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A SUBVORTEX TECHNIQUE FOR THE
CLOSE APPROACH TO A DISCRETIZED VORTEX SHEET+

Brian Maskew
Analytical Methods, In..

SUMMARY

The close-approach problem associated with vortex-lattice methods was ex-
amined numerically with the objective of calculating velocities at arbitrary
points, not just at midpoints, between the vortices. The objective was achiewved
using a subvortex technique in which a vortex splits into an increasing number
of subvortices as it is approached. The technique, incorporated in a two-dimen-
sional potential flow method using "submerged" vortices and sources, was evalu-
ated for a cambered Joukowski airfoil. The method could be extended to three
dimensions, and should improve non-linear methods, which calculate interference
effects between multiple wings and vortex wakes, and which include procedures
for force-free wakes.

INTRODUCTION

A fundamental problem associated with vortex-lattice methods (e.g., ref. 1)
is that appreciable errors can occur in velocities calculated close to the dis-
cretized vortex sheets because of the singular nature of the induced velocity
expression. This problem has been circumvented in the past by calculating
"near-field" velocities only at special points, e.g., midway between the vorti-
ces, and by employing interpolation for intermediate positions. For calcula-
tions involving multiple vortex sheets, (e.g., refs. 2 and 3), the near-field
problem often requires that adjacent lattices be made to correspond across the
gap between the sheets. However, such a solution is not practical in vortex-
lattice methods which incorporate iterative procedures for force-free wakes,
{(refs. 3 through 11). Although these methods have proved very versatile in
general, close-approach situations involving multiple discretized vortex sheets
require careful treatment, and, ideally, the near-field problem should be re-
moved.

The objective of this investiqgation was to develop a near-field modifica-
tion for the discrete vortices which would allow velocities to be calculated
anywhere in the flow field, not just at the special points. Such a capability
would particulariy benefit the analysis of high-lift configurations and the cal-
culation of other close interference effects between wings and vortex sheets

+ . .
This work was performed while the author was a National Research Council
Associate at the NASY Ames Research Center.
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(or vortices) such as occur in configurations with leiding-edge or tip-edge
vortices.

Although the present paper deals with the near-field problems in two-di-
mensional flow, the extension to three dimensions (particularly for methods
having a force-free wake) is a major consideration throughout. The development

of the technique described herein is presented in more detail in references 12
and 13.

EXTENT OF THE NEAR-FIELD REGION

To evaluate the extent of the near-field region, the velccity distribution
was examined for a flat, two-dimensional vortex sheet with a perabolic vorti-
city distribution (ref. 12). This distribution was discretized using forty
vortices with equal spacing, A. Velocity distributions were calculated over a
region between two midpoints near the quarter position on the segment {fig.
1(a)) and compared with the analytic values. Erro= contours are shown in fig-
ure 1(b). The discretization gives negligible errors for both components of
velocity in the region beyond 1A from the sheet. In effect, the "holes"™ in the
representation are not sensed until we enter the 1A region. Inside the 1A re-
gion the errors increase rapidly except along special lines of approach to the
sheet. For the normal velocity component, the zero-error lines follow approxi-
mately the normals to the sheet at the points midway between the vortices and
also at the vortices. (Deviations from the normal lines occur because of the
gradient in vorticity across the region.) Both sets of positions on the sur-
face are used in the non-linear vortex-lattice method, (e.g., ref. 3), i.e.,
the midpoints are used as control points, as in the standard vortex-lattice
theory, and the vortex points are used when applying the Kutta-Joukowski law
for local forces and also whenr performing the trailing-vortex roll-up calcula-
tions. The zero-error lines for the tangential velocity component are less
well known; these lines enter the near-field region above the quarter and three-
quarter positions between the vortices, and approach the vortex locations along
approximately elliptical paths. All the zero-error paths are situated on ex-
treme "precipices" in the error contour map; small deviations from the paths
result in large errors and lead to the near-field problems.

NEAR-FIELD MODELS

The previous section indicated that errors arising from the discretization
of a vortex sheet become appreciable only within the 14 region. Clearly, if
we wished to calculate velocities very close to the discretized vortex sheet,
we cnuld simply decrease the size of A by increasing the number of vortices;
however, for three-dimensional problems the computing time could then become
prohibitive. An alternative solution is to apply a near-field treatment to
the vortices. This treatment would be applied only to those vortices that are
within a specified near-field radius (e.g., 1A) from the point where the
velocity is being calculated. A number of near-field models were considered.
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A core model offers the simplest near-field treatment which removes the
singular behavior of the velocity field. In such a model the velocity induced
by the voriex is factored locally so as to remain bounded at the vortex center.
The Rankine vortex and Lamb's viscous vortex are well known examples, but there
are other possible forms. Core models have been used in the past to smooth the
motions of vortices used in two-dimensional roll-up calculations (e.g. refs. 14
and 15). Several core models were tested using the discretized paraboiic vor-
ticity sheet, but none were found satisfactory for both components of velocity.
For example, they fail to restore the tangential component of velocity near the
vortex sheet. This can be seen in figure 2, which shows the error contours for
a Rankine vortex model with a core diameter of A. Although the tangential velo-
City errors appear slightly worse than for the unmodified vortex (compare figs.
1(b) and 2), the normal component errors are improved, on the whole, within the
core. But the error levels are still significant, and the zero-error lines no
longer approach the vortex points. Other near-field models were, therefore,
considered in which the vortex itself is modified, its strength being effect-
ively distributed along a line representing the local position of the vortex
sheet. This investigation led t5 the subvortex technique.

SUBVORTEX TECHNIQUE

A technique was developed in which the strength of a near-field vortex is
distributed by splitting it into a number of small vortices, i.e., subvortices.
These are distributed evenly along the vortex sheet joining the vortex to its
two immediate neighbors. The joining sheet is not necessarily a straight line;
the subvortices can be placed on an interpolated curve passing through the basic
vortices, and this allows a close representation of curved vortex sheets. Half
intervals separate the basic vortices from the nearest subvortices (fig. 3(a)),
and so the basic vortex positions become midpoints in the subvortex system.

This feature improves the accuracy of the calculated velocity at the basic vor-
tices (see "error contours").

The subvortices must have a combined strength equal to that of the associ-
at. 1 basic vortex. In the technique as used here, their strengths vary linearly
with distance from the basic vortex position. When several neighboring basic
vortices are treated in this way, the local effect approaches that of a piece-
wise linear vorticity distribution. Clearly, higher order distributions could
be used, but would involve more than one basic vortex interval on each side.

The number of subvortices used is such that the point where the velocity
is being calculated cannot "see the holes" in the discretized voitex sheet,
i.e., the point is kept just outside the new local 1A region of the subvortex
system. Figure 3(b) shows how this works using the following expression for
the number of subvortices on one side of the basic vortex:

NSV = integer-part-of (1 + A/H) (1)

where H is the normal distance of the point from the segment. Use of this ex-
pression keeps the number of subvortices to a minimum and helps to keep compu-
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ting costs down. When applied to the vor-ex-lattice methods, the midpoints be-
tween the vortices (i.e., the control points) should remain midpoints in the
subvortex system; NSV must then be even, i.e., as shown dotted in fig. 3(b).

A maximum limit, NSVpay, is placed on the number of subvortices to avoid
a runaway condition when the height H approaches zero. This limit controls
the closest approach that can be made to the vortex sheat before the new local
1A region of the subvortices is entered. It can therefore be used to control
the "accuracy"” of the calculation in a trade-off with computing time, i.e.,
by increasing the limit the error region would decrease in size, but the com-
puting time would increase, and vice-versa. To mini~ize calculation errors
inside the 1A region of the subvortex system, each subvortex has been modified
with a Rankine vortex core of diameter slightly less than the subvortex spacing.
This smears out the tangential velocity discontinuity associated with the vor-
tex sheet, but only over the new, diminished error-region. When representing
free vortex sheets, this smeared region could be related to the thickness of
the viscous wake in real flow.

Although the velocity errors become significant only within the 1A region,
the near-field radius, within which the subvortex technique is applied, had
to pe increased to 5A to obtain the required accuracy (+ 0.5% error). The
reason for this extension is that the induced v:locity from the "distributed”
model does not match that from the basic vortex until some distance away (ref.
12).

Error Contours

The technique was tested on the discretized parabolic vorticity distribu-
tion considered earlier. The error contours (fig. 4) are reduced to a very
small region adjacent to the vortex sheet where the approach is closer than *the
subvortex spacing. The extent of this error region depends on the maximum limit

placed on the number of subvortices. In these calculations NSVMAX was 10,

The normal component of velocity calculated at the vortex locations has
always been slightly less accurate than that calculated at points midway be-
tween the vortices. (The vortex points are effectively midpoints in a coarser
discretization.) For the present discretized parabolic vorticity distribution,
the error at the vortices in the region considered (see fig. 1l(a)) is 2.8% com-~
parad with 0.03% at the midpoints. With the subvortex technique applied, the
error at the vortices decreases to 0.2%; this reduction is helped by the fact
that the basic vortex locations become midpoints in the subvortex system.

SUBMERGED SINGULARITIES

The subvortex technique was incorporated in a two-dimensiocnal potential
flow method (ref. 13) aimed at calculating pressures at arbitrary points on
airfoil surfaces. Por this purpose, the error region associated with the sub-
vortex system was enclosed in the contour by "submerging" the vortices a small
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distance below the surface (fig. 5). The basic vortices (before submerging)
were positioned on the airfoil surface using equal angle increments in a cosine
equation applied to distance along the contour. 1In this spacing system, half
angles separate the initial vortex positions from the control points where the
boundary condition of tangential flow is specified. This is an adaptation of
Lan's work (ref. 16); it keeps the singularity strength distribution more uni-
form when passing through "difficult" regions such as leading and trailing
edges and flap hinge lines. With this point distribution, the first control
point is located at the trailing edge, and so the Kutta condition is applied by
specifying the flow direction there, e.g., the direction along the mean line.

From their initial surface positions, the basic vortices are submerged
along the local normals to the surface by a fraction of A, i.e., SDFA. The sub-
merged depth factor, SDF, is constant over the whole contour except in the
trailing-edge region where it automatically decreases along the single sheet
(fig. 5). The control points remain on the airfoil contour except in the region
very close to the trailing edge; here, corresponding upper and lower control
points are combined and moved to the mean line. Hence, the model adjacent to
the trailing edge resembles a camber line model. Because of this modelling,
there are more control points than unknown singularities, and so the equations
are solved in a least-squares sense.

The subvortices are placed on straight segments joining the basic vortices
(see fig. 6). They are positioned in accordance with equal angle increments in
the same system as the basic vortices (ref. 13).

For the three-dimensional case, quadrilateral vortices have been found
convenient for modelling arbitrary geometry configurations (refs. 2,3 and 11).
The present study, therefore, is based on the two-dimensional form of that
model, viz., opposing vortex pairs, (fig. 6), which are equivalent to a piece-
wise uniform normal doublet distributior. Such a model, forming a closed sur-
face, requires one doublet panel strength to be specified, otherwise the system
is indeterminate. Accordingly, the upper panel adjacent to the crossover (fig.
6) is specified to have zero strength. The boundary condition equation associ-
ated with the control point above the spe_ified panel is still included in the
system of equations. The resultant vortex strengths are:

i k=1, 2, ..., N (2)

where Dk are the doublet panel strengths, i.e., the strengths of the opposing

vortex pairs. (Note that D has been assumed zero.)

N+1

Preliminary calculations using vortices alone (ref. 13) showed problems
near the leading edge and near the crossover of the interior vortex "sheets".
These problems were attributed te ill-conditioning of the boundary equations,
particularly near the crossover, because the vortices were trying to provide
thickness effects (as well as lifting effects) from a small base. Source singu-
larities, which are more suitable for providing thickness effects, were there-
fore included in the model. The sources, coincident with the vortices and
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receiving the same "subvortex" treatment, have a simple strength distribution
which provides the basic thickness form symmetrically about the mean line (ref.
13). The sources particularly benefit the pressure calculations in the leading-
and trailing-edge regions.

RESULTS AND DISCUSSION

Figure 7 shows the pressure distribution calculated at 120 surface points
that are not related to the vortex/control point locations. The airfoil is a
cambered Joukowski represented by 46 vortex/sources with a submerged depth of
0.1 and a near-field radius of 5 . Trapezoidal-rule integration of the pres-
sure distribut >n yields the following lift, drag and moment coefficients: CL

= 1.7040 (0.4% error); CD = =0.0069 (an error of 0.4% of CL); and CM = -0.5377

(0.26% error). The calculated pressure values show good agreement with the
exact distribution, but they show a minor tendency to oscillate near the lead-
ing edge. The oscillations can be reduced (ref. 13) by increasing the density
of the subvortex system, but the computing time increases (53% increase in time
for a factor of 2 on the number of subvortices). "se of a higher order inter-
polation scheme for positioning the subvortices also reduces the oscillatory
tendency (ref. 13). The oscillations can be eliminated by using a large number
of basic singularities (e.g., 90). It is significant that the small oscilla-
tion disappears when there is no suction peak, e.g., figure 8 shows the pres-

sure distribution for the same airfoil at zero incidence, the CD error in this

case being 0.0002 or 0.4% of CL' (This case had the higher-order geometry rou-

tine for positioning the subvortices.) This implies that a higher-order srength
variation for the subvortices might be useful when using only a small number of
basic singularities; this would ensure that peaks in the pressure distribution
are adequately represented. The higher-order routines would only be applied
locally in the problem areas.

Figure 9 shows the pressures calculated at the same 120 arbitrary points
as before, but with only 19 basic singularities; using so few vortex unknowns
would clearly bc an advantage in three dimensions. The distribution in figure
9 corresponds with figure 12 in reference 13, but the subvortex system for the
present case was doubled. The higher-order geometry routine for positioning
the subvortices was used, but the subvortex strength variation was linear. The
calculated pressures are in good agreement with the exact solution except near
the leading edge. A higher-order strength varjation for the subvortices, as
discussed above, should improve the calculations in the peak suction region.

Submerged Depth

The submerged depth has a‘significant effect on the solution. Typical

variations in the errors in integrated CL' CM and cD with submerged depth

factor, SDF, are presented in figure 10. The errors in CD and CM decrease ra-

pidly as the dpeth decreases, but the computing time increases because the
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number of subvortices must increase; e.g., the time for SDF = 0.05 is 35% high-
er than that for SDF = 0.1. A submerged depth of about 0.1 seems a reasonable
compromise.

Near-field Radius

The near-field radius factor, NRF, when multiplied by the A value of a
basic vortex, defines a circle centered on that vortex. Whenever a velocity
calculation point comes inside the circle, then that basic vortex is modified
by the subvortex technique. Figure 11 shows the effect of NRF on the force and
moment errors from the pressure integration. They show excellent convergence
characteristics as NRF increases, although CL appears to be converging towards

an error of the order of 0.5%. The error in CL based on circulation, however,

converges towards zero. The calculated pressure distribution at the arbitrary
points improves as NRF increases, but there is little visual change in the dis-
tributions from that shown in figure 7 (NRF = 5) for NRF values above about 3.
Computing time decreases rapidly as NRF is reduced; a value of 3 instead of 5
for NRF gives a time saving of 30%.

CONCLUDING REMARK.

Discretization of a vortex sheet introduces significant velocity errors
only within a distance from the sheet equal to the vortex spacing in the lat-
tice. Core models applied to the vortices help to limit the size of errors but
do not reduce them to a satisfactory level when the field of interest approach-
es close to the vortex sheet. The region where significant errors occur can be
reduced to a small region of controllable width close to the vortex sheet by
the use of the near-field model in which a discrete vortex splits into an in-
creasing number of subvortices as it is approached. The combination of the
subvortex technique with a concept that places the singularities inside the
airfoil has resulted in a method by which accurate pressures (and velocities)
can be calculated directly (i.e., without interpolation) at any arbitrary point
on the airfoil surface. The method is essentially a numerical integration pro-
cedure, but, by developing it from the vortex-lattice model, a useful set of
rules aad automatic procedures has resulted, which makes the method accurate
as well as efficient when moving from near tou far-field regions. The calcula-
.ions were enhanced by combining sources with the vortices.

The results obtained so far indicate that the number cf basic singularities
used to represent an airfoil should be of the order of 40 to 50. However, the
results also suggest that the use of a higher-order strength variation for the
subvortices in regions of high pressure gradient might allow the number to be
decreased - possibly as low as 20. Bearing in mind accuracy and computing ef-
fort, the optimum values for the submerged depth and for the near-field radius
would appear to be of the order of 0.1A and 3A, respectively. The method could
be extended to the three-dimensional case for application to vortex-lattice
methods, and should then allow close-approach situations associated with multi-
ple components and force-free wake calculations.
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(b) Velocity error contours for the basic discretization.

Figure l.- Velocity error calculations.
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Core diameter = A.

Figure 2.- Velocity error contours for a Rankine vortex core
model.
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Figure 3.- The subvortex technique.
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Figure 5.- Submerged singularity model with discrete vortices.
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Figure 6.- Equivalent piecewise constant doublet model.
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Figure 7.- Pressures calculated at arbitrary points on a
Joukowski airfoil at 10° incidence. Model: submerged
vortices and sources (coincident) with subvortex tech-
nique applied (linear interpolation for position);

46 basic singularities; submerged depth = 0.14; near-
field radius = 5A.
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Figure 9.- Pressures calculated at arbitrary points
on a Joukowski airfoil at 10°. Model: as in
figure 7 but with 19 basic singularities.
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