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Abstract

Path expressions are ubiquitous in XML processing lan-
guages. Existing approaches evaluate a path expression by
selecting nodes that satisfies the tag-name and value con-
straints and then joining them according to the structural
constraints. In this paper, we propose a novel approach,
next-of-kin (NoK) pattern matching, to speed up the node-
selection step, and to reduce the join size significantly in the
second step. To efficiently perform NoK pattern matching,
we also propose a succinct XML physical storage scheme
that is adaptive to updates and streaming XML as well. Our
performance results demonstrate that the proposed storage
scheme and path evaluation algorithm is highly efficient and
outperforms the other tested systems in most cases.

1. Introduction

The increasingly wider use of XML has heightened the
need to store large volumes of data encoded in XML, and
to query XML data more efficiently. Ubiquitously present-
ing itself as part of XML processing languages (XQuery [4],
etc.), path expressions are arguably the most natural way to
query tree-structured data such as XML trees.

The problem of evaluating path expressions against
XML trees can be modeled as thetree pattern matching
(TPM) problem [15]: a path expression can be represented
as a pattern tree that specifies a set of constraints. The TPM
problem is to find the nodes in the XML tree that satisfy all
the constraints.

Previous research on the evaluation and optimization
of path expressions fall into two classes.Navigationalap-
proaches traverse the tree structure and test whether a tree
node satisfies the constraints specified by the path expres-
sion [23].Join-basedapproaches first select a list of XML
tree nodes that satisfy the node-associated constraints for
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each pattern tree node, and then pairwise join the lists
based on their structural relationships (e.g.,parent-child,
ancestor-descendant, etc.) [28, 2, 5, 22]. Using proper la-
beling techniques [9, 8, 24], TPM can be evaluated reason-
ably efficiently by various join techniques (merge join [28],
stack-based structural join [2], and holistic twig joins [5]).

Compared to the navigational techniques, join-based ap-
proaches are more scalable and enjoy optimization tech-
niques from the relational database technology. However,
there are inevitable difficulties:

1. Since choosing the optimal structural join order is NP-
hard, the query optimizer relies heavily on heuris-
tics [26]. When the query size (number of element
sets generated in the first step) is reasonably large (say
about 10), the optimization time may dominate the ex-
ecution time. Thus, it is hard for the query optimizer to
compromise between optimization and execution.

2. The selection-then-join methodology is not adaptive to
the streaming XML data (e.g., SAX events) where the
input streams could be considered as infinite and se-
lection on the infinite input will not terminate.

In this paper, we propose a novel approach by combin-
ing the advantages of both navigational and join-based ap-
proaches. The rationale is based on the observation that
some of the structural relationships implyhigher degree of
locality in the XML document than others, and thus may
be evaluated more efficiently using the navigational ap-
proach. On the other hand, others represent moreglobal
relationships, and thus may be evaluated more efficiently
using the join-based approach. For example,parent-child
is a closer relationship thanancestor-descendant since
finding the parent or child of a node requires only one
navigation along the edge, but finding ancestor or descen-
dant requires traversing a path or the whole subtree. Ap-
proaches that map XML documents and queries using in-
terval encoding [10, 2] do not take advantage of this fact
since they shred XML documents into small pieces (ele-
ments) and store them without considering their structural
relationships. If wecluster XML elements at the physical



level based on one of the “local” structural relationships
(say parent-child), the evaluation of a subset of the path
expression consisting of only those local structural relation-
ships can be performed more efficiently using a navigational
technique without the need for structural joins.

Based on this idea, we define thenext-of-kin(NoK) pat-
tern tree to be a special pattern tree in which nodes are con-
nected byparent-child andfollowing-/preceeding-sibling
relationships only (we call theselocal relationships). It is
straightforward to partition a general pattern tree into NoK
pattern trees, which are interconnected by arcs labeled with
// or other “global” structural relationships such asfollow-
ing/preceeding. Given a general path expression, we first
partition the pattern tree into interconnected NoK pattern
trees, to which we apply the more efficient navigational pat-
tern matching algorithm. Then, we join the results of the
NoK pattern matching based on their structural relation-
ships, just as in the join-based approach.

The effectiveness of this approach depends on the an-
swers to the following two questions: (1) How many local
relationships are there compared to global relationships in
the actual queries? (2) How to efficiently evaluate NoK pat-
tern matching so that its performance is comparable to or
better than structural joins? The first question is hard to an-
swer since it depends on the actual usage domain of the
query, but a simple statistical analysis of the queries in the
XQuery Use Cases [7] reveals that approximately2/3 of
structural relationships are/ ’s, and1/3 are// ’s [29]. This
fact partly justifies that using NoK pattern matching in the
first step will significantly reduce the number of structural
joins in the second step.

To answer the second question, we conjecture that the
efficiency of the NoK pattern matching algorithm relies on
how well the physical storage scheme satisfies the cluster-
ing criteria. To justify this conjecture, we propose a simple
and succinct physical storage scheme that not only supports
efficient navigational NoK pattern matching, but also pro-
vides easy conditions (similar to the interval containment
condition in the interval encoding approach) for subsequent
global structural joins. Since the storage scheme has the
locality property, an update of the XML document (inser-
tion/deletion of an element) only affects part of the whole
structure, making it more amenable to update than other
techniques (e.g., the interval encoding [10]). Interestingly,
it turns out that the physical storage scheme is analogous to
the SAX stream format, so it follows that our matching al-
gorithm on the physical storage scheme can be adapted to
querying over streaming XML data as well.

In summary, our contributions in this paper are as fol-
lows:

• We propose a novel approach for matching a special
type of pattern tree (NoK pattern tree) that only needs
a single scan of the XML data in theworst case, and re-

quires very small amount of main memory. The prop-
erties of single-pass and small footprint of the NoK
pattern matching algorithm are also crucial to stream-
ing XML processing.
• We design a novel, succinct physical storage scheme

for XML documents that supports efficient NoK query
evaluation. Joining answers of NoK pattern matching
can also be efficiently evaluated in our storage scheme.
Moreover, the locality preservation property makes the
storage scheme more suitable for update.
• We compare the performance of our NoK algorithm

based on our physical storage system with an ex-
isting interval encoding merge-join-based prototype
(DI) [10], a holistic twig join algorithm [5], and
a state-of-the-art native XML database system X-
Hive/DB.The results indicate that our system outper-
forms DI in all cases, and holistic twig join and X-Hive
in most cases.

The rest of the paper is organized as follows: in Sec-
tion 2, we briefly introduce the basic notations and defini-
tions used in the rest of the paper. In Section 3, we present
the algorithm for NoK pattern matching at a logical level.
In Section 4, we present the design of our physical storage
scheme. In Section 5, we introduce how to apply the log-
ical level NoK pattern matching algorithm to our physical
storage. Section 6 presents the implementation and our ex-
perimental results. In Section 7 we discuss related work and
compare them with ours. Finally, we conclude in Section 8.

2. Preliminaries

We briefly illustrate the XML data model and the pat-
tern tree formalism by the following example, which we use
throughout the paper. More details about XQuery path ex-
pressions can be found in [4, 6].

Example 1 Consider the bibliography XML document, in
Figure 1(a), excerpted from the XQuery Use Cases [7]. The
query “find all books written by Stevens whose price is less
than 100” can be answered by the following path expression
//book[author/last="Stevens"][price<100] .
A pattern tree(which is defined shortly) that represent this
path expression is shown in Figure 1(b). 2

Each XML document can be modeled as a tree where the
subelement relationship in the XML file corresponds to the
child relationship in the tree. To efficiently store the tree, we
need a mapping from the tag (element) names to the char-
acters in an alphabetΣ—the short representations of tag
names. For example, one possible mapping of tag names
in Figure 1(a) to the alphabetΣ = {a, b, c, e, f, g, i, j, z}
could be as follows:



    <publisher>Addison−Wesley</publisher>

  <book year="1994">

    <title>TCP/IP Illustrated</title>

    <author><last>Stevens</last><first>W.</first></author>

    <price>65.95</price>

  </book>

  <book year="1992">

    <title>Advanced Programming in the Unix Environment</title>

    <author><last>Stevens</last><first>W.</first></author>

    <publisher>Addison−Wesley</publisher>

    <price>65.95</price>

  </book>

  <book year="2000">

    <title>Data on the Web</title>

    <author><last>Abiteboul</last><first>Serge</first></author>

    <author><last>Buneman</last><first>Peter</first></author>

    <author><last>Suciu</lst><first>Dan</first></author>

    <publisher>Morgan Kaufmann Publishers</publisher>

    <price>39.95</price>

  </book>

  <book year="1999">

    <title>The Economics of Technology and Content for Digital TV</title>

    <editor>

      <last>Gerbarg</last><first>Darcy</first>

      <affiliation>CITI</affiliation>

    </editor>

    <publisher>Kluwer Academic Publishers</publisher>

    <price>129.95</price>

  </book>

</bib>

<bib>

(a) An XML bibliography file

root

//

book

/

ssssssssss
/

NNNNNNNNNNN

author

/

price<100

last=“Stevens”
(b) An example pattern tree

Figure 1. An XML file and a pattern tree

bib→ a book→ b @year→ z
author→ c title→ e publisher→ i
price→ j first→ f last→ g

Following this mapping, the XML document in Figure 1(a)
can be represented as a tree, which we call thesubject tree
or XML tree(Figure 2). In the subject tree, only tag names
and their structural relationships are preserved. The value of
each tree node is detached from the structure and stored sep-
arately. We shall discuss the reason in Section 4.

A pattern tree, which we briefly introduced in the pre-
vious section, is a graphical representation of constraints
specified in a path expression. A path expression can spec-
ify three types of constraints: tag-name constraints, value
constraints, and structural relationship constraints. For ex-
ample, the path expression in Example 1 specifies the con-
straints in the following formula:

{ b | tag(b) = “book” ∧ ∃a, l, p tag(a) = “author” ∧
tag(l) = “last” ∧ tag(p) = “price” ∧
value(l) = “Stevens” ∧ value(p) < 100 ∧
descendant(root, b) ∧ child(b, a) ∧ child(a, l) ∧
child(b, p)}

where tag() defines the tag-name constraint,value() de-
fines the value constraint, andchild() and descendant()
define the structural relationship constraints. Given a pat-
tern tree and a subject tree, the pattern matching problem is
to find the set of subsets of subject tree nodes such that each
subset satisfies all the constraints.

Figure 1(b) is the pattern tree representing the above
constraints. Nodes in the pattern tree represent tag-name
and value constraints (root is a special node represent-
ing the root of the XML tree), and edge labels represent
structural relationship constraints between nodes. The un-
derlined node (book ) is the returning node, which means
that nodes in the subject tree that match this returning node
should be returned as the result of pattern matching. We as-
sume that there is only one returning node in this paper.
However, our algorithms can be easily extended to support
multiple returning nodes by associating each of them a re-
sulting list of nodes. It can be proven that any axis in XPath
can be converted to a subtree consisting of edges whose la-
bels are in the set{., /, //,J}, which correspond toself,
child, descendant, following axes, respectively [29].

A next-of-kin (NoK) pattern treeis a special pattern tree
that consists of edges whose labels are in{/,�}, where�

representsfollowing-sibling axis. The NoK pattern tree is
a tree if we only consider/ arcs. Allowing� arcs makes
it a layered graph—the children of each node of the NoK
pattern tree is a directed acyclic graph (DAG) (We shall
stick with the name NoK pattern tree for convenience even
though different types of arcs form a graph.). Any pattern
tree can be partitioned into NoK pattern trees that are con-
nected by// arcs andJ arcs [29]. Therefore, we only need
to develop a pattern matching algorithm for NoK pattern
trees and then join the partial results of NoK pattern match-
ing using structural joins based on// or J relationships.

3. NoK pattern matching at the logical level

There are two steps in the process of matching NoK pat-
tern trees to the subject tree: locating the nodes in the sub-
ject tree to start pattern matching, and NoK pattern match-
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Figure 2. Subject tree representation of the bibliography XML document

ing from that starting node. The first step is needed since
a NoK pattern treeb/c could be obtained from the path
expression/a//b/c in which case any descendant of/a
could be a starting point for NoK pattern matching.

In string pattern matching, the major concern is how
to efficiently locate the starting points, while matching the
string itself is straightforward. In the case of NoK pattern
matching, both steps are nontrivial. There could be many
options to locate the starting point:

Näıve approach: Traverse the whole subject tree in docu-
ment order and try to match each node with the root of
the NoK pattern tree. If a matching node is found, then
start the NoK pattern tree matching process from that
node. This is exactly what might be done in the stream-
ing XML context.

Index on tag names: If we have a B+ tree on tag names,
an index lookup for the root of the NoK pattern tree
will generate all possible starting points.

Index on data values: If there are value constraints in the
NoK pattern tree (such aslast =“Stevens” in Fig-
ure 1(b)), and we have a B+ tree for all values in the
XML document, we can use that value-based index to
locate all nodes having the particular value and use
them as the starting points.

In our experiments, we implemented all three strategies and
investigated their performance difference.

Having established the starting points, NoK pattern
matching needs to deal with the unordered nature of sib-
lings. That brings up the complexity that there could be
more than one pattern tree node that matches a subject tree
node. Moreover, we need to deal with the partial order con-
straints on siblings specified by thefollowing/preceeding-
sibling axes (recall that, in general, the children of a pat-
tern tree node is a DAG connected by� arcs). We call
the children of apatterntree nodefrontiers if their sibling-
indegree is 0, i.e., no sibling occurs before them according
to thefollowing/preceeding-sibling constraints. The fron-
tiers represent the current ready-to–match nodes, and the set
should be dynamically maintained since a matched frontier
should be deleted (if it is not the returning node) and its “fol-
lowing siblings” in the pattern tree should be added if their

sibling-indegree is now zero. This process is codified in Al-
gorithm 1, which is a logical-level NoK tree pattern match-
ing algorithm that returnsTRUE if the pattern tree rooted at
proot matches the subject subtree rooted atsnode (the start-
ing node) in the subject tree. Initially, the third parameterR
is set to∅, and it will contain a list of subject tree nodes (in
document order) that match the returning node. We also as-
sume that the label ofproot matches that ofsnode.

In lines 1–2 of Algorithm 1, ifproot is found to be
the returning node in the pattern tree, its matchingsnode
is put in the result listR. Since there could be multiple
subject tree nodes that match the returning node in differ-
ent recursive calls,snode must be appended to the result-
ing list. Lines 4 and 13 contain the only two operations
on the subject tree. Together they implement the traver-
sal of all children ofsnode from left to right. During the
traversal, if a subject tree nodeu matches a frontier node

Algorithm 1 NoK Pattern Matching

NPM(proot, snode,R)
1: if proot is the returning node
2: then L IST-APPEND(R, snode);
3: S ← all frontier children ofproot ;
4: u← FIRST-CHILD(snode);
5: repeat
6: for eachs ∈ S that matchesu with both tag

name and value constraints
7: do
8: b← NPM(s, u,R);
9: if b = TRUE

10: then S ← S \ {s};
11: deletes and its incident arcs

from the pattern tree;
12: insert new frontiers caused by

deletings;
13: u← FOLLOWING-SIBLING(u);
14: until u = NIL or S = ∅
15: if S 6= ∅
16: then R← ∅;
17: return FALSE;
18: return TRUE;



s, satisfying both tag-name and value constraints, we re-
cursively match the subtrees rooted atu ands (line 6–8).
If the whole subtrees match,s should not be considered
as a candidate for matching subsequent subject tree nodes
and its following-siblings in the pattern tree should be in-
serted into the frontier set if they qualify when deletings
and its incident arcs (line 9–12). The rest of the pseudo-
code cleans up the resulting listR if only part of the pattern
tree was matched when traversing the children ofsnode is
exhausted—FOLLOWING-SIBLING returnsNIL in line 13.

Note that Algorithm 1 accesses subject tree nodes in a
depth-first manner. This means that subject tree nodes are
accessed in the document order. This property is crucial to
the proof of Proposition 1 given in Section 5.

Example 2 Consider the subject tree in Figure 2 and the
NoK pattern tree in Figure 1(b) with tag names prop-
erly translated (b[c/g="Stevens"][j<100] ). Sup-
pose the starting pointsnode is the firstb in the subject
tree, which matches theproot and is appended toR, the
algorithm iterates overb’s children to check whether they
match with any node in the the frontier set{c ,j }. When the
third child of snode matches withc , a recursive call is in-
voked to match the NoK patternc/g="Stevens" with
the subtree rooted atsnode /c. When the recursive call re-
turnsTRUE, the algorithm continues to check the other chil-
dren and eventuallyj is matched, causing the frontier set to
be∅. After that, the resultR contains the starting pointb.2

It is clear from the algorithm that everysnode ’s child
will be visited exactly once, but in some special cases, its
grandchildren (and great-grandchildren and so on) could be
visited multiple times through multiple recursive calls. For
example, in/a[b/c][b/d] , a has two childrenb’s and
they should be both in the frontier whena is matched with
snode. Since everysnode/b node matches bothb’s in the
frontier, two recursive calls will be invoked to match the two
branches (b/c andb/d ), so every grandchild ofsnode will
be visited exactly twice for matchingc andd. In the worst
case, there will be|S| recursive calls at each level (when all
frontiers nodes match with the current node of subject tree).
Assume there arel levels in the pattern tree,si andpi de-
note the number of nodes at leveli in the subject tree and
pattern tree, respectively, the maximum number of recur-
sive calls at each level will beO(si · pi). The complexity
the whole algorithm is simply the sum of the number of re-
cursive calls at each level

∑l
i=1 O(si ·pi) = O(mn), where∑l

i=1 si = m and
∑l

i=1 pi = n, andm andn are the num-
ber of nodes in the pattern tree and subject tree, respectively.

4. Physical storage

Our desiderata for designing the physical storage scheme
are as follows:

1. The XML structural information (subject tree) should
be stored separately from the value information. The
reason for this is explained in Section 4.1.

2. The subject tree should be “materialized” to fit into
the paged I/O model. By materialization, we mean the
two-dimensional tree structure should be represented
by a one-dimensional “string”. The materialized string
representation should be as succinct as possible, yet
still maintain enough information for reconstructing
the tree structure. The justification for this is given in
Section 4.2.

3. The storage scheme should have enough auxiliary in-
formation (e.g., indexes on values and tag names) to
speed up NoK pattern matching.

4. The storage scheme should be adaptable to support up-
dates.

In the subsequent two subsections, we shall introduce how
we manage the value information and structural informa-
tion, respectively.

4.1. Value information storage

The first issue in the desiderata is based on two obser-
vations: Firstly, an XML document is a mixture of schema
information (tag names and their structural relationships)
and value information (element contents). The irregularity
of contents (variability of lengths) makes it hard (ineffi-
cient) for the query engine to search for certain schema/con-
tent information. Secondly, any path query can be divided
into two subqueries: pattern matching on the tree structure
and selection based on values. For example, the structural
constraints and value constraints in the path expression in
Figure 1(b) are//book[author/last][price] and
last="Stevens" ∧ price<100 , respectively. The fi-
nal result could be joined by the results returned by the sub-
queries. Separating the structural information and the value
information allows us to separate the different concerns and
address each appropriately. For example, we could build
a B+ tree on the value information and a path index (suf-
fix tree, for example) on the structural information without
worrying about the other part.

After the separation, we need to somehow maintain the
connection between structural information and value infor-
mation. We use Dewey ID [14] as the key of tree nodes to
reconnect the two parts of information, e.g., the Dewey IDs
of the roota and its second childb are0, and0.2, and so
on. The reason that we use Dewey ID instead of giving each
node a permanent ID is that Dewey ID contains the struc-
ture information and can be derived automatically during
the tree traversal. That eliminates the need to keep the ID
information in the tree structure (cf. Section 4.2). Given a
Dewey ID, we need another B+ tree to quickly locate the
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Figure 3. Data file and auxiliary indexes

value of the node in the data file. This data file and its aux-
iliary data are shown in Figure 3.

The value information for all subject tree nodes is stored
sequentially in adata fileor it can be retained in the original
XML document. To evaluate the value-based constraints ef-
ficiently, we build a B+ tree on the data file whose keys
are thehasheddata values and returns a set of Dewey ID’s
whose nodes contain that value. The purpose of the hash
function here is to map any data value (could be variable
length string) to an integer that can be compared quickly.
Different values that are hashed to the same key can be dis-
tinguished by looking up the data file directly. Careful se-
lection of the hash function would significantly reduce this
type of conflicts.

Example 3 In the data file, each element content could
be represented by a binary tuple(len, value), wherelen
is the length of the value. The value information for
the XML document in Figure 1(a) can be organized as
a list of records: (4,“1994”), (18,“TCP/IP Illustrated”),
(14,“Addison-Wesley”), (7,“Stevens”), (5,“65.95”), and so
on. The position of these records in the data file are kept in
the Dewey ID B+ tree. If there are more than one node with
the same value, we can keep only one copy and let these
nodes point to the same position in the data file. 2

If the XML file is updated, the value can be easily ap-
pended to the end of the data file. However, both indexes
need to be updated. The value-based B+ tree can be updated
incrementally based on insertion/deletion of keys. Due to
the nature of Dewey IDs, the node ID B+ tree may need to
be reconstructed if many IDs have been updated.

4.2. Structural information storage

One way to materialize the tree is to store the nodes
in pre-order and keep the tree structure by properly insert-
ing pairs of parentheses as introduced in [17]. For example,
(a(b)(c)) is a string representation of the tree that has a
roota and two childrenb andc . The “( ” precedinga indi-
cates the beginning of a subtree rooted ata; its correspond-
ing “) ” indicates the end of the subtree. It is straightforward
that such string representation contains enough information
to reconstruct the tree. However, it is not a succinct repre-

sentation because each node (a character in the string) actu-
ally implies an open parenthesis. Therefore, we can safely
remove all open parentheses and only retain closing paren-
theses as ina b)c)) . Note that this representation can be
further compressed by replacing any series of closing paren-
theses with a number indicating how many of those clos-
ing parentheses there are. However, this introduces the dif-
ficulty that we do not know how many bits are needed for
encoding the number, unless we parse the XML document
beforehand. However, parsing beforehand is impossible in
the context of streaming XML where we have no knowl-
edge of the upcoming events (closing tag or deeper nest-
ing). Thus we keep the closing parentheses “) ”.

Example 4 Figure 4 shows the string representations of the
subject tree in Figure 2 (At the physical level, the pointers
in the figure are not stored. They only serve to easily iden-
tify the end of a subtree to the reader.). If the string is too
long to fit in one page, it can be broken up into substrings at
any point and stored in different pages. Assume each char-
acter inΣ is 2 bytes long, “) ” is 1 byte long, and each page
is 20 bytes long (the number is chosen for illustration only),
the string can be divided into six pages separated by the
dashed lines in the figure. 2

To speed up the query process, we need to store extra in-
formation in each page. The most useful information for lo-
catingchildren, siblings andparent is the node level infor-
mation, i.e., the depth of the node from the root. For exam-
ple, assuming the level of the root is 1 in Figure 4, the level
information for each node is represented by a point in the
2-D space under the string representation (thex-axis repre-
sents nodes and they-axis represents level). For each page,
an extra tuple(st, lo, hi) is stored, wherest is the level of
the last node in the previous page,lo andhi are the mini-
mum and maximum levels of all nodes in that page, respec-
tively (Note thatst could be outside the range[lo, hi].).
This tuple can be thought of as a feather-weight index for
guessing the page where the following sibling or parent is
located. We shall introduce its usage in Section 5.

Note that when streaming XML (e.g., SAX events) are
parsed so that every open tag of an element is translated to
a character inΣ and every closing tag is translated to a “) ”,
the result is exactly the same as our physical string repre-
sentation. Therefore, our single-pass NoK pattern matching
algorithm (presented in Section 5) based on this physical
string representation can be adapted to the streaming XML
context, except that page headers (which help to skip page
I/O’s) are not necessary in the streaming context since each
page needs to be read into main memory anyway.

In addition to these advantages, it is also fairly easy to
insert and delete nodes from the string representation of the
tree. Attaching a subtree to a leaf can be done by insert-
ing the string representation of the subtree between the left



Figure 4. The string representation of an XML tree

character and it’s corresponding “) ”. For example, to in-
sertab)c)) as a subtree of the firstf node in page 1, we
can allocate a new page with the contentab)c)) , cut-and–
paste the content afterf in page 1 to the end of content of
the new page, and insert the new page into the page link be-
tween pages 1 and 2. The(st, lo, hi) information for page
1 should be changed accordingly. Inserting a subtree to a
non-leaf node is slightly more complicated. For example,
if a is inserted in between the roota and its second child
b, this requires the insertion of an additional “) ” after the
rightmost descendant ofb. This can be handled by control-
ling the load factor of each page, thereby reserving some of
the page for insertion and by keeping a next page pointer
in the header in case a new page is inserted. The page lay-
out is shown in Figure 5.

According to the page layout, the number of nodes in
each page can be calculated easily: assume that each page
is 4KB, of which20% of the space is reserved for update;
each character inΣ is 2 bytes long and “) ” is 1 byte long.
Then each node occupies 3 bytes (because each node con-
sists of a character inΣ and a “) ” character); each parame-
ter in the vector(st, lo, hi) occupies 1 byte, and the page
index occupies 4 bytes. Consequently, the number of nodes
in a page is around 1000. We call this number thecapac-
ity, C, of the page. It can be calculated by the formula:
C = B×(1−r)−V−I

S+P , whereB is the page size,r is the ra-
tio for space reserved for update,V is the size of vector
(st, lo, hi), I is the page index length,S is the length of
character inΣ, andP is the length for encoding of “) ”. As
we calculated above, the value ofC is around1000 to 3000
by substituting reasonable values to these parameters. Our
experiments show that the string representation of the tree
structure is only about1/20 to1/100 of the size of the XML
document.

Now assume that the subject tree has 10 billion nodes
(the size of the original XML document is about 200GB to

(st,lo,hi) � � � �
� � � �
� � � �
� � � �header string representation

nextpage abz)e)cf)g))i)j))bz)e)cf

for update
reserved

Figure 5. Page layout for structural info.

1TB according to our statistics), then we need about 3 to 10
million pages to store the string representation of the tree
structure. If we load the page headers (assuming each is 7
bytes long) to main memory, we only need 21MB to 70MB.
In modern computer systems, this isreally small for han-
dling up to 1 terabyte of data.

Then the natural question is that if we load the header in-
formation into main memory beforehand, how does it help
in speeding up the path queries? We shall answer this ques-
tion in the next section.

5. XML path queries at the physical level

In the NoK pattern matching algorithm (Algorithm 1),
the only operation on the subject tree is the iteration over
children of a specific node in their document order. Us-
ing the physical storage technique proposed in the previ-
ous section, this operation is divided into two primitive op-
erations: FIRST-CHILD to find the first child of a node,
and FOLLOWING-SIBLING to find the following sibling
of a node. The physical level NoK pattern matching al-
gorithm simply uses the physical level FIRST-CHILD and
FOLLOWING-SIBLING operations to perform the iteration
in lines 4 and 13 in Algorithm 1.

According to the pre-order property of the string repre-
sentation, these two operations can be performed by looking
at the node level information of each page from left to right
without reconstructing the tree structure. The basic idea is
illustrated in the following example.

Example 5 Consider the string representation in Figure 4.
Suppose we want to find the first child of characterb in the
first page. Since the nodes are pre-ordered, the first child of
b must be the next character if it’s not a “) ”. This condition
is equivalent to saying that the first child of a node at level
l is the next character if its level isl + 1. In Figure 4 the
answer isb’s immediate right neighborz .

Now, suppose we want to findb’s following sibling.
Again, since the nodes are pre-ordered, the following sib-
ling must be located to the right ofb in the string and its
level must be the same. Moreover, the target character must
not to be too far to the right since, in this case, it could
beb’s cousin (share the same grandparent but not the par-
ent). Therefore, there must be another constraint: no inter-



mediate character (i.e., cousin) whose level is 2 less than
b’s level should be in the string betweenb andb’s follow-
ing sibling. In Figure 4, the answer isb in page 2, but there
is no following sibling ofj in the second page. 2

Given a page, it is straightforward to calculate the level
information for each node: initially the level is set tost in
the page header (st in the first page is always 0), scan the
string from left to right, if the character is inΣ, its level is
incremented by 1, otherwise (i.e., a closing parenthesis), its
level information is decremented by 1. For example, the lev-
els for the nodes in the first page are0123232343432.

Algorithm 2 gives a straightforward implementation of
the FIRST-CHILD and FOLLOWING-SIBLING operations.

The READ-PAGE subroutine reads a page from disk
to main memory and calculates the level information de-
scribed above. It takes the page numberp as input pa-
rameter, and returns the page content and level informa-
tion to the next two parametersA andL, which are two-
dimensional arrays, whereA[p] andL[p] are strings (e.g.,
abz)e)cf)g)) and 0123232343432 for page1) repre-
senting the content and level information of pagep, respec-
tively.

The FIRST-CHILD and FOLLOWING-SIBLING subrou-
tines call READ-PAGE to read a page and calculate the level
information when necessary. They take two parametersp
ando that are the page number and the offset in the page,
respectively. They check the string representation and level
information stored inA andL and return a character repre-
senting the tag name of first child or following sibling.

The I/O complexity of the FIRST-CHILD is straightfor-
ward: two page I/O’s in the worst case to get the next char-
acter in the string. The FOLLOWING-SIBLING operation
may scan the whole file before finding the next character
with the same level information. In fact, this is the case
for finding the following sibling of roota in Figure 4. To
avoid unnecessary page I/O’s, we should exploit the max-
imum and minimum level information in each page as de-
scribed in the page header. The idea is based on the fact
that if the current nodeu with level l has a following sib-
ling, the page that contains this following sibling must have
a character “) ” with level l−1 (this is the closing parenthe-
sis corresponding tou). If l−1 is not in the range[lo, hi] of
a page, it is clear that this page should not be loaded. As we
described in the previous section, we can keep all the page
headers in main memory with very low cost, and greatly re-
duce the number of page I/O’s. In the case of locatinga’s
following sibling, only two page I/O’s are needed (pages
1 and 6). This optimization can be easily implemented by
modifying the READ-PAGE subroutine in Algorithm 2, so
we do not give the actual algorithm here.

The FIRST-CHILD and FOLLOWING-SIBLING subrou-
tines correspond to thechild andfollowing-sibling axes in
a path expression. Other axes (e.g.,parent, // and fol-

Algorithm 2 Primitive Tree Operations

READ-PAGE(p,A,L)

1: if pagep is invalid
2: then return FALSE;
3: if pagep is not in main memory
4: then read pagep in arrayA[p];
5: calculate level arrayL[p] for pagep;
6: return TRUE;
FIRST-CHILD(p, o)
1: if READ-PAGE(p,A,L) = FALSE

2: then return NIL ;
3: if o = A. len
4: then return FIRST-CHILD(p + 1, 0);
5: elseifL[p][o + 1] = L[p][o] + 1
6: then return A[p][o + 1];
7: else return NIL ;
FOLLOWING-SIBLING(p, o)
1: l← L[p][o];
2: j ← o + 1;
3: while READ-PAGE(p,A,L) = TRUE

4: do
5: while j < A. len
6: do
7: if L[p][j] = l − 2
8: then return NIL ;
9: elseifL[p][j] = l andA[p][j] 6=′)′

10: then return A[p][j];
11: j ← j + 1;
12: p← p + 1;
13: j ← 0;
14: return NIL ;

lowing) can be easily composed by using these two oper-
ations. For example, given a nodeu in the string represen-
tation, its descendants are those characters located in be-
tweenu and its following sibling (more precisely it should
be all characters in betweenu and its first right-side charac-
ter whose level islevel(u)− 1). This implies that the inter-
val 〈p1 ∗ C + o1, p2 ∗ C + o2〉, wherep1, p2, c1, c2 are the
page number (pi) and offset (ci) of a character and its corre-
sponding “) ”, respectively, can be used in the condition for
structural joins just as in the interval encoding approach.

Proposition 1 Given a string representation of the sub-
ject treeS and a NoK pattern treeP, suppose the maxi-
mum number of descendants of the second level nodes (e.g.,
nodes labeled withb in Figure 2) in S is n. The physi-
cal level NoK pattern matching algorithm reads every page
at most once (single-pass), and requires onlyn/C pages in
main memory (recallC is the capacity of the page).

PROOF From the analysis of Algorithm 1, we know that
in a special case, the algorithm might access a subject tree
nodeu more than once iflevel(u) > 2. In our physical



storage scheme, the descendants ofu are stored before its
following sibling. Since Algorithm 1 matches subject tree
nodes in a depth-first manner (matches all ofu’s descen-
dants first before following sibling and never reads back),
in the worst case we only need to read all the pages that
containu’s descendants in main memory, which requires a
buffer size ofn/C pages, and match them against all pattern
tree branches. After the FOLLOWING-SIBLING is called,
this buffer can be freed and those pages are read only once.�

Since usually XML files are flat and the page capacity is
around1000, the number of pages needed in main memory
is small in practice. We leave the development of a space
and time optimal algorithm as future work.

6. Experimental evaluation

To assess the effectiveness of the proposed approach, we
conducted extensive experiments and compared them with
the performance of existing systems or prototypes that are
based on interval encoding or other native physical stor-
age schemes. Both the data and the queries are classified
into categories so that we can test the efficiency of all ap-
proaches in different environments.

6.1. Experimental setting

We implemented the algorithms and physical storage
prototype in Java with JDK1.4. All the experiments were
conducted on a PC with Pentium III 997MHz CPU, 512MB
RAM, and 40GB hard disk running Windows XP.

We conducted our experiments using both synthetic and
real data sets. The synthetic data sets (author, address, and
catalog) are selected from XBench benchmark [27] in the
data-centric category. The real data sets (Treebank and dblp)
are selected from University of Washington XML Data
Repository [1]. These data files are selected because they
are either bushy (author, address, dblp) or deep (catalog,
Treebank). Table 1 shows the statistical information of the
the data sets and B+ tree indexes we built for them, in which
tree,B+t,B+v,B+i denote the string representation of
the tree structure, the B+ trees for tag names, values, and
Dewey IDs, respectively.

Queries were carefully selected for the experiments to
cover different aspects of path queries on the XML data.
Our selection is based on the following three properties of
path expressions:

Selectivity: A path expression returning a small number of
results should be evaluated faster than those returning a
large number of results. To evaluate whether our algo-
rithm is sensitive to selectivity, we divided queries into
three categories based on their selectivity: high (sev-
eral results), moderate (greater than 10 but less than
100 results), and low (greater than 100 results).

Query Category Example query

Q1 hpy /a/b[c="hi"]

Q2 hpn /a/b/c/d

Q3 hby /a/b[c="hi"][d="hi"]/e

Q4 hbn /a/b[c][d][e][f]

Q5 mpy /a/b[z="mod"]/d/e

Q6 mpn /a/b/e

Q7 mby /a/b[c="mod"][d="mod"]

Q8 mbn /a/b[c][d][e]

Q9 lpy /a/b[c="low"]/d

Q10 lpn /a/b/c

Q11 lby /a/b[c="low"][d="low"]

Q12 lbn /a/b[c][d]

Table 2. Query categories

Topology: The shape of the pattern tree could be a single-
path or bushy (two or more leaf nodes) and may con-
tain // -arcs. Some systems may have different perfor-
mance in these cases, but the I/O cost of our algorithm
should be the same, except that the main memory op-
erations in the bushy case could be greater. We would
like to experimentally verify the analytical results.

Value constraints: The existence of value constraints and
index on values may be used for fast locating the start-
ing point for NoK pattern matching, especially when
the selectivity is high. Therefore, queries having value
constraints may be used to justify the effectiveness of
value-based indexes.

Combining these three criteria, we designed queries in
twelve categories shown in Table 2. Each category is de-
noted by a string of length three, where each position de-
notes one of the above criterion. The character in each po-
sition stands for: low (l), moderate (m), or high (h) for se-
lectivity; path (p), or bushy (b) for topology; and yes (y),
or no (n) for existence of value constraints. The tag names
and constants in the example queries are dummy and they
should be replaced by appropriate values in different test
files. We also tested// axis by randomly substituting it for
a / axis.

6.2. Performance evaluation and analysis

We tested our system against two join-based algorithms
based on interval encoding—dynamic interval (DI) [10] and
TwigStack [5], as well as a state-of-the-art native XML
database system X-Hive/DB version 4.1.1. For each data
set, we chose a representative path expression in each of
the twelve categories. The performance evaluation results
are shown in Table 3. Each running time is the average over
three executions. Some categories are not applicable (de-
noted as “NA” in the table) to the data sets (e.g., author and



data set size #nodes avg. depth max depth |tags| |tree| |B +t | |B +v | |B +i |
author 1.2 MB 15, 006 3 3 8 0.035 MB 0.18 MB 0.33 MB 0.4 MB
address 17 MB 403, 201 3 3 7 0.5 MB 5 MB 12 MB 11 MB
catalog 30 MB 620, 604 5 8 51 1.2 MB 8 MB 15 MB 13 MB

TreeBank 82 MB 2, 437, 666 8 36 250 5.3 MB 58 MB 80 MB 72 MB
dblp 133 MB 3, 332, 130 3 6 35 8 MB 62 MB 150 MB 180 MB

Table 1. Statistic information of data sets

address data sets do not have moderate selectivity queries
without value constraints), or the queries we selected for
the category contain some functionalities that were not im-
plemented (denoted as “NI” in the table) by a particular sys-
tem (e.g., DI does not support value comparisons other than
equality as of the date we perform the experimentation).

To prepare for the test, we created all the indexes (ID,
tag-name, and value) for the data sets. To conduct fair com-
parisons, we also created indexes (ID, tag-name, and value)
for X-Hive. We implemented the TwigStack algorithm in a
way such that different tree nodes with different tag names
are stored separately in a file sorted by document order.
Each file contains the nodes constituting an input stream as-
sociated with a node in the twig. In order to speed up value
comparisons, we also created a B+ tree for the value nodes.
DI has only limited support for tag-name index at this time,
so we did not use index on the tests for DI. This is one of
the reasons that DI did not perform as well as other systems.
We apply a very simple heuristic to index usage: whenever
there are value constraints, we always use the value index
to locate the starting point for NoK pattern matching. If
there are more than one value constraints, the most selec-
tive one is used. If there are no value constraints, we pick the
tag name which has the highest selectivity. If the selectivity
is “high” (defined based on our heuristic), we use the tag-
name index for locating starting points, otherwise we use a
sequential scan. This heuristic allows us to test the effective-
ness of value and tag-name indexes. Experiments show that
sometimes value index is more effective than tag-name in-
dex (e.g., in Treebank high selective categories), and some-
times tag-name index is more effective (e.g., in catalog).
This is because values in Treebank were randomly gener-
ated and has higher selectivity than tag names.

Another reason for the good performance of NoK (as
well as TwigStack) is that it does not need to materialize
intermediate results for multiple joins. Materializing inter-
mediate results or recomputing partial results is inevitable
in bushy path expressions for DI. For example, in the path
expression/a/b[c][d]/e , elementb needs to be tested
for childrenc andd, and then return childrene. Each of the
three operations need a join with nodes returned by/a/b ,
while in a single-path query, DI could use a pipelined plan
and avoid materialization. Therefore, DI is topology sensi-

tive, but our system is not, as shown in Table 3.
Moreover, since both materialization and re-computation

are expensive operations when the intermediate result is
large, DI has to perform the same amount of work disre-
garding the result size, i.e., DI is not sensitive to the selec-
tivity. Generally, the running time of our system decreases
when the selectivity of thestarting pointsincreases. Our ex-
periment shows that the selectivity of staring points can be
a fairly good approximation for selectivity of final results
if we choose the most selective index (value or tag-name-
based) for locating the starting points.

In comparison to the TwigStack algorithm, our algorithm
performs fewer fruitless scans because it does not need to
traverse a subtree if its root does not match a pattern tree
node. However, TwigStack has to scan all streams asso-
ciated with leaf nodes in the pattern tree. Although XB-
tree [5] or other index structures [16] might compensate for
this problem, the storage basis (interval encoding) lacks the
flexibility for update and for processing streaming XML.

In summary, our system is comparable to DI, TwigStack,
and X-Hive in some cases and outperforms them in most
cases. In particular, our system is sensitive to the selectiv-
ity, insensitive to the topology of pattern tree, and could take
advantage of the existence of value constraints.

7. Related work and comparisons

In general, tree pattern matching can be classified
into ordered tree pattern matching (OTPM) problem and
unordered tree pattern matching (UTMP) problem de-
pending on the ordering of siblings in the pattern tree.
The OTPM problem can be solved very efficiently—
O(n
√

m polylog m), wherem andn are respectively the
sizes of pattern tree and data tree, by using suffix trees or
other data structures [15, 11]. However the pattern tree gen-
erated by path expressions are generally unordered since
branchings in the pattern tree are caused by multiple predi-
cates that are unordered. To be more precise, we shall con-
sider partially ordered pattern tree since two nodes can be
connected by thefollowing-sibling or preceeding-sibling
axes. The UTPM problem is generally tackled by the join-
based approach introduced above. Early implementations
follow the formal semantics and treat a path expression as a



file systems Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

author

DI 0.25 0.24 0.6
NA

0.24
NA

NI
NA

NI 0.29 NI 0.87
X-Hive 0.34 0.28 0.45 0.38 0.48 0.78 0.43 0.85 0.23

TwigStack 0.25 0.21 0.28 0.34 1.5 1.6 0.38 2.3 0.48
NoK 0.2 0.23 0.29 0.3 0.29 0.58 0.17 0.69 0.17

address

DI 2.53 2.6 6.6
NA

2.49
NA

8.9
NA

2.57 2.73 NI 4.81
X-Hive 0.3 1.7 0.47 1.03 0.72 0.79 2.3 0.87 4.73

TwigStack 0.3 0.31 0.26 1.2 1.74 1.79 1.9 101 4.2
NoK 0.32 0.05 0.27 0.83 0.77 1.5 3.2 1.39 3.8

catalog

DI 8.8 3.25 14
NA

9.4
NA

NI
NA

8.9 2.87 NI 13
X-Hive 1.3 2.16 0.67 1.4 1.4 1.7 4.9 1.6 5.4

TwigStack 1.01 1.2 0.81 2.01 1.3 0.8 0.9 2.4 1.1
NoK 0.37 0.1 0.43 1.2 1.4 2.5 1.1 2.4 1.3

Treebank

DI 26.3 11.7 45.5 13
NA

27.4
NA

43
NA

14.2
NA

43.6
X-Hive 0.61 8.2 0.6 7.2 19.7 14 2.9 14.2

TwigStack 0.8 18.3 0.45 20.1 1.62 1.9 1.8 4.2
NoK 0.35 0.77 0.37 0.74 0.51 0.65 2.1 1.2

dblp

DI 27 18.5 17.5 18.3 60.8 26 18.8 17.6 17.4 18 75.2 26.6
X-Hive 0.97 19.4 12 11.36 10.8 8.6 12.9 8.85 2.78 16.2 9.7 10.7

TwigStack 2.19 1.2 7.3 2.2 8.9 0.32 9.2 0.45 1.2 1.4 12.9 13.8
NoK 0.6 0.1 2.8 3.2 1.22 0.57 10.8 0.5 1.5 0.89 0.62 0.99

Table 3. Running time (in sec) for DI, X-Hive, TwigStack, and NoK on different queries and data sets

sequence of steps, each of which takes input from the pre-
vious step and produces an output to the next step. This
can be thought of as a special case of join-based approach
that uses nested-loop join instead of merge join-like algo-
rithms. Experimental results show that implementations fol-
lowing this approach suffer from exponential runtime in the
size the of path expressions in the worst case [13]. That pa-
per proves that path expressions can be answered in poly-
nomial time, but their algorithm is based on main memory
and cannot be adapted to streaming XML. Barton et al. [3]
proposed a single-pass algorithm for streaming XML pro-
cessing. They defined a subset of path expressions that only
supportschild, parent, ancestor and descendant axes,
and no value constraints. Their algorithm is very similar
to NoK pattern matching in the streaming XML context,
but the latter is more efficient in the non-streaming context
since it takes advantage of(st, lo, hi) triples and value-
based indexes to guide the navigation. Recently, Wang et
al. [25] proposed an index that is efficient in matching pat-
tern trees without using structural joins. However their in-
dex only works on ordered pattern tree. For unordered ones,
they need to enumerate all possible ordered trees (which is
exponential) and perform an index look-up to each of them.

On the XML physical storage part, a number of ap-
proaches have been proposed, including using flat file sys-
tems (e.g., Kweelt [20]), extending mature DBMS tech-
nologies such as relational DBMSs (e.g., IBM DB2, Ora-
cle, and Microsoft SQL Server) or object-oriented DBMS

(e.g., Ozone [19]), and building native XML repositories
(e.g., Tamino [21], Natix [12], X-Hive, and Xyleme). Re-
cently, Koch [18] proposed a physical storage scheme based
on the binary representation of an unranked tree. The space
it uses is comparable to ours but it requires more page I/O
in the FOLLOWING-SIBLING operation if the tree is very
deep since they do not maintain the level information. Inter-
estingly, his approach can also be extended to the stream-
ing XML context but requires two sequential scans. We use
only one sequential scan in the worst case since NoK pattern
tree is less expressive than the path expression he difined.

8. Conclusion and future work

In this paper, we have defined a special type of pat-
tern tree—NoK pattern tree, and proposed a novel approach
for efficiently evaluating path expressions by NoK pattern
matching. The result of NoK pattern matching greatly re-
duces the number of structural joins in the later step. NoK
pattern matching can be evaluated highly efficiently (only
need a single scan of input data) using the physical storage
scheme we proposed. Performance evaluation has shown
that our system has better or comparable performance than
the existing extended-relational (based on interval encod-
ing) and native XML database management systems.

To further improve the performance, we can do more op-
timization on the locating step of NoK pattern tree match-
ing process. For example, instead of linear scan, we can pre-



process the NoK pattern tree in a similar fashion as Robin-
Karp or Knuth-Morris-Pratt algorithms have done to string
pattern matching. Another improvement is to use path in-
dex instead of tag-name index. This is particularly efficient
when the selectivity of individual tag names are low but the
selectivity of a path is high. Without exception, any stor-
age scheme in the database systems should consider how
to employ concurrency control and how it affect the update
process. Although these are extremely important issues, we
leave them as future work.
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