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Abstract: Compliant mechanisms with complex topology have previously been employed in var-
ious precision devices due to the superiorities of high precision and compact size. In this paper,
a substructure condensed approach for kinetostatic analysis of complex compliant mechanisms is
proposed to provide concise solutions. In detail, the explicit relationships between the theoretical
stiffness matrix, element stiffness matrix, and element transfer matrix for the common flexible beam
element are first derived based on the energy conservation law. The transfer matrices for three
types of serial–parallel substructures are then developed by combining the equilibrium equations of
nodal forces with the transfer matrix approach, so that each branch chain can be condensed into an
equivalent beam element. Based on the derived three types of transfer matrices, a kinetostatic model
describing only the force-displacement relationship of the input/output nodes is established. Finally,
two typical precision positioning platforms with complex topology are employed to demonstrate the
conciseness and efficiency of this modeling approach. The superiority of this modeling approach
is that the input/output stiffness, coupling stiffness, and input/output displacement relations of
compliant mechanisms with multiple actuation forces and complex substructures can be simultane-
ously obtained in concise and explicit matrix forms, which is distinct from the traditional compliance
matrix approach.

Keywords: compliant mechanisms; flexible elements; element transfer matrix; transfer matrix
approach

1. Introduction

With the superiorities of high precision, no clearance, no friction, and no assem-
bly [1–4], compliant mechanisms have been increasingly employed in the fields of preci-
sion positioning [5–8], precision machining [9–12], and micro-electro mechanical systems
(MEMS) [13,14], and so forth. Compared with conventional rigid-body mechanisms, com-
pliant mechanisms convert energy, forces, and motion using the elastic deformations of
flexible elements. Both kinematic and elasto-mechanical behaviors need to be considered
simultaneously. Therefore, the design and analysis of compliant mechanisms are much
more complicated and labor intensive than those of conventional rigid-body mechanisms.

In order to accurately analyze compliant mechanisms, it is crucial to establish a concise
and efficient kinetostatic model for performance analysis, optimization design, and motion
control. Finite element analysis is a common and effective approach for the kinetostatic
analysis of compliant mechanisms with arbitrarily complex topology. In this approach,
compliant mechanisms are first discretized into a large number of flexible elements. The
kinetostatic model can then be derived based on the topology relationships of the flexible
elements [15,16]. However, it fails to provide a concise and explicit motion control model
and is also inapplicable for fast performance prediction due to the considerable degrees of
freedom of the model. Hence, a number of studies focusing on this area have been carried
out over the past few decades.
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To develop the kinetostatic models for compliant mechanisms with small deflections,
numerous modeling approaches have been proposed, for instance, the elastic beam the-
ory [17,18], Castigliano’s second theorem [19,20], the compliance matrix approach [21–23],
and the transfer matrix approach [24–26]. According to the literatures, the elastic beam
theory and Castigliano’s second theorem are the most common ways for kinematic and
static analyses of various flexure hinges and compliant mechanisms with relatively simple
topology. Ma [27] simplified the parallel-type compliant amplifier into a rhombic-type
amplifier and developed the analytical kinetostatic model for this amplifier by employing
the elastic beam theory. Subsequently, the elastic beam theory was increasingly applied
in the design and analysis of amplifying mechanisms. Lobontiu et al. [28,29] derived the
stiffness models of various flexure hinges based on Castigliano’s second theorem. Moreover,
the theoretical models of input stiffness, amplification ratio, and the output stiffness of
bridge-type amplifying mechanisms were established by this approach in [19]. However,
the modeling approaches based on the elastic beam theory or Castigliano’s second theorem
require tedious internal force analysis, which is inapplicable for compliant mechanisms
with complex topology. Compared with those two approaches, the compliance matrix
approach can avoid the analysis of tedious internal forces. Therefore, the compliance
matrix approach is particularly suitable for kinetostatic analysis of compliant mechanisms
with complex topology. It was used to develop the stiffness models for compliant mech-
anisms with series and parallel topology in [30]. Additionally, Li and Xu [31,32] applied
the compliance matrix approach to derive the analytical kinetostatic models for various
compliant precision positioning manipulators. It is worth mentioning that the forces and
corresponding displacements are at the same point. Lobontiu [33,34] established a series
of kinetostatic models of serial–parallel compliant mechanisms with complex conditions,
such as multi-point force loads and complex branched substructures, by employing the
compliance matrix approach. However, the output stiffness, input stiffness, and coupling
stiffness need to be respectively modeled [16]. As a result, the kinetostatic modeling pro-
cedure will become complicated for complex serial–parallel topology. In order to resolve
this problem, a matrix displacement approach based on the nodal forces equilibrium equa-
tions was proposed to establish the kinetostatic models of compliant mechanisms with
serial–parallel topology [24]. To avoid the solution of labor intensive equilibrium equations
of nodal forces, an energy-based approach was proposed in our previous research [35].
However, this modeling approach is still cumbersome and has a large number of elements.
In view of this, a two-port dynamic stiffness model for complex serial–parallel topology
was developed based on the transfer matrix approach [25]. It is worth mentioning that this
modeling approach is only suitable for specific topology and the element dynamic stiffness
matrix is very difficult to formulate.

As a result, it is still necessary to further improve the conciseness and accuracy of the
kinetostatic models for complex serial–parallel compliant mechanisms. This paper aims to
extend our previous research [35] to develop a concise and efficient kinetostatic model with
a low number of elements for compliant mechanisms with complex topology. The novelty
of this paper is to propose a substructure condensed approach for the kinetostatic modeling
of compliant mechanisms with complex topology and realize the explicit expression of in-
put/output displacement relations with concise and matrix forms. The major contributions
of this paper are summarized as follows. The explicit relationships between the theoretical
stiffness matrix, element stiffness matrix, and element transfer matrix of the common flexi-
ble beam element are established via the energy conservation law. Similarly, the transfer
matrices for three types of serial–parallel substructures are developed by combining the
equilibrium equations of nodal forces with the transfer matrix approach. Additionally,
kinematic and static performance analyses such as input/output stiffness, coupling stiff-
ness, and the input/output displacement relation of complex compliant mechanisms can
be simultaneously obtained.

This paper is organized as follows. Section 2 presents the general expression of the
element transfer matrix for the common flexible beam element derived by employing the
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energy conservation law. The general kinetostatic model describing the force-displacement
relationships of the input/output nodes for complex serial–parallel topology is proposed
by combining the equilibrium equations of nodal forces with the transfer matrix approach
in Section 3. Two typical precision positioning platforms are employed to validate the con-
ciseness and accuracy of the proposed modeling approach in Section 4. Finally, conclusions
are drawn in Section 5.

2. General Expression of Element Transfer Matrix for the Common Flexible Beam
Element

As the basic element of compliant mechanisms, the compliance matrices of flexible
beams with equal-section or variable-section have been extensively studied. For example,
the compliance matrices of sheet, elliptic, and hyperbolic flexure hinges have been estab-
lished based on the elastic beam theory and Castigliano’s second theorem. As for flexible
beams with equal-section, the element stiffness matrices can be calculated by employing the
finite element approach. However, further investigation focusing on the general expression
of the element transfer matrix for the common flexible element still needs to be carried out.
As shown in Figure 1, the flexible beam element (i) has node j and node k, with six degrees
of freedom per node. The force-displacement relationship of node j and node k in the local
coordinate system is then obtained based on the elastic beam theory:{

Fe
i,j

Fe
i,k

}
= Ke

i

{
xe

i,j
xe

i,k

}
(1)

where Fe
i,j = [Fuj, Fvj, Fwj, Mxj, Myj, Mzj]

T and Fe
i,k = [Fuk, Fvk, Fwk, Mxk, Myk, Mzk]

T are, re-
spectively, the nodal forces at the free end of the flexible beam element (i).
xe

i,j = [uj, vj, wj, θxj, θyj, θzj]
T and xe

i,k = [uk, vk, wk, θxk, θyk, θzk]
T are the nodal displacements

at the free the end of the flexible beam element (i). Ke
i is the 12 × 12 element stiffness matrix

in the local coordinate system.
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Figure 1. Nodal displacements and nodal forces of flexible elements: (a) the flexible beam with equal-
section; (b) the flexible beam with variable-section; (c) the local and reference coordinate systems. 
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Figure 1. Nodal displacements and nodal forces of flexible elements: (a) the flexible beam with
equal-section; (b) the flexible beam with variable-section; (c) the local and reference coordinate
systems.
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Rewriting the above equations into a block submatrices form, Equation (1) can be
further expressed as: {

Fe
i,j

Fe
i,k

}
=

[
Ke

i,1 Ke
i,2

Ke
i,3 Ke

i,4

]{
xe

i,j
xe

i,k

}
(2)

where Ke
i,1, Ke

i,2, Ke
i,3, and Ke

i,4 are block submatrices of the element stiffness matrix in the
local coordinate system.

This element can be seen as a flexible beam when the left end of the flexible beam
element is clamped. The force-displacement relationship of node k can be obtained from
Equation (2).

Fe
i,k = Ke

i,4xe
i,k = Kixe

i,k (3)

where Ki = Ke
i,4 is the theoretical stiffness matrix of this flexible beam.

Equation (3) can be further rewritten as below:

xe
i,k = CiFe

i,k (4)

where Ci = Ki
−1 is the theoretical compliance matrix of the flexible beam. The detailed

expression of the compliance matrix can be derived from previous investigations [36,37]
and expressed as below:

Ci =



Cu−Fu 0 0 0 0 0
0 Cv−Fv 0 0 0 Cv−Mz

0 0 Cw−Fw 0 Cw−My 0
0 0 0 Cθx−Mx 0 0
0 0 Cθy−Fw 0 Cθy−My 0
0 Cθz−Fv 0 0 0 Cθz−Mz


(5)

For the flexible beam element (i), the displacement at node k equals the linear superpo-
sition of the elastic deformation under the external force and the displacement at node j.
Hence, the nodal displacement of node k can be expressed by Equation (6).

xe
i,k = ∆xe

i + [Ad]xe
i,j (6)

where ∆xe
i is the elastic deformation of the flexible beam element (i). [Ad] is a 6 × 6

coordinate transformation matrix, which can transfer the nodal displacement at node j
from the coordinate system oxjyjzj to the coordinate system oxkykzk, as shown in Figure 1,
and can be expressed as:

[Ad] =
[

R D(d)R
0 R

]
(7)

where R is a 3 × 3 rotation transformation matrix of the coordinate system oxjyjzj to the
coordinate system oxkykzk. d = [dx, dy, dz]T is the position vector of node j expressed in the
coordinate system oxkykzk. D (d) is a skew-symmetric matrix of the position vector d and
can be obtained as:

D(d) =

 0 −dz dy
dz 0 −dx
−dy dx 0

 (8)

The flexible element can be considered as a cantilever beam when the left end is
clamped while the right end is free, and the elastic deformation at the free end is ∆xe

i . Based
on the energy conservation law, the potential strain energy stored in the flexible beam
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element is equal to the potential strain energy stored in the cantilever beam. Therefore, the
potential strain energy stored in the flexible beam element (i) can be derived as below:

Ui = 1
2 ∆xeT

i Ki∆xe
i =

1
2 (x

e
i,k − [Ad]xe

i,j)
TKi(xe

i,k − [Ad]xe
i,j)

= 1
2

[
xeT

i,j xeT
i,k

][
[Ad]TKi[Ad] −[Ad]TKi
−Ki[Ad] Ki

][
xe

i,j
xe

i,k

]
= 1

2 xeT
i Ke

i xe
i

(9)

The element stiffness matrix, Ke
i , of the flexible beam element (i) in the local coordinate

system can then be obtained as below:

Ke
i =

[
[Ad]TKi[Ad] −[Ad]TKi
−Ki[Ad] Ki

]
(10)

According to the above equation, Equation (1), which describes the force-displacement
relationship of node j and node k in the local coordinate system, can be further given as
follows: {

Fe
i,j

Fe
i,k

}
=

[
[Ad]TKi[Ad] −[Ad]TKi
−Ki[Ad] Ki

]{
xe

i,j
xe

i,k

}
(11)

Rewriting Equation (11), the following relationship can be obtained:{
xe

i,k
Fe

i,k

}
= Te

i

{
xe

i,j
Fe

i,j

}
=

[
[Ad] −Ki

−1[Ad]−T

0 −[Ad]−T

]{
xe

i,j
Fe

i,j

}
(12)

where Te
i is the element transfer matrix of the flexible beam element (i) in the local coordinate

system. The element transfer matrix can also describe the force-displacement relationship
for two nodes at the free end in the local coordinate system.

Equations (11) and (12) establish the explicit relationships between theoretical stiffness
matrix, element stiffness matrix, and element transfer matrix for the common flexible beam
element. It can be observed that the element transfer matrix only depends on the coordinate
transformation matrix [Ad] and the theoretical stiffness matrix Ki. In order to reduce
the degrees of freedom of the kinetostatic model, Ling [24] developed the kinetostatic
model of serial–parallel compliant mechanisms by employing the transfer matrix approach.
However, the author did not establish the explicit relationship between the theoretical
stiffness matrix and the element transfer matrix. Compared with that approach, the general
expression of the element transfer matrix with respect to the theoretical stiffness matrix
for the common flexible element is established based on the energy conservation law.
The explicit relationships between the theoretical stiffness matrix, the element stiffness
matrix, and the element transfer matrix for the common flexible beam element are shown
in Figure 2.

Due to this element stiffness matrix being developed in the local coordinate system,
it needs to be converted into the reference coordinate system. This force-displacement
relationship of node j and node k in the reference coordinate system is obtained as below:{

xi,k
Fi,k

}
= Ti

{
xi,j
Fi,j

}
(13)

where xi,j, xi,k, and Fi,j, Fi,k are the nodal displacements and nodal forces at two free ends
in the reference coordinate system, respectively. Ti is a 12 × 12 element transfer matrix in
the reference coordinate system and can be calculated as:

[Ti] = [Tri]
T[Te

i ][Tri] (14)
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where Tri is a 12 × 12 rotation transformation matrix, which can be expressed as below:

Tri =


Ri 0 0 0
0 Ri 0 0
0 0 Ri 0
0 0 0 Ri

 (15)

where Ri is a 3× 3 coordinate rotation matrix of the local coordinate system to the reference
coordinate system.
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3. Kinetostatic Modeling Based on the Substructure Condensed Approach
3.1. Transfer Matrices for Three Types of Substructures

In most cases, compliant mechanisms usually consist of flexible beams (equal-section
flexible beam), flexure hinges (variable-section flexible beam), and lumped masses with
series and/or parallel connections. For example, Figure 3 provides several typical compli-
ant mechanisms with complex topology. The common characteristics of these compliant
mechanisms are that the connection relationships can be divided into three types, namely
series substructure, closed-loop parallel substructure, and opened-loop parallel substruc-
ture. Figure 4 illustrates the topology of these three types of connections abstracted from
Figure 3.
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For the closed-loop parallel substructure in Figure 4a, it can be condensed into an
equivalent beam when the j-end of the equivalent beam element is clamped. This equivalent
beam consists of m branches with a parallel connection where each branch consists of n
flexible elements with a series connection. Based on the compliance matrix approach, the
compliance matrix of the t-th parallel branch can be expressed as:

Ct =
n

∑
g=1

(
[Ad]gKg

−1[Ad]Tg
)

(16)

where Kg is the theoretical stiffness matrix of the g-th flexible beam of the t-th parallel
branch. [Ad]g is a 6 × 6 coordinate transformation matrix, which can be expressed by
Equation (7).

In the same way, the theoretical stiffness matrix of the equivalent beam is obtained as
follows:

Ki =
m

∑
t=1

(
[Ad]tCt[Ad]t

T
)−1

(17)

According to Equation (12), the element transfer matrix of the equivalent beam element
(i) in the local coordinate system can be expressed as:

Te
eq =

[
[Ad] −Ki

−1[Ad]−T

0 −[Ad]−T

]
(18)

By performing rotation transformation, the element transfer matrix Teq of the equiv-
alent beam element (i) in the reference coordinate system can be obtained. The force-
displacement relation of node j and node k of equivalent beam element (i) in the reference
coordinate system can then be expressed as:{

xi,k
Fi,k

}
= Teq

{
xi,j
Fi,j

}
(19)

Therefore, the closed-loop parallel substructure can be condensed into an equivalent
beam element by employing the compliance matrix approach.

For the opened-loop parallel substructure, the relationships between the nodal dis-
placement/force at node j of flexible element (i + 1) and node k of flexible element (i) can be
obtained based on the equilibrium equations of nodal forces.

Situations 1(input node) :
{

xi+1,j
Fi+1,j

}
=

[
E6×6 06×6
06×6 −E6×6

] E6×6 06×6
n
∑

t=1
Ki −E6×6

{ xin
Fin

}
= SQin,i

{
xin
Fin

}

Situations 2(other node) :
{

xi+1,j
Fi+1,j

}
=

[
E6×6 06×6
06×6 −E6×6

] E6×6 06×6
n
∑

t=1
Ki E6×6

{ xi,k
Fi,k

}
= SQi

{
xi,k
Fi,k

} (20)

where E6×6 is a 6 × 6 identity matrix and 06×6 is a 6 × 6 zero matrix. xin and Fin are input
displacement and input force, respectively. Qin,i and Qi indicate the force summation.
S is a transfer matrix, which can transfer the force and displacement at node k of flexible
element (i) to node j of the flexible element (i).

Therefore, the parallel substructure, such as that in Figure 4a,b, can be condensed into
an equivalent beam element based on the compliance matrix approach and nodal forces
equilibrium equations.
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As to the series substructure, the relationship between the nodal displacement/force at
node j of the flexible element (i + 1) and at node k of the flexible element (i) can be obtained
in a matrix form based on Newton’s third law.{

ui+1,j
Fi+1,j

}
=

[
E6×6 06×6
06×6 −E6×6

]{
ui,k
Fi,k

}
= S

{
ui,k
Fi,k

}
(21)

Substituting Equation (19) into Equation (21) and substituting Equation (13) into
Equations (20) and (21), the relationship between the nodal displacement/force at node j of
flexible element (i + 1) and at node j of flexible element (i) can be calculated as follows:

Closed-loop parallel substructure :

{
ui+1,j

Fi+1,j

}
= (STeq)

{
ui,j

Fi,j

}

Opened-loop parallel substructure 1 :

{
ui+1,j

Fi+1,j

}
= (SQin,i)

{
uin

Fin

}

Opened-loop parallel substructure 2 :

{
ui+1,j

Fi+1,j

}
= (SQiTi)

{
ui,j

Fi,j

}

Serise substructure :

{
ui+1,j

Fi+1,j

}
= (STi)

{
ui,j

Fi,j

}
(22)

3.2. Establishing Kinetostatic Model

To better describe the proposed modeling approach, a general topology for typical
compliant mechanisms with complex connections abstracted from Figure 3 is employed,
as shown in Figure 5, which can represent most cases in applications. The compliant
mechanism consists of three branch chains, each of which comprises flexible elements and
lumped masses with series and/or parallel connections. The lumped mass with rotational
motion is simplified to one node at the rotary center and three sub-nodes at the connection
nodes with three branch chains, which is shown in Figure 5. The proposed modeling
procedure consists of five steps:
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3.2.1. Discretizing and Numbering

The flexible beams of three branch chains are denoted from (1) to (19), and the con-
nection nodes are numbered from 1 to 12, in which all clamped nodes are denoted as 0.
The input forces are denoted as f in1, f in2, and f in3. The input displacements are denoted as
xin1, xin2, and xin3. The output force (external force) and output displacement of the output
platform are, respectively, numbered as f out and xout. These three sub-nodes are numbered
as 6(1), 6(2), and 6(3).
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3.2.2. Calculating Transfer Matrices of Flexible Beams and Lumped Mass

For the common flexible element with nodes on the axis of symmetry, the element
transfer matrix in the local coordinate system can be formulated using Equation (12).
However, the flexible element whose nodes are not on the axis of symmetry, such as the
flexible element in Figure 3d, are widely used in compliant mechanisms. Their element
transfer matrix cannot be calculated directly based on Equation (12). As shown in Figure 6a,
the nodal forces at node 1 and node 2 of the flexible element in regard to node j and node k
can be obtained by performing the coordinate transformation matrix.

Fe
i,1= [Ad1]

−TFe
i,j, Fe

i,2= [Ad2]
−TFe

i,k (23)

where [Ad1] and [Ad2] are coordinate transformation matrices from the coordinate systems
ojxjyjzj and okxkykzk into the coordinate systems o1x1y1z1 and o2x2y2z2, respectively.
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Similarly, the nodal displacements at node 1 and node 2 of the flexible element (i) in
regard to node j and node k can be expressed as:

xe
i,1= [Ad1

]
xe

i,j, xe
i,2= [Ad2

]
xe

i,k (24)

The force-displacement relationship of node 1 and node 2 of this element in the local
coordinate system can then be obtained based on the elastic beam theory.{

Fe
i,1

Fe
i,2

}
=

[
[Ad]TKi[Ad] −[Ad]TKi
−Ki[Ad] Ki

]{
xe

i,1
xe

i,2

}
(25)

By substituting Equations (23) and (24) into Equation (12), the force-displacement
relationship of the flexible element (i) in regard to node j and node k can be transferred to:{

xe
i,k

Fe
i,k

}
=

[
[Ad2]

−1[Ad][Ad1] −[Ad2]
−1Ki

−1[Ad]−T[Ad1]
−1

0 −[Ad2]
T[Ad]−T[Ad1]

−T

]{
xe

i,j
Fe

i,j

}
(26)

For the lumped mass with only translational motion, such as the output platforms
in Figure 3a,c, it can be regarded as a node. However, the lumped mass with rotational
motion, such as the output platforms in Figure 3b,d, cannot be simply regarded as a node.
As shown in Figure 6b, it is equivalent to one node at its rotary center and three sub-nodes
at the connection nodes with three branch chains. It should be noted that the displacement
of sub-node 1(1), sub-node 1(2), and sub-node 1(3) is not equal to the displacement of node 1
due to the rotational motion. The nodal displacement and nodal force at the rotary center
can be transferred to three sub-nodes at the connection nodes with three branch chains by
performing a coordinate transformation matrix. The nodal displacement and nodal force of
the lumped mass are then contained in the element transfer matrix of the adjacent flexible
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element. Therefore, the issue of the lumped mass with rotational motion in compliant
mechanisms is solved.

3.2.3. Calculating the Transfer Matrix of Each Branch Chain

The compliant mechanism consists of three branch chains, and each branch chain
includes one input node and one output node. According to the three connection types, the
transfer matrix of each branch chain from input node to output node can be calculated as:

Tch1 = (T8)(STeq)(ST2)(SQin,1)
Tch2 = (T13)(ST12)(SQ10T10)(SQin,2)
Tch3 = (T19)(ST18)(SQ15T15)(SQin,3)

(27)

where Ti and S are transfer matrices and given by Equations (12), (26), and (21). Qi, Qin,1,
Qin,2, and Qin,3 are summation matrices, which can be expressed as:

Qin,1 =

[
E6×6 06×6

K1 + K2 −E6×6

]
, Qin,2 =

[
E6×6 06×6
K9 −E6×6

]
, Qin,3 =

[
E6×6 06×6
K14 −E6×6

]
Q10 =

[
E6×6 06×6
K11 E6×6

]
, Q15 =

[
E6×6 06×6

K16 + K17 E6×6

]
(28)

3.2.4. Establishing the Kinetostatic Model of the Compliant Mechanism

Through the above analysis, the general topology of the typical compliant mechanisms
in Figure 5 can be condensed into the equivalent topology including only the input node
and the output node, as shown in Figure 7. Based on the transfer matrices of three branch
chains, the force-displacement relationships of three equivalent beam elements can be
obtained as: {

fi,j
fi,k

}
=

[
ki,1 ki,2
ki,3 ki,4

]{
xin,j
xi,k

}
(29)

where ki,1, ki,2, ki,3, and ki,4 (i = 1,2,3) are block sub-matrices and can be obtained from the
transfer matrix of each branch chain, Tchi.
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in in
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               + +    

k kf x
k kf x

k kf x
k k k k k kf x
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Taking the input/output nodes as research objects, the input/output force-displacement
relations of the compliant mechanism can be calculated based on the equilibrium equations
of nodal forces.

fin1 = k1,1xin1 + k1,2xout
fin2 = k2,1xin2 + k2,2xout
fin3 = k3,1xin3 + k3,2xout
fout = k1,3x1 + k2,3xin2 + k3,3xin3 + (k1,4 + k2,4 + k3,4)xout

(30)
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Rewriting the above equations into a matrix form, the following kinetostatic model of
compliant mechanisms with complex topology can be expressed as:

fin1
fin2
fin3
fout

 =


k1,1 0 0 k1,2

0 k2,1 0 k2,2
0 0 k3,1 k3,2

k1,3 k2,3 k3,3 k1,4 + k2,4 + k3,4




xin1
xin2
xin3
xout

 (31)

It can be seen from the modeling process that a kinetostatic model of compliant mecha-
nisms with complex topology can be easily established with a low number of elements from
the point of view of input/output nodes while using simple steps and concise equations.

3.2.5. Calculating the Kinetostatic Performances of the Compliant Mechanism

Based on this kinetostatic model, the kinetostatic performances, such as input/output
stiffness, coupling stiffness, and input/output displacements relations can be derived in
concise and explicit matrix forms. Depending on the applied input and output forces, the
following two cases will be explained in detail, as follows:

(1) When external loads are applied to input nodes, i.e., fini 6=0 (i = 1,2,3) and fout = 0

The relationship between the output displacement and input forces can be obtained
from Equation (31) in the form of an explicit matrix.

xout =
[
C1 C2 C3

]
fin1
fin2
fin3

 (32)

where C1, C2, and C3 are output coupling compliances, which are used to describe the
output displacement under the input forces. Moreover, C1, C2, and C3 can also be utilized
to analyze the output coupling of the compliant mechanism.

Similarly, the force/displacement relations of input nodes can be expressed as follows:
xin1
xin2
xin3

 =

C1,1 C1,2 C1,3
C2,1 C2,2 C2,3
C3,1 C3,2 C3,3


fin1
fin2
fin3

 (33)

where Cij (i = j) is the input compliance, which can be utilized to obtain the required input
force of the compliant mechanism. This is crucial for the design and selection of actuators.
Cij (i 6=j) is the input coupling compliance, which describes the displacement coupling of
the input forces of the compliant mechanism. Hence, it can also be utilized to analyze the
input coupling of the compliant mechanism.

By combining Equations (32) and (33), the input/output displacements relationship of
the compliant mechanism can be expressed as:

xout = T


xin1
xin2
xin3

 =
[
C1 C2 C3

]C1,1 C1,2 C1,3
C2,1 C2,2 C2,3
C3,1 C3,2 C3,3

−1
xin1
xin2
xin3

 (34)

where T is a kinematics matrix, which describes the kinematic relationship of the in-
put/output displacements.

Differing from conventional rigid-body mechanisms, the forward kinematic of the
compliant mechanism can be easily and accurately derived based on Equation (34) with
an explicit matrix form. The motion control and workspace analysis of the compliant
mechanism can then be conducted.

(2) When the external load is applied to the output node, i.e., fout 6=0 and fini = 0 (i = 1,2,3)
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The force/displacement relationship of the output node can be derived from the
kinetostatic model.

xout = K−1fout = Cfout (35)

where C = K−1 is the output compliance matrix, which represents the accuracy of this
compliant mechanism under the external force applied on the output node.

Similarly, the relationship between the output force and the input displacements can
be calculated as follows: 

xin1
xin2
xin3

 =

 K1
K2
K3

fout (36)

where Ki (i = 1,2,3) can be utilized to analyze the influences of the output force on the input
displacements.

4. Verification and Discussion

To validate the conciseness and accuracy of the derived modeling method, two typical
precision positioning platforms with complex serial–parallel topology are exemplarily con-
ducted. The first case is employed to compare the results of the derived modeling method
with those of commercial FEA software Workbench 15.0 (Ansys, Pittsburgh, Pennsylvania,
USA). The second case is employed to compare the derived modeling method with an
energy-based approach and the matrix displacement approach in previous literature.

4.1. First Example

In the first example, a 2-DOF precision positioning platform is considered to help
illustrate and validate the conciseness and accuracy of this modeling method, which is
shown in Figure 8. This platform consists of two compliant amplifiers and flexible guiding
beams. The motions in the x-and y-directions are decoupled by flexible guiding beams,
and it has similar characteristics in the two directions. The connection relationships of each
branch chain can be divided into series substructure, closed-loop parallel substructure, and
opened-loop parallel substructure.
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In order to establish the kinetostatic model, the compliant amplifier is first discretized
into flexure hinges, flexible beams, and lumped masses. After discretization, it is simplified
as a topology including a finite number of elements, which is shown in Figure 9a. The
flexible elements are denoted from (1) to (30) and are connected with nodes from 1 to
23. The input forces and output force are numbered as f in1, f in2, and f out1, respectively.
According to the connection types of the flexible elements, the transfer matrices of two
branch chains from input nodes to the output node is obtained as follows:{

Tch1 = (Qeq1Teq1)(ST1)(SQin,1)

Tch2 = (Qeq2Teq2)(ST9)(SQin,2)
(37)

where Ti, Teqi, and S are transfer matrices and can be obtained by Equations (12) and (21).
Qin,1, Qeq1, Qin,2, and Qeq2 are summation matrices, which can be expressed as:

Qin,1 =

[
E6×6 06×6
Keq1 −E6×6

]
, Qeq1 =

[
E6×6 06×6
K8 E6×6

]
Qin,2 =

[
E6×6 06×6
Keq2 −E6×6

]
, Qeq2 =

[
E6×6 06×6
K17 E6×6

] (38)

where Keq1 and Keq2 are equivalent stiffness matrices of elements (24)–(30) and elements
(17)–(23).
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Based on the above analysis, the compliant amplifier with complex serial–parallel
topology is condensed into an equivalent topology including only the input nodes and the
output node, which is shown in Figure 9b. The force-displacement relationship of node j
and node k of equivalent beam elements can be obtained from Equation (29).{

fi,j
fi,k

}
=

[
ki,1 ki,2
ki,3 ki,4

]{
xi,j
xi,k

}
(39)

This research takes the input/output nodes as research objects; the force-displacement
relationship of the input/output nodes of the compliant amplifier can be calculated based
on the equilibrium equations of nodal forces in the form of a matrix.

fin1
fin2
fout1

 =

k1,1 0 k1,2
0 k2,1 k2,2

k1,3 k2,3 k1,4 + k2,4


xin1
xin2
xout1

 (40)
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Due to the symmetrical configuration, the input force f in2 can be calculated by the
input force f in1, f in2 = (−)f in1. The force-displacement relationship of the input/output
nodes of the compliant amplifier can be further expressed as:{

fin1
fout1

}
=

[
kk1,1 kk1,2
kk1,3 kk1,4

]{
xin1
xout1

}
= Ke1

{
xin1
xout1

}
(41)

where kk1,1, kk1,2, kk1,3, and kk1,4 are block sub-matrices of the equivalent beam element,
which can be expressed as:

kk1,1 = k1,1 + k4,4, kk1,2 = k1,2

kk1,3 = k1,3 − k2,3(k2,1 + k3,4)
−1kk1,1

kk1,4 = (k1,4 + k2,4)− k2,3(k2,1 + k3,4)
−1(k1,2 − k2,2)

(42)

Based on the above analysis, the compliant amplifier is condensed into an equivalent
beam element, which is shown in Figure 9c. Equation (41) establishes the two-port kineto-
static model of bridge-type compliant amplifiers and can be further utilized to condense
the general precision positioning platform with bridge-type compliant amplifiers.

The 2-DOF precision positioning platform is then simplified as an equivalent topology,
as shown in Figure 10a. According to the connection types of the flexible elements, the
transfer matrices of branch chains 1 and 2 can be expressed as follows:{

TE1 = Tb(STe1)

TE2 = [Tr1]
T[TE1][Tr1]

(43)

where Tb and Te1 are transfer matrices and can be obtained by Equations (12) and (41). Tr1
is the rotation transformation matrix, and the rotary angle is 90◦.
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For the non-driven branch chains, it can be simplified as an equivalent flexible beam
based on the compliance matrix approach. The theoretical stiffness matrices of branch
chains 3 and 4 are numbered as KG3 and KG4.

Through the above condensation, the 2-DOF precision positioning platform is further
simplified as an equivalent topology, as shown in Figure 10b. The force-displacement
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relationship of the input/output nodes of the precision positioning platform can then be
calculated based on the equilibrium equations of nodal forces in the form of a matrix.

fin1
fin3
fout

 =

kE1,1 0 kE1,2
0 kE2,1 kE2,2

kE1,3 kE2,3 kE1,4 + kE2,4 + KG3 + KG4


xin1
xin3
xout

 (44)

The relationships between the output displacement, input displacements, and input
forces of the precision positioning platform can be obtained from Equation (40) under the
output force f out = 0.

xout =
[

C1 C2
]{ fin1

fin3

}
{

xin1
xin3

}
=

[
C1,1 C1,2
C2,1 C2,2

]{
fin1
fin3

}
xout =

[
C1 C2

][ C1,1 C1,2
C2,1 C2,2

]−1{ fin1
fin3

} (45)

where C1 and C2 are the output coupling compliances. Cij (i = j) is the input compliance
and Cij (i 6= j) is the input coupling compliance. f in1 = [-f pzt, 0, 0, 0, 0, 0]T and f in3 = [f pzt, 0,
0, 0, 0, 0]T denote the input forces from the piezoelectric actuators.

The static performances of the precision positioning platform, such as input stiffness
Kin and displacement amplification ratio R, can be expressed as:

Kin = −
fpzt

xin1(x)
=

fpzt

xin3(y)
, R =

xout(y)
2·xin1(x)

(46)

where xout(y), xin3(y), and xin1(x) are the nodal displacements in the y-direction and the
x-direction.

For comparison, the precision positioning platform is analyzed by employing Work-
bench 15.0. The geometric parameters of this platform are defined in Figure 11, and the
specific values are listed in Table 1. When an actuating force of f pzt = 10 N along x-direction
is applied to the input nodes, the output displacement in the y-direction and input dis-
placements in the x-direction can be obtained from the Workbench 15.0. The finite element
analysis results of input stiffness and displacement amplification ratio can then be calcu-
lated based on Equation (46). As shown in Figure 12, four sets of simulation results for
input stiffness and displacement amplification ratio are carried out by selecting a different
angle θ of the bridge-type compliant amplifier, while keeping other parameters unchanged.
Quantitative comparison between the derived kinetostatic model and commercial FEA
software Workbench 15.0 is shown in Table 2.

Table 1. Geometric and material parameters of the platform.

Parameters Values Parameters Values Parameters Values

l1 (mm) 14.0 l4 (mm) 16 b (mm) 0.6
h1 (mm) 4.0 h4 (mm) 0.5 he (mm) 0.3
l2 (mm) 11.0 l5 (mm) 15 w (mm) 10.0
h2 (mm) 1.5 h5 (mm) 0.5 θ (deg) 10.0
l3 (mm) 15.0 l6 (mm) 3.0 E (GPa) 200
h3 (mm) 0.5 a (mm) 1.2 G (GPa) 77.64
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Table 2. Comparison results of static performances.

Angle θ
(deg)

Kin (N/µm) R

The
Proposed
Approach

FEA Error (%)
The

Proposed
Approach

FEA Error (%)

3 93.61 99.80 6.20 3.44 3.24 6.17
6 60.72 62.50 2.85 4.39 4.21 4.28

10 33.07 33.90 2.45 3.97 4.02 1.24
15 17.30 18.18 4.84 3.12 3.05 2.30

From the calculated results shown in Figure 12, it can be observed that the theoretical
calculation results of the derived kinetostatic model can match well with those of the com-
mercial software Workbench 15.0. At the same time, the comparison results listed in Table 2
show that relative errors of the theoretical model in regard to the commercial software
Workbench 15.0 are less than 6.2% regarding both the input stiffness and displacement
amplification ratio. These results also indicate that the derived modeling approach can
predict the kinetostatic performances of compliant mechanisms with satisfactory accuracy.
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4.2. Second Example

In the second example, the 3-DOF precision positioning platform in references [24,35],
which is shown in Figure 13, is employed to validate the proposed modeling method by
comparing the kinematic and static performances of this positioning platform with four
approaches: (a) the proposed modeling approach; (b) the matrix displacement approach;
(c) the energy-based approach; (d) the finite element analysis by the commercial software
Workbench 15.0. For comparability, the material and geometric parameters of this platform
are consistent with those in references [24,35]. The 3-DOF precision positioning platform
is then discretized and numbered. It can be observed that this precision positioning
platform is composed of 33 elements and 25 nodes. The input forces and output force are,
respectively, numbered as f in1, f in2, f in3, and f out. Considering the symmetry configuration
of the platform, only one branch chain is employed to illuminate the proposed modeling
approach. According to the connection types of flexible elements, the transfer matrix of
branch chain (1) can be calculated as:

Tch1 = (T11)(ST10)(ST9)(ST8)(SQ5T5)(ST4)(ST3)(SQin,1) (47)

where Ti and S are transfer matrices and given by Equations (12) and (21). Qin,1 and Q5 are
summation matrices, which can be expressed as:

Qin,1 =

[
E6×6 06×6

K1 + K2 −E6×6

]
, Q5 =

[
E6×6 06×6
Keq E6×6

]
(48)
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By performing rotation transformation, the transfer matrices of branch chains (2) and
(3) can be expressed as: {

[Tch2] = [Tr2]
T[Tch1][Tr2]

[Tch3] = [Tr3]
T[Tch1][Tr3]

(49)

where Tr2 and Tr3 are rotation transformation matrices. The rotary angles of Tr2 and Tr3
are 120◦ and 240◦, respectively.

Through the above analysis, the 3-DOF precision positioning platform in Figure 13 can
be simplified as an equivalent topology only including input nodes and output node, which
is shown in Figure 14. This research takes input/output nodes as the research objects and
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calculates the force-displacement relationship of the input/output node of the precision
positioning platform based on the principle of equilibrium of nodal forces in the form of a
matrix. 

fin1
fin2
fin3
fout

 =


kin1,1 0 0 kin1,2

0 kin2,1 0 kin2,2
0 0 kin3,1 kin3,2

kin1,3 kin2,3 kin3,3 kin1,4 + kin2,4 + kin3,4




xin1
xin2
xin3
xout

 (50)
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According to the force-displacement relationship of the 3-DOF precision positioning
platform, the kinetostatic performances, such as input/output stiffness, coupling stiffness,
and input/output displacements relations can be derived by Equations (32)–(36).

For finite element analysis, the 3-DOF precision positioning platform is modeled
through SolidWorks, and then the kinetostatic performances can be calculated with Work-
bench 15.0. The material and geometric parameters of the platform are obtained from
references [24,35]. In order to calculate the kinetostatic performances in Workbench 15.0,
two sets of load conditions of f in1 = f in2 = f in3 = 100 N and f out = [0 N, 50 N, 0 N, 0 N·m,
0 N·m, 1 N·m] are, respectively, applied on the input nodes and the output node of the
precision positioning platform. The input displacements and output displacement results
obtained by commercial FEA software Workbench 15.0 under two conditions are shown in
Figure 15. Meanwhile, the detailed comparative results with four different approaches are
listed in Tables 3 and 4.

Table 3. The comparative results of the four different methods under the input force of f in1 = f in2 =
f in3 = 100 N.

Approaches

fin1 = fin2 = fin3 = 100 N

Elementsxin1 (µm) xin2 (µm) xin3 (µm) xout (µm/rad)

u u v u v u v θ

FEA 42.5 −21.4 36.9 −21.4 −36.9 0 0 0.0116 120,000
Reference [24] 46.3 −23.1 40.1 −23.2 −40.1 0 0 0.0130 9
Reference [35] 41.1 −20.5 35.6 −20.5 35.6 0 0 0.0114 33

The proposed approach 41.1 −20.5 35.6 −20.6 35.5 0 0 0.0114 3
Error 3.1% 4.2% 3.5% 4.2% 3.5% 0 0 1.7%
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Table 4. The input/output displacements under the output force of f out = [0 N, 50 N, 0 N, 0 N·m,
0 N·m, 1 N·m].

Approaches

fout = [0 N, 50 N, 0 N, 0 N·m, 0 N·m, 1 N·m]

Elementsxin1 (µm) xin2 (µm) xin3 (µm) xout (µm/rad)

u u v u v u v θ

FEA −47.5 10.7 −18.1 22.1 39.4 0 68.4 0.0149 120,000
The proposed approach −47.8 10.5 −18.3 22.7 39.2 0 68.7 0.0150 3

Error 0.6% 1.9% 1.1% 2.7% 0.5% 0 0.4% 0.7%
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It can be observed that the theoretical calculation results of the proposed model-
ing approach and the energy-based approach in reference [35] are closer to those of the
commercial FEA software Workbench 15.0 than the matrix displacement approach in
reference [24]. However, the proposed modeling approach can describe the kinetostatic
performances of the precision positioning platform with a lower number of elements
than the energy-based approach in reference [35]. The maximum deviation between
the proposed modeling approach and commercial FEA software is less than 4.3% under
the input force of f in1 = f in2 = f in3 = 100 N and less than 2.8% under the output force of
f out = [0 N, 50 N, 0 N, 0 N·m, 0 N·m, 1 N·m] for the input/output displacements. How-
ever, the number of elements in the finite element analysis is one hundred and twenty
thousand, while the proposed modeling approach only needs three elements. To sum up,
the proposed modeling approach can accurately calculate the kinetostatic performances of
compliant mechanisms with a low number of elements by using simple steps and concise
equations.

5. Conclusions

This paper develops a substructure condensed approach for the design and analysis
of compliant mechanisms with complex serial–parallel topology. The element transfer
matrix of the common flexible element is established by employing the energy conservation
law. Based on the equilibrium equations of nodal forces and the transfer matrix approach,
this paper calculates the general kinetostatic model of compliant mechanisms with a
low number of elements. The kinematic and static performances, for instance, input
stiffness, output stiffness, coupling stiffness, and input/output displacement relations
with concise and explicit forms, can be easily obtained from the proposed kinetostatic
model. The proposed modeling approach is verified by comparing this approach with
existing modeling approaches and finite element analysis. The comparison results validate
the conciseness and efficiency of this approach. The substructure condensed approach
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proposed in this paper can be further utilized in the optimization design and motion control
for complex compliant mechanisms.
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