the HeLa cells 

and MCF-7 cells were washed with PBS buffer 3 times, the cells were imaged by a confocal 

laser scanning microscope (CLSM) (LSM710, Carl Zeiss, Germany). 

Cytotoxicity Assay of TPE-o-Py: Calcein AM/PI kit : Calcein AM/PI kit was used to analyze 

the cell viability and morphology of HeLa cells and MCF-7 cells cultured in medium (DMEM 

+ 10% FBS + 1% PS) with different concentrations of TPE-o-Py (0, 5, 10, 20, 40, 80 µM). 

The cells (1 × 105 cells mL−1) were seeded in confocal dishes and incubated for 24 h (37 °C, 

5% CO2 humidified atmosphere). The medium was removed, and then different 

concentrations of TPE-o-Py were added and the cells were incubated for another 24 h. The 

culture medium was removed from the dishes and the cells were washed with PBS twice, 500 

µL calcein AM/PI mixed solution was added into each well and the mixture was incubated for 

20 min. Calcein AM/PI mixture was removed from the dish, the cells were washed with PBS 

once and 200 µL PBS was added before observing by a CLSM. 

CCK8 assay: HeLa cells and MCF-7 cells were cultured on 96-well plates (1 × 104 cells 200 

mL−1) for 24 h. The culture medium was removed and 200 µL medium containing different 

concentrations of TPE-o-Py (0, 5, 10, 20, 40, 80 µM) was added and incubated for 24 h. The 

culture medium was removed and 100 µL CCK8 medium (90 µL medium and 10 µL CCK8 

solution) (Dojindo, Japan) was added into each well and the samples were incubated for 1 h, 

then optical density (OD) of the samples was measured on a microplate reader (Tecan, infinite 

M200, Switzerland) at 450 nm. The results were analyzed by OriginPro 8.0. 
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Supporting Information is available from the Wiley Online Library or from the author. 
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Scheme 1 the synthetic route to TPE-o-Py. 

 

 

Figure 1 (left) Crystal structure of TPE-o-Py and (right) multiple C-H···π interactions 
between neighboring molecules. Minor disorder components have been omitted for clarity. 
 

   

Figure 2 A) PL spectra of TPE-o-Py in THF/water mixtures with different water fractions. B) 
Plots of I/I0 values versus the compositions of THF/water mixtures, in which I0 is the PL 
intensity in pure THF solution. Inset: photographs in THF/water mixtures (fw = 90%) taken 
under 365 nm UV irradiation. 
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Figure 3. (A) PL spectra of TPE-p-Py in THF and in THF/water mixture in the presence of 
700 μM of different metal cations. (B) Photographs of the above solutions taken under UV 
light (λex = 365 nm) and daylight, respectively. Concentration of [TPE-o-Py] = 10 μM. 
[I don’t understand the comment about the photographs, as I can only see one photograph of 
each solution, so how can there be both a photograph taken under UV light and one taken in 
daylight? ] 
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Figure 4. (A) PL spectra of TPE-o-Py (10 μM) in different pH value buffers. (B) Plot of 
I595/I472 (ratio of intensity at 595 nm to intensity at 472 nm) versus pH value, insert: 
photographs in different pH value (pH = 1 and pH = 14) taken under 365 nm UV irradiation. 
(C) Normalization of PL spectra of TPE-o-Py (10 μM) upon addition of Fe3+ and Al3+ (100 
μM) in THF/H2O (fw = 70%) at 298 K (λex = 350 nm). [There are no inserted photographs for 
B] 
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Figure 5. Confocal fluorescence microscopy images of HeLa cells incubated with 0 μM (a), 
25 μM (b) and 50 μM (c) Fe3+ for 2 h, followed by further incubation with TPE-o-Py (10 μM) 
for 0.5 h. The fluorescence was recorded under 440-480 nm (a2, b2, c2) and 620-700 nm (a3, b3, 
c3) emission wavelength (the scale bar is equal to 20 μm). 
 

 

Figure 6 Fluorescence images of calcein AM/PI stained HeLa cells and MCF-7 cells (left 
panel) and CCK8 assay (right panel) of HeLa cells and MCF-7 cells treated by different 
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concentrations of TPE-o-Py. The scale bars equal to 100 μm, and the fields of vision (left 
panel) were randomly selected. 

 

Table 1 The Ksp and pKa of differenct metal ions.[18] 

Metal ions Ksp pKa Metal ions Ksp pKa 

Fe(OH)3 4×10
–38

 2.56 Zn(OH)2 1.2×10
–17

 9.55 

Al(OH)3 1.3×10
–33

 4.07 Cu(OH)2 2.2×10
–20

 8.64 

Cr(OH)3 6.3×10
–31

 4.96 Pb(OH)2 1.2×10
–15

 10.22 

Fe(OH)2 8.0×10
–16

 10.16 Mg(OH)2 1.8×10
–11

 11.61 

Co(OH)2 1.6×10
–15

 10.26 Ca(OH)2 5.5×10
–6

 13.44 

[TPE-o-Py] = 1×10
–5 

M 
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The table of contents entry: The article presents an aggregation induced emission (AIE) 

featured iron (III) probe from ortho-substituted pyridinyl-functionalized tetraphenylethylene 

(TPE-o-Py) by taking advantage of the position-dependent substituent effects. It displayed 

high sensitivity and selectivity toward iron (III) detection. The molecular recognition 

mechanism arises from the position isomer of ortho-substitution of TPE-o-Py which has a low 

acid dissociation constant (pKa) that is close to that of hydrolyzed Fe3+. Importantly, 

TPE-o-Py as a light-up fluorescence probe could be employed for iron (III) sensing in living 

cells with a pronounced red-shift in fluorescence color. 

 
Keyword: aggregation-induced emission, molecular recognition, iron (III), acid dissociation 
constant, cell imaging  
 
Xing Feng, Ying Li, Xuewen He, Haixiang Liu, Zheng Zhao, Ryan T. K. Kwok, Mark R. J. 
Elsegood, Jacky W. Y. Lam, Ben Zhong Tang* 

 
A Substitution-dependant Light-up fluorescence probe for selectively detecting Fe

3+
 ions 

and its cell imaging application 
 

 
 
 

 

 


