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A SUCCESSIVE SDP–NSDP APPROACH TO A ROBUST OPTIMIZATION

PROBLEM IN FINANCE ∗

F. LEIBFRITZ AND J. H. MARUHN †

Abstract. The robustification of trading strategies is of particular interest in financial market applications. In
this paper we robustify a portfolio strategy recently introduced in the literature against model errors in the sense
of a worst case design. As it turns out, the resulting optimization problem can be solved by a sequence of linear
and nonlinear semidefinite programs (SDP/NSDP), where the nonlinearity is introduced by the parameters of a
parabolic differential equation. The nonlinear semidefinite program naturally arises in the computation of the worst
case constraint violation which is equivalent to an eigenvalue minimization problem. Further we prove convergence
for the iterates generated by the sequential SDP–NSDP approach.

Key Words. Robust Optimization, Nonlinear Semidefinite Programming, Static Hedging, Barrier Options,

Eigenvalue Minimization.

AMS subject classification. 45C05, 47A75, 62G35, 78M50, 90C22, 90C30, 91B28.

1. Introduction. During the last few years, robust optimization techniques have been an
active area of research in the optimization community. For example, the solution of robustified
linear and quadratic programming problems can be carried out efficiently by modern optimization
methods like conic or semidefinite programming (see e.g. [2], [12], [30]).

Due to the success of the robust optimization framework, these ideas have also been applied
to financial market problems. For example the authors in [12] study the robust counterpart of a
portfolio selection problem to make optimal portfolios less sensitive with respect to perturbations
in the market data. As in the general theory, the structure of the non–robust optimization problem
allows to simplify the robust counterpart significantly which results in a second order cone program
(SOCP).

In this paper we also apply the idea of robustness to a specific portfolio optimization problem
recently developed by Maruhn and Sachs in [25] and [26]. In this problem a bank seeks to identify
the cheapest hedge portfolio which produces a payoff greater or equal to the payoff of another
financial instrument in every state of the economy. This leads to an infinite number of constraints
in which the value of the hedge portfolio enters in a very nonlinear fashion. To robustify the
hedge portfolio with respect to future changes of market prices, Maruhn and Sachs include pos-
sible changes of implied model parameters as an additional number of infinite constraints in the
optimization problem.

However, up to this point the authors did not take model or implementation errors into account.
To avoid the associated risk, we incorporate possible deviations from model prices in the real
world in the sense of a worst case design. These deviations are mathematically described as
ellipsoidal uncertainty sets around the asset prices described by Heston’s stochastic volatility model.
This results in a linear semi–infinite optimization problem with a typically 15 to 30–dimensional
parameter space of the semi–infinite constraints.

Clearly, the high dimension of this parameter space makes the numerical solution of the problem
very hard. However, by using equivalent transformations, we can reduce the dimension of the
parameter space significantly to six. The price for this reduction is a nonlinearity in the form of
second order cone constraints. By employing suitable semi–infinite optimization results, we can
prove convergence of an iterative method successively solving second order cone programs and
nonlinear programming problems to compute the worst case constraint violation for each iterate.
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2 F. LEIBFRITZ, J. H. MARUHN

In addition we are able to reformulate this iterative procedure as a successive solution of
semidefinite programming problems and nonlinear semidefinite programs (NSDPs). In particular
our derivations show, that NSPDs naturally arise as subproblems of robustified linear semi–infinite
programming problems to compute the constraint violation of the iterates.

Nonlinear semidefinite programs also often appear in the design of static output feedback
control laws for linear time–invariant control systems. For example H2–, H∞– or mixed H2/H∞–
design problems for ODE or PDE systems lead to non–convex NSDPs (see e. g. [18], [20], [21], [23]
and [24]). Finding a solution to non–convex NSDPs is a difficult task, particularly, if the dimension
of the problem is large. This may be one reason, why general ”off the shelf solvers” for NSDPs are
unavailable. To our knowledge, there only exist some specialized solvers for particular NSDPs (see
e. g. SLMSDP [16], PENBMI [17], IPCTR [22], [23], [24], SSDP [8]). On the other hand, for the
solution of linear SDPs and SOCPs a lot of solvers are freely available over the internet (e. g. DSDP
[1], SeDuMi [28], SDPT3 [29] and many more). Due to this gap, it is necessary to develop, test
and analyze solvers for more general NSDPs. During the development of new NSDP solvers it
is important to test the code on several benchmark examples. Fortunately Leibfritz has built
the publicly available benchmark collection COMPleib – the COnstrained Matrix–optimization
Problem library [19]. COMPleib can be used for testing a wide variety of algorithms solving
matrix optimization problems, e. g. NSDP solvers like IPCTR or SSDP, bilinear matrix inequality
(BMI) codes like PENBMI or linear SDP solvers. The financial market application presented in
this paper provides an additional example why the development of general NSDP solvers is urgently
needed.

The paper is organized as follows. In Section 2 we briefly describe the financial market ap-
plication under consideration. Note that a more detailed discussion of the underlying stochastic
optimization problem can be found in [26]. Section 3 then adds robustness to the problem taking
possible model as well as implementation errors into account. Furthermore, we briefly sketch the
numerical solution method employed to solve the problem and derive a convergence result. In Sec-
tion 4 we finally show how the robust optimization problem can be solved by a sequence of SDPs
and NSDPs. In particular, we will prove that a nonlinear second order cone problem is equivalent
to the minimization of the minimal eigenvalue of a matrix function, where this matrix depends
in a very nonlinear fashion on the parameters. Then, by using duality arguments, the problem
of minimizing the minimal eigenvalue of this matrix function will be reformulated as a nonlinear
minimization problem with SDP constraints.

Notation. Throughout this paper, S
m denotes the linear space of real symmetric m × m

matrices. In the space of real m × n matrices we define the inner product by 〈M, Z〉 = Tr(MT Z)
for M,Z ∈ IR

m×n, where Tr(·) is the trace operator. For a matrix M ∈ S
m we use the notation

M ≻ 0 or M º 0 if it is positive definite or positive semidefinite, respectively.

2. Description of the Hedging Problem. Nowadays a large variety of financial products
is available on the capital market. Usually, the buyer of such a product pays some fixed amount to
the bank at time t = 0. In turn, the bank enters the obligation to pay some insecure future payment
at time t = T to the customer which is based on the performance of a so–called underlying, for
example the stock price, from time t = 0 to t = T .

Once the bank has sold the product, it is exposed to the risk of the insecure future payment. To
reduce this risk, the bank immediately buys a portfolio of alternative financial instruments which
replicates the value of the sold product as good as possible in any future state of the economy.

In our case, the bank sells a so–called barrier option, more precisely an up–and–out call at
time t = 0. The future amount the bank has to pay to the buyer of this product depends on
the value of the stock price St from time t = 0 to t = T . In case the stock price (St)0≤t≤T hits
the barrier D (0 < S0 < D) at some time t ∈ [0, T ] (knock–out), the option expires worthless.
However, in case the stock price never touches the barrier D, the value of the up–and–out call is
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given by Cuo = max(ST − K, 0), where 0 < K < D denotes the strike price. Figure 2.1 illustrates
these two cases for two possible future evolvements of the stock price.
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Fig. 2.1. Payoff of the up–and–out call for two possible stock–price paths

Regarding these two cases, a natural choice for a hedge portfolio of such an option is as
follows. At time t = 0 the bank buys a portfolio of alternative financial instruments and holds
these instruments constant until either the barrier D is hit or until time T is reached. At these
time instances the hedge portfolio is sold immediately and hopefully guarantees a payoff that is at
least as high as the amount the bank has to pay to the customer.

If we denote the financial instruments in the hedge portfolio by C1, ..., Cn with value Ci(t, St)
at time t and the units invested in product Ci by αi, the value of the hedge portfolio at time t
is given by Π(t, α) =

∑n

i=1 αiCi(t, St). Hence the optimization problem of finding the cheapest
trading strategy guaranteeing a payoff greater or equal to the payoff of the up-and-out call in all
states of the economy is given by

min
α∈IRn

Π(0, α) =
∑n

i=1
αiCi(0, S0)

s.t. Π(t, α) =
∑n

i=1
αiCi(t,D) ≥ 0 for all times t the barrier might be hit. (2.1)

Π(T, α) =
∑n

i=1
αiCi(T, ST ) ≥ max(ST − K, 0) if the barrier is not hit at all.

Research has shown, that standard calls with payoff Ci(Ti, STi
) = max(STi

−Ki, 0) at maturity
0 < Ti ≤ T satisfying Ki ≥ D if Ti < T are particularly suited for the task of hedging barrier
options (see e.g. [3], [6], [7], [10] and [25]). Here Ki ≥ 0 denotes the strike of the standard call Ci.

Note that, in case the stock price has not hit the barrier until time t ∈ (0, T ], the value of
the hedge portfolio at time t is independent of the calls Ci with maturity Ti < t. This can easily
be seen by observing that Ss < D ∀ s ∈ (0, t], which implies in particular STi

< D ≤ Ki such
that Ci(Ti, STi

) = max(STi
− Ki, 0) = 0. Hence these calls can be omitted in the formulation of

optimization problem (2.1) and we obtain (for a more detailed discussion see [25]):

min
α∈IRn

∑n

i=1
αiCi(0, S0)

s.t.
∑

i:Ti≥t
αiCi(t,D) ≥ 0 for all times t the barrier might be hit. (2.2)

∑

i:Ti=T
αi max(ST − Ki) ≥ max(ST − K, 0) if the barrier is not hit at all.
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The times t at which the barrier can be hit as well as the value Ci(t, St) in problem (2.2) will
depend on the financial market model and hence the model parameters p ∈ IR

k under consideration
such that Ci(t, St) = Ci(t, St, p). Clearly, the quality of the solution of the optimization problem
depends on the ability of the model to fit the market prices of call options. A well suited model for
this task is Heston’s stochastic volatility model [14], in which the call option prices Ci are given as
the solution of the parabolic differential equation

1

2
vS2 ∂2Ci

∂S2
+ ρσvS

∂2Ci

∂S∂v
+

1

2
σ2v

∂2Ci

∂v2
+ rS

∂Ci

∂S
+ κ(θ − v)

∂Ci

∂v
+

∂Ci

∂t
= rCi (2.3)

(t, S, v) ∈ (0, Ti) × (0,∞) × (0,∞)

with initial and boundary conditions

Ci(Ti, S, v) = max(S − Ki, 0)

Ci(t, 0, v) = 0

∂Ci

∂S
(t,∞, v) = 1

rS
∂Ci

∂S
(t, S, 0) + κθ

∂Ci

∂v
(t, S, 0) +

∂Ci

∂t
(t, S, 0) = rCi(t, S, 0)

Ci(t, S,∞) = S.

Here v denotes the initial variance of the stock price, θ the long term mean of the variance
process, κ its mean reversion speed and σ the volatility. ρ denotes the correlation between the
stock price and variance process and r specifies the risk–free rate.

Thus the call option prices Ci in Heston’s model depend on five model parameters such that
Ci = Ci(t, St, v, κ, θ, σ, ρ). As it is unknown how market prices and hence the associated model
parameters will change in the future, one will ask the first constraint in (2.2) to hold for a given
set of model parameters p = (v, κ, θ, σ, ρ) ∈ P ⊂ IR

5.
Intuitively it is clear, that the barrier can be hit any time from 0 to T and in case no barrier hit

occurs, the stock price ST can attain any value in [0, D]. Combining these facts, the optimization
problem of finding the cheapest strategy super–replicating the value of the up–and–out call is given
by the following definition (for a more detailed derivation see Maruhn [26]).

Definition 2.1. Let an up–and–out call with payoff Cuo = max(ST − K, 0)1{max0≤t≤T St<D}

be given, where T > 0 denotes the maturity, K > 0 the strike, D the barrier, 0 < K, S0 < D and St

the stock price at time t. Further let Ci, i = 1, ..., n, be standard calls with maturities 0 < Ti ≤ T
and strikes Ki ≥ 0 satisfying Ki ≥ D for Ti < T , whose prices satisfy the parabolic differential
equation (2.3). In addition let αlb

i ≤ 0 and αub
i ≥ 1 be lower and upper bounds on the portfolio

weights. Then a cost–optimal superhedge is defined as the solution of the optimization problem

min
α∈IRn

∑n

i=1
αiCi(0, S0, v0, κ0, θ0, σ0, ρ0)

s.t.
∑

i:Ti≥t
αiCi(t,D, v, κ, θ, σ, ρ) ≥ 0 ∀ t ∈ [0, T ] ∀ p = (v, κ, θ, σ, ρ) ∈ P (2.4)

∑

i:Ti=T
αi max(s − Ki) ≥ max(s − K, 0) ∀ s ∈ [0, D]

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n

where p0 = (v0, κ0, θ0, σ0, ρ0) denotes the implied model parameters at time t = 0 and p are the
future implied model parameters expected to vary in the compact uncertainty set P ⊂ IR

5.
It is obvious, that the feasible set of the linear semi–infinite optimization problem (2.4) is closed,

convex and due to the box constraints also compact. Furthermore the feasible set is nonempty,
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if the standard call with maturity Ti = T and strike Ki = K is included as call Cj in the hedge
portfolio, because then the strategy αj = 1, αi = 0, i 6= j satisfies all constraints. Hence a solution
of the optimization problem exists if this particular call is included in the portfolio.

Maruhn shows in [26], that the hedging strategy solving the optimization problem has very
attractive properties. However, although the Heston model fits prices of standard calls quite well,
the optimization problem does not yet take model errors into account. In the next section we will
incorporate an additional robustness against model errors in the problem definition and discuss
possibilities of numerically solving the optimization problem.

3. Robustification and Numerical Solution. As an advanced model in finance, Heston’s
stochastic volatility model already provides a good fit of market prices of standard calls. However,
as is well known in the robust optimization community, even small perturbations of the data of
linear programming problems can result in unexpected effects regarding optimality and feasibility
of the solution. Of course, this sensitivity of solutions transfers in a similar way to solutions of
linear optimization problems with an infinite number of linear constraints like problem (2.4). Thus
our goal in this section is to derive a robustified version of this problem taking possible model
errors into account. Furthermore we will briefly discuss some aspects of the numerical solution.

Note that optimization problem (2.4) is of the form

min
α∈IRn

cT α

s.t. a1(t, p)T α ≥ 0 ∀ (t, p) ∈ [0, T ] × P

a2(s)
T α ≥ b2(s) ∀ s ∈ [0, D]

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n

(P)

with suitable vectors c, a1, a2 and scalars b2. The performance of the optimal hedge portfolio
crucially depends on the model prices Ci(t,D, v, κ, θ, σ, ρ) included in the vector a1. The second
constraint a2(s)

T α ≥ b2(s) is model–independent and hence can be neglected in the context of
robustification.

We now robustify the solution of optimization problem (P) with respect to perturbations of
the vector a1 in the sense of model errors by asking the corresponding inequality to hold in a small
ellipsoid around the model prices. These ellipsoids shall be defined by associated matrices E(t, p).
This results in the following robust optimization problem.

Definition 3.1. Consider problem (2.4) of finding the cost–optimal superhedge in the notation
of problem (P) with suitable vectors c, a1, a2 and scalars b2. For (t, p) ∈ [0, T ]×P let E(t, p) ∈ IR

n×n

be positive definite matrices defining ellipsoids around the model prices a1(t, p). Further assume
that the map E : [0, T ] × P → IR

n×n is continuous. Then the robust counterpart of problem (P) is
given by the following optimization problem:

min
α∈IRn

cT α

s.t. (a1(t, p) + E(t, p)u)T α ≥ 0 ∀ u ∈ IR
n : ‖u‖2 ≤ 1 ∀ (t, p) ∈ [0, T ] × P

a2(s)
T α ≥ b2(s) ∀ s ∈ [0, D]

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n

(RP)

In the simplest case the matrix E(t, p) might be chosen as a small multiple of the identity
matrix, but in a more realistic setting the model error and hence the matrix will depend on time
t and the model–parameters p. In the following we assume, that the matrices E(t, p) are chosen
in such a way that the feasible set of problem (RP ) is nonempty. Due to the compactness of the
feasible set we then readily obtain, that a solution of the optimization problem exists.
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Assumption 3.2. Assume that the feasible set of problem (RP) is nonempty.
Note that problem (RP) is still a linear semi–infinite optimization problem, but now the

complexity of the problem has increased significantly due to the additional variable u varying in
the n–dimensional unit ball. Hence it would be very desirable to reduce the dimension of the
semi–infinite parameter set by eliminating u from problem (RP). The next theorem shows that
this can actually be achieved.

Theorem 3.3. The linear semi–infinite optimization problem (RP) is equivalent to the semi–
infinite second order cone problem:

min
α∈IRn

cT α

s.t. a1(t, p)T α ≥ ‖E(t, p)T α‖2 ∀ (t, p) ∈ [0, T ] × P

a2(s)
T α ≥ b2(s) ∀ s ∈ [0, D]

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n

(RP–SOCP)

Proof. Similar to Ben–Tal and Nemirovski [2], we prove the equivalence by showing that for
every (t, p) ∈ [0, T ] × P the infinite number of constraints

(a1(t, p) + E(t, p)u)T α ≥ 0 ∀ u ∈ IR
n : ‖u‖2 ≤ 1 (3.1)

is equivalent to the single constraint a1(t, p)T α ≥ ‖E(t, p)T α‖. Note that (3.1) can be rewritten as

min
u∈IRn:‖u‖2≤1

(a1(t, p) + E(t, p)u)T α = min
u∈IRn:‖u‖2≤1

(
a1(t, p)T α + (E(t, p)T α)T u

)
≥ 0

It is easy to prove that the minimum of this linear function on the unit circle is attained for the
vector u∗ = −E(t, p)T α/‖E(t, p)T α‖2 if E(t, p)T α 6= 0. However, as E(t, p) is a positive definite
matrix, the case E(t, p)T α = 0 would imply α = 0 which is not admissible for problem (RP)
because then the second constraint in this problem would imply a2(s)

T α = a2(s)
T 0 = 0 ≥ b2(s) =

max(s − K, 0) > 0 for s ∈ (K, D]. Hence (3.1) is equivalent to

(a1(t, p) + E(t, p)u∗)
T α = a1(t, p)T α − (E(t, p)T α)T E(t, p)T α

‖E(t, p)T α‖2
≥ 0

This expression in turn can be transformed to a1(t, p)T α ≥ ‖E(t, p)T α‖2 which proves the theorem.

The new equivalent formulation (RP–SOCP) of (RP) also allows to interprete the robustness
added to (P). If the first constraint of (RP–SOCP) is compared to the corresponding constraint
of (P), it is clear that the hedge portfolio described by the robust problem offers a safety margin
‖E(t, p)T α‖2 > 0 that protects the portfolio against model errors.

Further note that problem (RP–SOCP) is still a semi–infinite optimization problem, but com-
pared to problem (RP) the parameter set {u ∈ IR

n : ‖u‖2 ≤ 1} × [0, T ] × P has been reduced to
[0, T ] × P . The price for this reduction is the nonlinearity which now enters the constraints of
problem (RP–SOCP) in the form of second order cone constraints.

In Section 4 we will present an alternative problem formulation also reducing the complexity of
the parameter space but still preserving the linear structure of the underlying problem (RP). But
before we turn to the associated transformations, we will briefly discuss the numerical solution of
problems (RP) and (RP–SOCP). As the two optimization problems are equivalent, we will focus
on the reduced problem (RP–SOCP).

In general, an algorithm solving problem (RP–SOCP) will replace the infinite number of con-
straints associated with the parameter sets [0, T ]×P and [0, D] by a discrete set of constraints. Let
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the discrete approximations of these parameter sets be denoted by M1 ⊂ [0, T ]×P and M2 ⊂ [0, D],
|M1|, |M2| < ∞. The resulting discrete version of (RP–SOCP) is then given by

min
α∈IRn

cT α

s.t. a1(t, p)T α ≥ ‖E(t, p)T α‖2 ∀ (t, p) ∈ M1

a2(s)
T α ≥ b2(s) ∀ s ∈ M2

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n

(RP–SOCP–DISCR)

Clearly, problem (RP–SOCP–DISCR) is a second order cone program where we can assure
the existence of solutions for any discrete sets M1,M2 due to the compactness of the associated
feasible set and Assumption 3.2. Hence problem (RP–SOCP–DISCR) can be solved by standard
SOCP– or SDP–solvers. However, the solution of this problem is in general not feasible for the
original problem (RP–SOCP). To overcome this difficulty, we successively add the most violating
constraints to the sets M1,M2. This leads to the following algorithm.

Algorithm 3.4. Let M1 ⊂ [0, T ]×P and M2 ⊂ [0, D], |M1|, |M2| < ∞ be given initial grids.
Further let ǫ > 0 be a suitable convergence tolerance and k = 0.

(S1) Calculate an optimal solution αk of the discretized problem (RP–SOCP–DISCR).
(S2) Determine the constraint violation (CV) of αk for problem (RP–SOCP) by minimizing the

slack–functions at αk:

δ1 = min
(t,p)∈[0,T ]×P

a1(t, p)T αk − ‖E(t, p)T αk‖2 (CV–SOCP)

δ2 = min
s∈[0,D]

a2(s)
T αk − b2(s)

If min(δ1, δ2) ≥ −ǫ then STOP.
(S3) Add the minimizers of the slack functions (the most violating constraints) to M1,M2. Set

k → k + 1 and go to step (S1).

In order to solve problem (RP–SOCP), the algorithm successively solves second order cone
programs (RP–SOCP–DISCR) and nonlinear optimization problems in the form of (CV–SOCP).
Note that the latter problem is in fact a PDE–constrained optimization problem as the vector a1

depends on the prices Ci(t,D, ν, κ, θ, σ, ρ) which in turn are the solution of PDE (2.3). The next
theorem shows, that these subproblems and hence Algorithm 3.4 is well-defined and that each limit
point of the sequence is an optimal solution of problem (RP–SOCP).

Theorem 3.5. Assume that Assumption 3.2 holds. Then Algorithm 3.4 is well defined.
Furthermore, if ǫ = 0, every limit point of the sequence (αk)k∈IN is an optimal solution of problem
(RP–SOCP).

Proof. As mentioned before, step (S1) is well defined due to Assumption 3.2. Furthermore, the
two slack minimizations in step (S2) always have a solution, because in these problems continuous
functions are minimized on compact sets. The continuity of a2 is obvious, the map E : [0, T ]×P →
IR

n×n was assumed to be continuous and for the continuity of a1 see Maruhn [26].

Note that, due to Theorem 3.3, optimization problem (RP–SOCP) is equivalent to the linear
semi–infinite optimization problem (RP). Hence it is sufficient to show, that Algorithm 3.4 in fact
produces iterates of an algorithm for the solution of a linear semi–infinite optimization problem
and then apply the corresponding convergence theory.

The proof of Theorem 3.3 shows, that the solution of the discretized problem (RP–SOCP–
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DISCR) in step (S1) of Algorithm 3.4 is equivalent to the linear semi–infinite programming problem

min
α∈IRn

cT α

s.t. (a1(t, p) + E(t, p)u)T α ≥ 0 ∀ (u, t, p) ∈ {u : ‖u‖2 ≤ 1} × M1

a2(s)
T α ≥ b2(s) ∀ s ∈ M2

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n

(3.2)

Furthermore, due to Theorem 3.3 and its proof, the problem of computing the worst case
constraint violation (CV–SOCP) in step (S2) is equivalent to

min
(u,t,p)∈{u:‖u‖2≤1}×[0,T ]×P

(a1(t, p) + E(t, p)u)T α (3.3)

because one can eliminate the variable u from the minimization by explicitly computing the optimal
u∗(t, p) := −E(t, p)T α/‖E(t, p)T α‖2. In particular, if (t∗, p∗) denotes the optimal solution of
problem (CV–SOCP), then (u∗(t∗, p∗), t∗, p∗) is also the solution of (3.3) and vice versa.

Adding the point (t∗, p∗) to the set M1 in step (S3) of Algorithm 3.4 and hence the constraint
a1(t∗, p∗)

T α ≥ ‖E(t∗, p∗)
T α‖2 to the next SOCP in step (S1), is equivalent to adding the infinite

number of constraints

(a1(t∗, p∗) + E(t∗, p∗)u)T α ≥ 0 ∀ u ∈ {u : ‖u‖2 ≤ 1}

to problem (3.2). Hence the components (u, t∗, p∗), u ∈ {u : ‖u‖2 ≤ 1}, can be interpreted as
an infinite number of feasibility cuts for the linear semi–infinite optimization problem which are
added to the parameter sets {u : ‖u‖2 ≤ 1} × M1.

Applying the standard convergence theory of linear semi–infinite optimization (see e.g. Theo-
rem 11.2 in Goberna and Lopez [11]) to a successive solution of problems (3.2), (3.3) and with the
mesh update {u : ‖u‖2 ≤ 1} × (M1 ∪ {t∗, p∗}) mentioned previously then proves the convergence.

The proof of Theorem 3.5 made heavy use of the equivalence of the linear semi–infinite op-
timization problem (RP) and the semi–infinite second order cone problem (RP–SOCP). For the
numerical implementation, it seems to be advantegous to solve problem (RP–SOCP) instead of
(RP), because the dimension of the semi–infinite parameter space {u ∈ IR

n : ‖u‖2 ≤ 1}× [0, T ]×P
is reduced drastically from typically 15− 30 (depending on the number of financial products n in-
cluded in the portfolio) to 6, the dimension of [0, T ]× P . However, from a computational point of
view, the drawback is the additional nonlinearity in the form of the second order cone constraints.
In the next section we will see how the additional SOCP–nonlinearity can be eliminated from the
optimization problems arising in Algorithm 3.4.

4. Equivalent SDP–NSDP Formulation. In this section we restate the robust second
order cone problem (RP–SOCP) as a semi–infinite semidefinite programming problem. As it turns
out, this equivalent formulation can be used to derive an iterative procedure similar to Algorithm
3.4 which successively solves SDPs instead of the second order cone problems (RP–SOCP–DISCR)
and NSDPs instead of the nonlinear programming problems (CV–SOCP). Based on Theorem 3.5
we can prove convergence for this mixed SDP–NSDP procedure.

It is a well known fact that for fixed (t, p) ∈ [0, T ]×P a conic quadratic constraint of the form

a1(t, p)T α ≥ ‖E(t, p)T α‖2

can be explicitly converted to an SDP constraint. The following result presents the equivalent
SDP formulation of the second order cone problem (RP–SOCP). For completeness of the paper
we present a detailed proof.
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Lemma 4.1. The conic quadratic problem (RP–SOCP) is equivalent to the following semi–
infinite optimization problem with an infinite number of SDP constraints

min
α∈IRn

cT α

s.t. A(t, p;α) º 0 ∀ (t, p) ∈ [0, T ] × P

a2(s)
T α ≥ b2(s) ∀ s ∈ [0, D]

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n,

(RP–SDP)

where

A(t, p; α) :=

(
a1(t, p)T α In −E(t, p)T α
−αT E(t, p) a1(t, p)T α

)

∈ S
n+1, (4.1)

In ∈ IR
n×n denotes the identity matrix and S

n+1 is the space of all real symmetric (n+1)× (n+1)
matrices.

Proof. To show the equivalence of (RP–SOCP) and (RP–SDP) it suffices to observe that

A(t, p; α) º 0 ⇐⇒ a1(t, p)T α ≥ ‖E(t, p)T α‖2.

Suppose A(t, p;α) º 0, then for any z = (ξ, τ)T ∈ IR
n+1 (ξ ∈ IR

n, τ ∈ IR) we know

0 ≤ zTA(t, p;α)z = a1(t, p)T α ||ξ||22 − 2τ αT E(t, p)ξ + a1(t, p)T α τ2. (4.2)

Assuming a1(t, p)T α < 0, then for ξ ∈ IR
n\{0} and τ = 0 the relation (4.2) would imply 0 ≤

zTA(t, p; α)z = a1(t, p)T α ||ξ||22 < 0 which is a contradiction. Hence, A(t, p;α) º 0 always yields
a1(t, p)T α ≥ 0.

If a1(t, p)T α = 0, then for ξ = E(t, p)T α and τ > 0 we deduce from (4.2) that E(t, p)T α = 0,
since, in this case, (4.2) yields 0 ≤ zTA(t, p; α)z = −2τ ||E(t, p)T α||22 which in turn is equivalent to
||E(t, p)T α||2 = 0 (⇐⇒ α = 0 since E(t, p) ≻ 0). Therefore, we get

a1(t, p)T α ≥ 0 = ||E(t, p)T α||2

in the case of a1(t, p)T α = 0.
Otherwise, if a1(t, p)T α > 0, then, using (4.2), the choice z = (E(t, p)T α, a1(t, p)T α)T yields

0 ≤ zTA(t, p;α)z = a1(t, p)T α
((

a1(t, p)T α
)2

−
∥
∥E(t, p)T α

∥
∥

2

2

)

which also implies

a1(t, p)T α ≥ ||E(t, p)T α||2.

On the other hand, suppose a1(t, p)T α ≥ ||E(t, p)T α||2, then for every z = (ξ, τ)T ∈ IR
n+1 we

deduce, by using the Cauchy Schwarz formula, e. g.

−τ
(
E(t, p)T α

)T
ξ ≥ −|τ |

∣
∣〈E(t, p)T α, ξ〉2

∣
∣ ≥ −|τ |

∥
∥E(t, p)T α

∥
∥

2
‖ξ‖2

that

zTA(t, p;α)z = a1(t, p)T α ||ξ||22 − 2τ αT E(t, p)ξ + a1(t, p)T α τ2

≥ a1(t, p)T α ||ξ||22 − 2|τ |
∥
∥E(t, p)T α

∥
∥

2
︸ ︷︷ ︸

≤a1(t,p)T α

‖ξ‖2 + a1(t, p)T α τ2

≥ a1(t, p)T α
(
τ2 − 2|τ |||ξ||2 + ||ξ||22

)
≥ a1(t, p)T α (|τ | − ||ξ||2)

2
≥ 0
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Thus, a1(t, p)T α ≥ ||E(t, p)T α||2 implies A(t, p;α) º 0.
For solving the semi–infinite conic optimization problem (RP–SOCP) or equivalently the semi–

infinite linear matrix inequality problem (RP–SDP), the parameter space of the constraints is
discretized and in each step the worst case constraint violation is computed by solving optimiza-
tion problem (CV–SOCP). Intuitively, for computing the worst case constraint violation of the
equivalent problem (RP–SDP) we need to solve in every step the following eigenvalue problem:

min
(t,p)∈[0,T ]×P

λmin (A(t, p;α)) , (CV–SDP)

where α ∈ IR
n is assumed to be given, A(t, p; α) ∈ S

n+1 is defined by (4.1) and λmin (A(t, p;α))
denotes the minimal eigenvalue of A(t, p; α). Using the next lemma we can show the equivalence
of (CV–SOCP) and the eigenvalue problem (CV–SDP).

Lemma 4.2. Let In ∈ IR
n×n be the identity matrix, d ∈ IR

n, β ∈ IR and

A :=

(
βIn d
dT β

)

∈ S
n+1,

then the eigenvalues λi(A), i = 1, . . . , n + 1 of A are given by:

λmin(A) := λ1(A) = β − ||d||2, λ2(A) = . . . = λn(A) = β, λmax(A) := λn+1(A) = β + ||d||2.

Proof. First we assume that λ 6= β (λ ∈ IR) and determine the roots of the characteristic
polynomial of A − λIn+1, e. g.

det (A − λIn+1) = det

(
(β − λ)In d

dT β − λ

)

= 0,

by applying a Gaussian elimination step on the last row of A−λIn+1. Defining 0T = (0, . . . , 0)T ∈
IR

n, we get

det (A − λIn+1) = det

(

(β − λ)In d

0T (β − λ) −
∑n

i=1
d2

i

β−λ

)

= (β − λ)n

(

(β − λ) −

n∑

i=1

d2
i

β − λ

)

= 0

which in turn is equivalent to

0 = (β − λ)n−1
(
(β − λ)2 − ||d||2

)
⇐⇒ (β − λ)2 = ||d||2,

in case of λ 6= β. Thus

λ1(A) = β − ||d||2, λn+1(A) = β + ||d||2

are two eigenvalues of A. If λ = β, then by applying the Laplacian expansion theorem we deduce

det

(
(β − λ)In d

dT β − λ

)

= det

(
0n×n d
dT 0

)

=

n+1∑

j=1

(−1)n+1+jdj det (Aj,n+1)

= 0,
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where Aj,n+1 ∈ IR
n×n is a submatrix of A obtained by deleting the j–th row and the (n + 1)–th

column of A. Thus, β is an eigenvalue of A and it is straightforward to show that the multiplicity
of this eigenvalue is equal to n − 1. Hence we have

λ2(A) = . . . = λn(A) = β.

Ordering the eigenvalues λ1, ..., λn+1 yields the desired result.
The result of the following lemma proves that the objective function values of (CV–SOCP)

and (CV–SDP) coincide.
Lemma 4.3. Let A(t, p; α) ∈ S

n+1 be defined by (4.1), then

i) λmin (A(t, p;α)) = a1(t, p)T α − ‖E(t, p)T α‖2

ii) (CV–SOCP) ⇐⇒ (CV–SDP).

Proof. Applying Lemma 4.2 to A(t, p; α) the result immediately follows.
Due to the previous lemma, the nonlinear minimization problem (CV–SOCP) is equivalent

to the minimization of the minimal eigenvalue of A(t, p; α), where this matrix depends in a very
nonlinear fashion on the parameters (t, p) ∈ [0, T ]×P . In general such an eigenvalue minimization
problem is a very hard non–smooth optimization problem (see e. g. [4], [5]).

In some cases it is well known, that eigenvalue optimization problems can be transformed to
a SDP. For example the minimization of the maximal eigenvalue of a linear matrix function can
be restated as a semidefinite program (see e. g. [31]). However, in our case we are interested in
minimizing the minimal eigenvalue of a nonlinear matrix function, which contrasts the typical goal
in other research areas like robust control design (see e. g. [5], [13], [18], [20], [27]).

In the next theorem we show, by using duality arguments, that the problem of minimizing the
minimal eigenvalue of a matrix function can also be rewritten as a matrix optimization problem
with SDP constraints. To the knowledge of the authors, no general result for this case is known
so far.

Theorem 4.4. Let k, l,m ∈ IN and M(q) : Q → S
m, Q ⊆ IR

k×l be a real symmetric matrix
function, then the following two problems are equivalent:

min
q∈Q

λmin (M(q)) , (4.3)

min
(q,Π)∈Q×Sm

{Tr(Π M(q)) | Π º 0, 1 − Tr(Π) = 0} , (4.4)

where λmin(M) denotes the minimal eigenvalue of M ∈ S
m and Tr(M) is the trace operator of

M ∈ IR
m×m, respectively. Moreover the optimal function values coincide.

Proof. We prove the theorem in two steps. First we show that the computation of the minimal
eigenvalue of a matrix function is equivalent to the maximization of a scalar variable subject to
a linear matrix inequality constraint. In a second step, we derive the dual of this maximization
problem which completes the proof.

First, fixing q ∈ Q we show

λmin (M(q)) = max
τ∈IR

{ τ | M(q) − τIm º 0} , (4.5)

where Im ∈ IR
m×m is the identity matrix. The Raleigh–Ritz theorem (e. g. [15, Theorem 4.2.2])

implies M − λmin Im º 0, where λmin := λmin (M(q)) and M := M(q). To show that λmin is the
sharpest bound satisfying the matrix inequality M − τ Im º 0 we prove the following equivalence

M º τ Im ⇐⇒ λmin(M) ≥ τ, (4.6)
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where M ∈ S
m and τ ∈ IR. We diagonalize the real symmetric matrix M ∈ S

m. Let H ∈ IR
m×m

be an orthogonal matrix such that

HT MH = diag(λ1, . . . , λm) =: D,

where λmin(M) := λ1 ≤ λ2 ≤ . . . ≤ λm are the real eigenvalues of M and diag(λ1, . . . , λm) ∈ IR
m×m

denotes a diagonal matrix with diagonal entries λ1, . . . , λm (see e. g. [15, Corollary 2.5.14]). Using
this decomposition we get

M − τ Im = HDHT − τ Im = H(D − τ Im)HT º 0 ⇐⇒ D − τ Im º 0,

which in turn is equivalent to

λi ≥ τ ∀ i = 1, . . . ,m ⇐⇒ λmin(M) ≥ τ.

This proves (4.6) and therefore (4.5).
Secondly, using (4.5), we prove the equivalence of (4.3) and (4.4) by the strong Wolfe duality

theorem (see, e. g. [9, Theorem 9.5.1], [32]). The Lagrangian of the primal problem (4.5) is defined
by ℓ : IR × S

m → IR,

ℓ(τ, Π) = τ + 〈Π,M(q) − τIm〉 = (1 − Tr(Π)) τ + Tr(Π M(q)).

The first order Fréchet derivative of ℓ with respect to τ applied to δτ is given by

ℓ′τ (τ, Π)δτ = 〈δτ,∇τ ℓ(τ, Π)〉 = (1 − Tr(Π)) δτ

and, thus, we obtain the following (necessary and sufficient) optimality conditions of problem (4.5)

∇τ ℓ(τ, Π) = 1 − Tr(Π) = 0, Π º 0, T r (Π (M(q) − τIm)) = 0, M(q) − τIm º 0.

Applying the strong duality theorem we get the corresponding dual problem of (4.5)

min
(τ,Π)∈IR×Sm

ℓ(τ, Π), s. t. 1 − Tr(Π) = 0, Π º 0.

Using 1 − Tr(Π) = 0, the objective function of this dual problem reduces to

ℓ(τ, Π) = (1 − Tr(Π)) τ + Tr(Π M(q)) = Tr(Π M(q)).

Therefore, the final version of the dual problem is given by the following SDP

min
Π∈Sm

Tr(Π M(q)) s. t. 1 − Tr(Π) = 0, Π º 0. (4.7)

Moreover, the strong duality result ensures that the objective function values of the primal (linear)
SDP (4.5) and the dual (linear) SDP (4.7) are equal (for fixed (but arbitrary) q ∈ Q), e. g. we have

λmin (M(q)) = max
τ∈IR

{τ | M(q) − τIm º 0} = min
Π∈Sm

{Tr(Π M(q)) | 1 − Tr(Π) = 0, Π º 0} .

But this relation implies the desired result, i. e. now we know that

min
q∈Q

{λmin (M(q))} = min
q∈Q

{

max
τ∈IR

{τ | M(q) − τIm º 0}

}

= min
q∈Q

{

min
Π∈Sm

{Tr(Π M(q)) | 1 − Tr(Π) = 0, Π º 0}

}

= min
(q,Π)∈Q×Sm

{Tr(Π M(q)) | 1 − Tr(Π) = 0, Π º 0} .
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Hence, problem (4.3) is equivalent to (4.4).
Now we apply the previous general theorem to the particular case of determining the worst

case constraint violation for (RP–SDP). In particular we prove that, due to the nonlinearity of the
matrix function A(·, ·, α) (α fixed), the eigenvalue problem (CV–SDP) is equivalent to a nonlinear
semidefinite programming problem.

Corollary 4.5. The problem of computing the constraint violation (CV–SOCP) is equivalent
to the nonlinear semidefinite program

min
(t,p,Π)∈[0,T ]×P×Sn+1

(
a1(t, p)T α

)
Tr(Π) − 2αT E(t, p)dπ

s.t. Π º 0, T r(Π) = 1,
(CV–NSDP)

where, for Π1 ∈ S
n, dπ ∈ IR

n and βπ ∈ IR, the matrix Π ∈ S
n+1 is defined by

Π :=

(
Π1 dπ

dT
π βπ

)

.

Proof. From Lemma 4.3 we know that

(CV–SOCP) ⇐⇒ (CV–SDP).

Applying Theorem 4.4 to (CV–SDP), we get the equivalence of (CV–SDP) and the following NSDP

min
(t,p,Π)∈[0,T ]×P×Sn+1

Tr (Π A(t, p; α))

s.t. Π º 0, 1 − Tr(Π) = 0,
(4.8)

Due to the special structure of A(t, p; α) ∈ S
n+1, set

A(t, p;α) =

(
a1(t, p)T α In −E(t, p)T α
−αT E(t, p) a1(t, p)T α

)

=:

(
βIn d
dT β

)

.

Then

ΠA(t, p; α) =

(
Π1 dπ

dT
π βπ

)(
βIn d
dT β

)

=

(
βΠ1 + dπdT Π1d + βdπ

βdT
π + βπdT dT

π d + βπβ

)

,

βπ = Πn+1,n+1 and Tr(dπdT ) = dT
π d implies

Tr (Π A(t, p; α)) = Tr
(
βΠ1 + dπdT

)
+ dT

π d + βπβ

= β Tr (Π1) + ββπ + Tr
(
dπdT

)
+ dT

π d

= β Tr (Π) + 2dT
π d

by using properties of the trace operator. Hence, we can rewrite the objective function of (4.8) to

Tr (Π A(t, p; α)) =
(
a1(t, p)T α

)
Tr(Π) − 2αT E(t, p)dπ

which proves the corollary.
Combining all the previous results we can restate Algorithm 3.4 in an equivalent SDP–NSDP

formulation. While Algorithm 3.4 successively solves a sequence of second order cone programs
(SOCP) and nonlinear programming problems (NLP), the restated version iteratively solves a
sequence of SDPs and NSDPs.

Algorithm 4.6. Let M1 ⊂ [0, T ]×P and M2 ⊂ [0, D], |M1|, |M2| < ∞ be given initial grids.
Further let ǫ > 0 be a suitable convergence tolerance and k = 0.
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(S1) Calculate an optimal solution αk of the (linear) semidefinite program

min
α∈IRn

cT α

s.t. A(t, p;α) º 0 ∀ (t, p) ∈ M1

a2(s)
T α ≥ b2(s) ∀ s ∈ M2

αlb
i ≤ αi ≤ αub

i , i = 1, ..., n

(RP–SDP–DISCR)

(S2) Determine the constraint violation of αk for problem (RP–SDP) by minimizing the slack-
functions at αk:

δ1 = min
(t,p,Π)∈[0,T ]×P×Sn+1

{
(a1(t, p)T αk)Tr(Π) − 2(αk)T E(t, p)dπ | Π º 0, T r(Π) = 1

}

(CV–NSDP)

δ2 = min
s∈[0,D]

a2(s)
T αk − b2(s)

If min(δ1, δ2) ≥ −ǫ then STOP.
(S3) Add the minimizers of the slack functions (the most violating constraints) to M1,M2. Set

k → k + 1 and go to step (S1).

Comparing Algorithm 3.4 and 4.6, the nonlinear SOCP–constraint in problem (RP–SOCP–
DISCR) is replaced by a linear matrix inequality in problem (RP–SDP–DISCR). Furthermore the
SOCP–nonlinearity is also removed from problem (CV–SOCP) for the price of an additional matrix
variable in the objective function and simple linear matrix constraints in problem (CV–NSDP). In
particular the objective functions of the constraint violation problems look very similar.

Furthermore, by applying Theorem 3.5, we immediately obtain the following convergence the-
orem for Algorithm 4.6.

Corollary 4.7. Assume that Assumption 3.2 holds. Then Algorithm 4.6 is well defined.
Furthermore, if ǫ = 0, every limit point of the sequence (αk)k∈IN is an optimal solution of problem
(RP–SDP).

Proof. We prove the corollary by showing that each step of Algorithm 4.6 is equivalent to
the corresponding step in Algorithm 3.4. For step (S1), the equivalence of (RP–SDP–DISCR) and
(RP–SOCP–DISCR) follows directly by the proof of Lemma 4.1. The equivalence of steps (S2)
was proven in Corollary 4.5. Therefore, we deduce the convergence of the algorithm from Theorem
3.5.

5. Conclusions. In the previous paragraphs we have developed a successive SDP–NSDP
algorithm solving the robust semi–infinite optimization problem arising in static hedging of barrier
options which additionally takes model errors into account. The convergence of the method was
obtained by showing that the standard theory of linear semi–infinite optimization can be applied
to the equivalent SOCP–NLP formulation.

The presented algorithm solves a sequence of discretized versions of the underlying semi–infinite
SDP and nonlinear minimization problems for the computation of the worst case constraint viola-
tion of the iterates. As it turned out, the latter problem can be reformulated as the minimization
of the minimal eigenvalue of a nonlinear matrix function. This eigenvalue problem was proven
to be equivalent to a nonlinear semidefinite program where the nonlinearity is introduced by the
parameters of a parabolic differential equation.

As a byproduct we obtained a reformulation of the minimization of the minimal eigenvalue
of a general matrix function as a semidefinite matrix optimization problem with linear matrix
constraints.
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Although we presented the solution procedure for a particular financial market application,
the proposed method can be applied in analogy to other optimization problems with an infinite
number of linear constraints and ellipsoidal uncertainty sets around the problem parameters.

As a key finding of this paper, nonlinear semidefinite programs naturally arise in the compu-
tation of the constraint violation of robust optimization problems such that the development of
general NSDP–solvers is highly desired.
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