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Abstract each pattern tree node, and then pairwise join the lists

based on their structural relationships (emgarent-child,

Path expressions are ubiquitous in XML processing lan- ancestor-descendant, etc.) [28[ 2/ 5, 22]. Using proper la-
guages. Existing approaches evaluate a path expression byheling techniques [9./8, 24], TPM can be evaluated reason-
selecting nodes that satisfies the tag-name and value conably efficiently by various join techniques (merge jainl[28],
straints and then joining them according to the structural stack-based structural join![2], and holistic twig joihs [5]).
constraints. In this paper, we propose a novel approach,  Compared to the navigational techniques, join-based ap-
next-of-kin (NoK) pattern matching, to speed up the node- proaches are more scalable and enjoy optimization tech-
selection step, and to reduce the join size significantly in the nijques from the relational database technology. However,
second step. To efficiently perform NoK pattern matching, there are inevitable difficulties:
we also propose a succinct XML physical storage scheme
that is adaptive to updates and streaming XML as well. Our 1. Since choosing the optimal structural join order is NP-
performance results demonstrate that the proposed storage ~ hard, the query optimizer relies heavily on heuris-
scheme and path evaluation algorithm is highly efficient and tics [26]. When the query size (number of element

outperforms the other tested systems in most cases. sets generated in the first step) is reasonably large (say
about 10), the optimization time may dominate the ex-

ecution time. Thus, it is hard for the query optimizer to
] compromise between optimization and execution.
1. Introduction 2. The selection-then-join methodology is not adaptive to
the streaming XML data (e.g., SAX events) where the
input streams could be considered as infinite and se-
lection on the infinite input will not terminate.

The increasingly wider use of XML has heightened the
need to store large volumes of data encoded in XML, and
to query XML data more efficiently. Ubiquitously present-
ing itself as part of XML processing languages (XQuéry [4],  In this paper, we propose a novel approach by combin-
etc.), path expressions are arguably the most natural way tdng the advantages of both navigational and join-based ap-
query tree-structured data such as XML trees. proaches. The rationale is based on the observation that

The problem of evaluating path expressions againstsome of the structural relationships imgiigher degree of
XML trees can be modeled as thee pattern matching  locality in the XML document than others, and thus may
(TPM) problem [15]: a path expression can be representedbe evaluated more efficiently using the navigational ap-
as a pattern tree that specifies a set of constraints. The TPMproach. On the other hand, others represent ngtwbal
problem is to find the nodes in the XML tree that satisfy all relationships, and thus may be evaluated more efficiently

the constraints. using the join-based approach. For exampkeent-child
Previous research on the evaluation and optimizationis a closer relationship thaancestor-descendant since
of path expressions fall into two class&&vigationalap- finding the parent or child of a node requires only one

proaches traverse the tree structure and test whether a tre@avigation along the edge, but finding ancestor or descen-
node satisfies the constraints specified by the path expresdant requires traversing a path or the whole subtree. Ap-
sion [23].Join-basedapproaches first select a list of XML  proaches that map XML documents and queries using in-
tree nodes that satisfy the node-associated constraints foterval encoding[[10,12] do not take advantage of this fact
since they shred XML documents into small pieces (ele-
*  This research was done while the author was visiting the University of ments) and store them without considering their structural
Waterloo. relationships. If wecluster XML elements at the physical




level based on one of the “local” structural relationships
(say parent-child), the evaluation of a subset of the path
expression consisting of only those local structural relation-
ships can be performed more efficiently using a navigational
technique without the need for structural joins.

Based on this idea, we define thext-of-kin(NoK) pat-
tern tree to be a special pattern tree in which nodes are con-
nected byparent-child andfollowing-/preceeding-sibling
relationships only (we call thedecal relationship}. It is
straightforward to partition a general pattern tree into NoK
pattern trees, which are interconnected by arcs labeled with
/I or other “global” structural relationships suchfakow-
ing/preceeding. Given a general path expression, we first
partition the pattern tree into interconnected NoK pattern
trees, to which we apply the more efficient navigational pat-
tern matching algorithm. Then, we join the results of the
NoK pattern matching based on their structural relation-
ships, just as in the join-based approach.

The effectiveness of this approach depends on the an-
swers to the following two questions: (1) How many local

quires very small amount of main memory. The prop-
erties of single-pass and small footprint of the NoK
pattern matching algorithm are also crucial to stream-
ing XML processing.

We design a novel, succinct physical storage scheme
for XML documents that supports efficient NoK query
evaluation. Joining answers of NoK pattern matching
can also be efficiently evaluated in our storage scheme.
Moreover, the locality preservation property makes the
storage scheme more suitable for update.

We compare the performance of our NoK algorithm
based on our physical storage system with an ex-
isting interval encoding merge-join-based prototype
(D) [10], a holistic twig join algorithm [[5], and

a state-of-the-art native XML database system X-
Hive/DB.The results indicate that our system outper-
forms Dl in all cases, and holistic twig join and X-Hive

in most cases.

The rest of the paper is organized as follows: in Sec-

relationships are there compared to global relationships intion[3, we briefly introduce the basic notations and defini-

the actual queries? (2) How to efficiently evaluate NoK pat- tions used in the rest of the paper. In Secfibn 3, we present
tern matching so that its performance is comparable to orthe algorithm for NoK pattern matching at a logical level.
better than structural joins? The first question is hard to an-IN Sectior{ 4, we present the design of our physical storage
swer since it depends on the actual usage domain of thescheme. In Sectio| 5, we introduce how to apply the log-
query, but a simple statistical analysis of the queries in theical level NoK pattern matching algorithm to our physical
XQuery Use Cases [7] reveals that approximatelg of stor_age. Section| 6 presenf[s the |mp!ementat|on and our ex-
structural relationships ares, and1/3 are// ’s [29]. This perimental result;. In Sect@]w 7 we discuss relgted work and
fact partly justifies that using NoK pattern matching in the compare them with ours. Finally, we conclude in Sedffipn 8.
first step will significantly reduce the number of structural
joins in the second step. . .

To answer the second question, we conjecture that the2' Preliminaries
efficiency of the NoK pattern matching algorithm relies on
how well the physical storage scheme satisfies the cluster- We briefly illustrate the XML data model and the pat-
ing criteria. To justify this conjecture, we propose a simple tern tree formalism by the following example, which we use
and succinct physical storage scheme that not only supportghroughout the paper. More details about XQuery path ex-
efficient navigational NoK pattern matching, but also pro- Pressions can be found inl[4, 6].

vides easy conditions (similar to the interval containment . - .
condition in the interval encoding approach) for subsequent=Xample 1 Consider the bibliography XML document, in

global structural joins. Since the storage scheme has thé:'gure!@’ excerpted from the XQuery Use Cases [7]. The
locality property, an update of the XML document (inser- query “find all books written by Stevens yvhose price is Ie;s
tion/deletion of an element) only affects part of the whole than 100" can be a_r:swered l?ly th.e following path expression
structure, making it more amenable to update than other//bOOk[aUthor/IaSt__ S_teven_s I[price<100] .
techniques (e.g., the interval encodifg![10]). Interestingly, ~* Pattern tree(which is defined shortly) that represent this
it turns out that the physical storage scheme is analogous td*@th expression is shown in Figire 1(b). 0

the SAX stream format, so it follows that our matching al-

. : Each XML document can be modeled as a tree where the
gorithm on the physical storage scheme can be adapted to . I .
. ; subelement relationship in the XML file corresponds to the
querying over streaming XML data as well.

A L child relationship in the tree. To efficiently store the tree, we

In summary, our contributions in this paper are as fol- .

i need a mapping from the tag (element) names to the char-

lows: . ;
acters in an alphabet—the short representations of tag

e We propose a novel approach for matching a specialnames. For example, one possible mapping of tag names

type of pattern tree (NoK pattern tree) that only needs in Figure[1(d) to the alphabét = {a,b,c, e, f, g, i, j,z}

a single scan of the XML data in tleorst caseand re- could be as follows:



<bib>

<book year="1994">
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison—Wesley</publisher>
<price>65.95</price>

</book>

<book year="1992">
<title>Advanced Programming in the Unix Environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison—Wesley</publisher>
<price>65.95</price>

</book>

<book year="2000">
<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</Ist><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>

<book year="1999">
<title>The Economics of Technology and Content for Digital TV</title>
<editor>

<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>

</bib>

(a) An XML bibliography file

root

author price<100

last=“Stevens”
(b) An example pattern tree

Figure 1. An XML file and a pattern tree

book — b
title — e

bib — a Qyear — z

author — ¢ publisher — i

price — j first — f last —» g

Following this mapping, the XML document in Figyre 1(a)
can be represented as a tree, which we calktligect tree
or XML tree(Figure[2). In the subject tree, only tag names

A pattern tree which we briefly introduced in the pre-
vious section, is a graphical representation of constraints
specified in a path expression. A path expression can spec-
ify three types of constraints: tag-name constraints, value
constraints, and structural relationship constraints. For ex-
ample, the path expression in Example 1 specifies the con-
straints in the following formula:

{b] tag(b) = “book” A Fa,l,p tag(a) = “author” A
tag(l) = “last” A tag(p) = “price” A
value(l) = “Stevens” A value(p) < 100 A
descendant(root,b) A child(b,a) A child(a,l) A
child(b, p)}

wheretag() defines the tag-name constrainglue() de-

fines the value constraint, andild() and descendant()
define the structural relationship constraints. Given a pat-
tern tree and a subject tree, the pattern matching problem is
to find the set of subsets of subject tree nodes such that each
subset satisfies all the constraints.

Figure[1(b) is the pattern tree representing the above
constraints. Nodes in the pattern tree represent tag-name
and value constraintgdot is a special node represent-
ing the root of the XML tree), and edge labels represent
structural relationship constraints between nodes. The un-
derlined nodelfook ) is thereturning node which means
that nodes in the subject tree that match this returning node
should be returned as the result of pattern matching. We as-
sume that there is only one returning node in this paper.
However, our algorithms can be easily extended to support
multiple returning nodes by associating each of them a re-
sulting list of nodes. It can be proven that any axis in XPath
can be converted to a subtree consisting of edges whose la-
bels are in the sef., /, //, <4}, which correspond tself,
child, descendant, following axes, respectively [29].

A next-of-kin (NoK) pattern tres a special pattern tree
that consists of edges whose labels ar¢/ina}, where<
representgollowing-sibling axis. The NoK pattern tree is
a tree if we only considef arcs. Allowing < arcs makes
it a layered graph—the children of each node of the NoK
pattern tree is a directed acyclic graph (DAG) (We shall
stick with the name NoK pattern tree for convenience even
though different types of arcs form a graph.). Any pattern
tree can be partitioned into NoK pattern trees that are con-
nected by/ arcs and« arcs|[29]. Therefore, we only need
to develop a pattern matching algorithm for NoK pattern
trees and then join the partial results of NoK pattern match-
ing using structural joins based én or « relationships.

3. NoK pattern matching at the logical level

and their structural relationships are preserved. The value of There are two steps in the process of matching NoK pat-
each tree node is detached from the structure and stored sepern trees to the subject tree: locating the nodes in the sub-

arately. We shall discuss the reason in Sedtjon 4.

ject tree to start pattern matching, and NoK pattern match-
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Figure 2. Subject tree representation of the bibliography XML document

ing from that starting node. The first step is needed sincesibling-indegree is now zero. This process is codified in Al-
a NoK pattern tred/c could be obtained from the path gorithm[1, which is a logical-level NoK tree pattern match-
expressiona//b/c  in which case any descendant/af ing algorithm that returnsrUE if the pattern tree rooted at
could be a starting point for NoK pattern matching. proot matches the subject subtree rootedratle (the start-

In string pattern matching, the major concern is how ing node) in the subject tree. Initially, the third parameker
to efficiently locate the starting points, while matching the is set to), and it will contain a list of subject tree nodes (in
string itself is straightforward. In the case of NoK pattern document order) that match the returning node. We also as-
matching, both steps are nontrivial. There could be many sume that the label gfroot matches that ofnode.

options to locate the starting point: In lines[3F2 of Algorithm[L, ifproot is found to be

Naive approach: Traverse the whole subject tree in docu- the returning node in the pattern tree, its matchingde

ment order and try to match each node with the root of is put in the result listR. Since there could be multiple
the NoK pattern tree. If a matching node is found, then subject tree nodes that match the returning node in differ-
start the NoK pattern tree matching process from that €Nt recursive callssnode must be appended to the result-
node. This is exactly what might be done in the stream- Ing list. Lines[4 and 13 contain the only two operations
ing XML context. on the subject tree. Together they implement the traver-

Index on tag names: If we have a B+ tree on tag names sal of all children ofsnode from left to right. During the
an index lookup for the root of the NoK pattern tree traversal, if a subject tree nodematches a frontier node

will generate all possible starting points. _ -
Index on data values: If there are value constraints in the Algorithm 1 NoK Pattern Matching

NoK pattern tree (such aast =“Stevens” in Fig- NPM(proot, snode, R)

ure[I(b)), and we have a B+ tree for all values in the 1: if proot is the returning node

XML document, we can use that value-based index to 2: then LIST-APPEND(R, snode);

locate all nodes having the particular value and use 3: S « all frontier children ofproot;

them as the starting points. 4: u « FIRST-CHILD (snode);

. . . 5. repeat
In our experiments, we implemented all three strategies and .
investigated their performance difference. 6: for eachs € 5 that matcheg with both tag
X : . : name and value constraints
Having established the starting points, NoK pattern
. . LT do
matching needs to deal with the unordered nature of sib- i
. . . 8: b «— NPM(s,u, R);
lings. That brings up the complexity that there could be o i b — TRUE
more than one pattern tree node that matches a subject treg’’ N )
; i 0: then S — S\ {s};

node. Moreover, we need to deal with the partial order con- o

. L o : . 11 deletes and its incident arcs
straints on siblings specified by tfa@lowing/preceeding- ]
o . . from the pattern tree;
sibling axes (recall that, in general, the children of a pat- 1 insert new frontiers caused b
tern tree node is a DAG connected by arcs). We call ’ deletings: y

the children of gatterntree noddrontiersif their sibling-
indegree is 0, i.e., no sibling occurs before them according
to thefollowing/preceeding-sibling constraints. The fron-
tiers represent the current ready-to—match nodes, and the s
should be dynamically maintained since a matched frontier
should be deleted (if it is not the returning node) and its “fol-
lowing siblings” in the pattern tree should be added if their

u < FOLLOWING-SIBLING (u);
until w =NILorS =0
if S#0
then R « ();
17: return FALSE;
return TRUE;




s, satisfying both tag-name and value constraints, we re-
cursively match the subtrees rooteduasind s (line [68).
If the whole subtrees matcls, should not be considered

as a candidate for matching subsequent subject tree nodes 2,

and its following-siblings in the pattern tree should be in-
serted into the frontier set if they qualify when deleting
and its incident arcs (ling] P—JL2). The rest of the pseudo-
code cleans up the resulting liBtif only part of the pattern
tree was matched when traversing the childrenrmafde is
exhausted—BLLOWING-SIBLING returnsNiL in line[13.

Note that Algorithni ]l accesses subject tree nodes in a
depth-first manner. This means that subject tree nodes are 3

accessed in the document order. This property is crucial to
the proof of Propositiof]1 given in Sectipp 5.

Example 2 Consider the subject tree in Figyre 2 and the
NoK pattern tree in Figur¢ 1(b) with tag names prop-
erly translated If[c/g="Stevens"][j<100] ). Sup-
pose the starting pointnode is the firstb in the subject
tree, which matches thgroot and is appended t®, the
algorithm iterates ovelb’s children to check whether they
match with any node in the the frontier det,j }. When the
third child of snode matches withc, a recursive call is in-
voked to match the NoK patter/yg="Stevens" with
the subtree rooted atode /c. When the recursive call re-
turnsTRUE, the algorithm continues to check the other chil-
dren and eventually is matched, causing the frontier set to
be(). After that, the resulR contains the starting poiiht.

It is clear from the algorithm that everhode’s child
will be visited exactly once, but in some special cases, its
grandchildren (and great-grandchildren and so on) could b
visited multiple times through multiple recursive calls. For
example, in/a[b/c][b/d] , @ has two childrerb’s and
they should be both in the frontier whanis matched with
snode. Since everysnode /b node matches both's in the
frontier, two recursive calls will be invoked to match the two
branchest{/c andb/d ), so every grandchild ofnode will
be visited exactly twice for matching andd. In the worst
case, there will b&S| recursive calls at each level (when alll
frontiers nodes match with the current node of subject tree).
Assume there arklevels in the pattern tree; andp; de-
note the number of nodes at levieh the subject tree and
pattern tree, respectively, the maximum number of recur-
sive calls at each level will b&(s; - p;). The complexity
the whole algorithm is simply the sum of the number of re-
cursive calls at each lev8T'_, O(s;-p;) = O(mn), where

Zé:l si=m andZi:1 p; = n, andm andn are the num-

€.

1. The XML structural information (subject tree) should
be stored separately from the value information. The
reason for this is explained in Section}4.1.

The subject tree should be “materialized” to fit into
the paged I/O model. By materialization, we mean the
two-dimensional tree structure should be represented
by a one-dimensional “string”. The materialized string
representation should be as succinct as possible, yet
still maintain enough information for reconstructing
the tree structure. The justification for this is given in
Sectior 4.P.

The storage scheme should have enough auxiliary in-
formation (e.g., indexes on values and tag names) to
speed up NoK pattern matching.

The storage scheme should be adaptable to support up-
dates.

4.

In the subsequent two subsections, we shall introduce how
we manage the value information and structural informa-
tion, respectively.

4.1. Value information storage

The first issue in the desiderata is based on two obser-
vations: Firstly, an XML document is a mixture of schema
information (tag names and their structural relationships)
and value information (element contents). The irregularity
of contents (variability of lengths) makes it hard (ineffi-
cient) for the query engine to search for certain schema/con-
tent information. Secondly, any path query can be divided
into two subqueries: pattern matching on the tree structure
and selection based on values. For example, the structural
constraints and value constraints in the path expression in
Figure[1(b) are/book[author/last][price] and
last="Stevens" A price<100 , respectively. The fi-
nal result could be joined by the results returned by the sub-
gueries. Separating the structural information and the value
information allows us to separate the different concerns and
address each appropriately. For example, we could build
a B+ tree on the value information and a path index (suf-
fix tree, for example) on the structural information without
worrying about the other part.

After the separation, we need to somehow maintain the
connection between structural information and value infor-
mation. We use Dewey ID [14] as the key of tree nodes to
reconnect the two parts of information, e.g., the Dewey IDs
of the roota and its second chilé are0, and0.2, and so

ber of nodes in the pattern tree and subject tree, respectivelygn The reason that we use Dewey ID instead of giving each

4. Physical storage

node a permanent ID is that Dewey ID contains the struc-
ture information and can be derived automatically during
the tree traversal. That eliminates the need to keep the ID

Our desiderata for designing the physical storage schemenformation in the tree structure (cf. Section]4.2). Given a

are as follows:

Dewey ID, we need another B+ tree to quickly locate the



sentation because each node (a character in the string) actu-
ally implies an open parenthesis. Therefore, we can safely

B+ tree B+ tree remove all open parentheses and only retain closing paren-
DeweyID—-> HashedValuem—s theses as imb)c)) . Note thz_it this repr_esentatioq can be

pointer to value in the data file DeweyID further compressed by replacing any series of closing paren-
theses with a number indicating how many of those clos-

\ Data File | ing parentheses there are. However, this introduces the dif-

ficulty that we do not know how many bits are needed for
encoding the number, unless we parse the XML document
beforehand. However, parsing beforehand is impossible in
value of the node in the data file. This data file and its aux- the context of streaming XML where we have no knowl-
iliary data are shown in Figufg 3. edge of the upcoming events (closing tag or deeper nest-
The value information for all subject tree nodes is stored ing). Thus we keep the closing parenthesgs “

sequentially in alata fileor it can be retained in the original
XML document. To evaluate the value-based constraints ef-
ficiently, we build a B+ tree on the data file whose keys

Figure 3. Data file and auxiliary indexes

Example 4 Figurd 4 shows the string representations of the
subject tree in Figurg] 2 (At the physical level, the pointers

are thehasheddata values and returns a set of Dewey ID's in the figure are not stored. They only serve to easily iden-

. tify the end of a subtree to the reader.). If the string is too
whose nodes contain that value. The purpose of the has . : . .
. . . ong to fit in one page, it can be broken up into substrings at
function here is to map any data value (could be variable

length string) to an integer that can be compared quickly. any point and stored in different pages. Assume each char-

Different values that are hashed to the same key can be dis.'::mter In. is 2 bytes long, J" is 1 byte long, and each page

tinguished by looking up the data file directly. Careful se- is 20 bytes long (the number is chosen for illustration only),

lection of the hash function would significantly reduce this the stnng can be d|y|ded Into six pages separated by the
. dashed lines in the figure. o
type of conflicts.

Example 3 In the data file, each element content could 10 SPeed up the query process, we need to store extra in-
be represented by a binary tuplen, value), wherelen formation in each page. The most useful information for lo-
is the length of the value. The \’/alue information for catingchildren, siblings andparent is the node level infor-

the XML document in Figuré I(p) can be organized as mation, i.e., the depth of the node from the root. For exam-
a list of records: (4,"1994"), (18,“TCP/IP lllustrated”), ple, assuming the level of the root is 1 in Fig[ite 4, the level
(14,"Addison-Wesley"), (7,Stevens”), (5,65.95"), and so information for each node is represented by a point in the
on. The position of these records in the data file are kept in2-D Space under the string representation {iteis repre-

the Dewey ID B+ tree. If there are more than one node with S€Nts nodes and theaxis represents level). For each page,
the same value, we can keep only one copy and let thesé@n extratuplést, 1o, hi) is stored, wheret is the level of

nodes point to the same position in the data file. o the last node in the previous page, andhi are the mini-
mum and maximum levels of all nodes in that page, respec-

If the XML file is updated, the value can be easily ap- tively (Note thatst could be outside the rang&o, hil.).
pended to the end of the data file. However, both indexesThis tuple can be thought of as a feather-weight index for
need to be updated. The value-based B+ tree can be updateguessing the page where the following sibling or parent is
incrementally based on insertion/deletion of keys. Due to |ocated. We shall introduce its usage in Secfipn 5.
the nature of Dewey IDs, the node ID B+ tree may need to  Note that when streaming XML (e.g., SAX events) are

be reconstructed if many IDs have been updated. parsed so that every open tag of an element is translated to
a character irt and every closing tag is translated to)d,”
4.2. Structural information storage the result is exactly the same as our physical string repre-

sentation. Therefore, our single-pass NoK pattern matching

One way to materialize the tree is to store the nodesalgorithm (presented in Sectigf 5) based on this physical

in pre-order and keep the tree structure by properly insert-string representation can be adapted to the streaming XML
ing pairs of parentheses as introducedin [17]. For example,context, except that page headers (which help to skip page

(a(b)(c) is a string representation of the tree that has a I/0’s) are not necessary in the streaming context since each
roota and two childrerb andc. The “( " precedinga indi- page needs to be read into main memory anyway.
cates the beginning of a subtree rooted;dts correspond- In addition to these advantages, it is also fairly easy to

ing ) "indicates the end of the subtree. It is straightforward insert and delete nodes from the string representation of the
that such string representation contains enough informationtree. Attaching a subtree to a leaf can be done by insert-
to reconstruct the tree. However, it is not a succinct repre-ing the string representation of the subtree between the left
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character and it's corresponding ™ For example, to in-  1TB according to our statistics), then we need about 3 to 10
sertab)c)) as a subtree of the firétnode in page 1, we  million pages to store the string representation of the tree
can allocate a new page with the contabjc)) , cut-and—  structure. If we load the page headers (assuming each is 7
paste the content aftérin page 1 to the end of content of bytes long) to main memory, we only need 21MB to 70MB.
the new page, and insert the new page into the page link bedn modern computer systems, thisreally small for han-
tween pages 1 and 2. THiet, 1o, hi) information for page  dling up to 1 terabyte of data.
1 should be changed accordingly. Inserting a subtree to a Then the natural question is that if we load the header in-
non-leaf node is slightly more complicated. For example, formation into main memory beforehand, how does it help
if a is inserted in between the roatand its second child in speeding up the path queries? We shall answer this ques-
b, this requires the insertion of an additional"“after the tion in the next section.
rightmost descendant bf This can be handled by control-
ling the load factor of each page, thereby reserving some ofg. XML path queries at the physical level
the page for insertion and by keeping a next page pointer
in the header in case a new page is inserted. The page lay- In the NoK pattern matching algorithm (Algorithpj 1),
out is shown in Figurg[5. the only operation on the subject tree is the iteration over
According to the page layout, the number of nodes in children of a specific node in their document order. Us-
each page can be calculated easily: assume that each pagdeg the physical storage technique proposed in the previ-
is 4KB, of which20% of the space is reserved for update; ous section, this operation is divided into two primitive op-
each character ik is 2 bytes long and)* is 1 byte long. erations: FRST-CHILD to find the first child of a node,
Then each node occupies 3 bytes (because each node comnd FoLLOWING-SIBLING to find the following sibling
sists of a character iR and a ) " character); each parame- of a node. The physical level NoK pattern matching al-
ter in the vector(st, 1o, hi) occupies 1 byte, and the page gorithm simply uses the physical levelRST-CHILD and
index occupies 4 bytes. Consequently, the number of noded=oLLOWING-SIBLING operations to perform the iteration
in a page is around 1000. We call this number ¢tapac- in lines[4 and I3 in Algorithrji]1.
ity, C, of the page. It can be calculated by the formula:  According to the pre-order property of the string repre-
C = %, where B is the page size; is the ra- sentation, these two operations can be performed by looking
tio for space reserved for updatg, is the size of vector  at the node level information of each page from left to right
(st,1lo,hi), I is the page index lengtt§ is the length of  without reconstructing the tree structure. The basic idea is
character i, and P is the length for encoding of)*. As illustrated in the following example.

we calculated above, the value®fs aroundl000 to 3000 Example 5 Consider the string representation in Figife 4.
by substituting reasonable values to these parameters. Ou

éuppose we want to find the first child of charadien the

experimepts show that the string represgntation of the tre€rst page. Since the nodes are pre-ordered, the first child of
structure is only abouit/20t0 1/100 of the size ofthe XML ' <t be the next character if it's not ®™ This condition

document. ) . is equivalent to saying that the first child of a node at level
Now assume that the subject tree has 10 billion nodes; 5 the next character if its level is+ 1. In Figure[3 the
(the size of the original XML document is about 200GB to  5swer ish’s immediate right neighbaz .
Now, suppose we want to finb’s following sibling.
header string representation e e Again, since the nodes are pre-ordered, the following sib-
(st,lo,hi) / ling must be located to the right &f in the string and its
nextpage abz)e)cf)g))i)j))bz)e)ct //% level must be the same. Moreover, the target character must
not to be too far to the right since, in this case, it could

beb’s cousin (share the same grandparent but not the par-
ent). Therefore, there must be another constraint: no inter-

Figure 5. Page layout for structural info.




mediate character (i.e., cousin) whose level is 2 less thanAlgorithm 2 Primitive Tree Operations

b’s level should be in the string betwebrandb'’s follow- READ-PAGE(p, A, L)
ing sibling. In Figurg }4, the answerlisin page 2, but there 1. if pagep is invalid
is no following sibling ofj in the second page. o 2 then return FALSE:
Given a page, it is straightforward to calculate the level 3: if pagep is not in main memory
information for each node: initially the level is setde in 4: then read page in array A [p];
the page headest in the first page is always 0), scan the 5: calculate level array.[p] for pagep;

string from left to right, if the character is g, its level is 6: return TRUE;
incremented by 1, otherwise (i.e., a closing parenthesis), itsFIRST-CHILD (p, 0)
level information is decremented by 1. For example, the lev-1:  if READ-PAGE(p, A, L) = FALSE

els for the nodes in the first page @n23232343432. 2: then return NiL;
Algorithm [ gives a straightforward implementation of 3. if o = A.len

the HRST-CHILD and FOLLOWING-SIBLING operations. 4: then return FIRST-CHILD (p + 1,0);
The READ-PAGE subroutine reads a page from disk 5. elseifL[p|[o+ 1] = L{p][o] + 1

to main memory and calculates the level information de- 6: then return Al[plfo + 1];

scribed above. It takes the page numbeas input pa- 7. elsereturnNiL;
rameter, and returns the page content and level informa-FOLLOWING-SIBLING (p, 0)
tion to the next two parametess and L, which are two- 1. 1 Lp|[o];
dimensional arrays, wher&[p] andL[p] are strings (e.g., 2 je o+l

abz)e)cf)q)) and 0123232343432 for pagel) repre- 3: while READ-PAGE(p, A, L) = TRUE
senting the content and level information of pageespec-

> 4: do
tively. 5: while j < A. len
The FHRST-CHILD and FOLLOWING-SIBLING subrou- 6: do
tines call READ-PAGE to read a page and calculate the level . if Lip|[j] =1 — 2
information when necessary. They take two parameters g. then return NiL:
ando that are the page number and the offset in the page, g. elseifL[p][j] = { andA[p][j] £)’
respectively. They check the string representation and level, . then return A [p][5];
information stored iPA andL and return a character repre- 4. je 41 ’
senting the tag name of first child or following sibling. 12: pept1;
The 1/0 complexity of the RST-CHILD is straightfor- 3. j e 0;

ward: two page I/O’s in the worst case to get the next char-14. retymn NiL:
acter in the string. The #LLOWING-SIBLING operation
may scan the whole file before finding the next character lowing) can be easily composed by using these two oper-
with the same level information. In fact, this is the case ations. For example, given a nodén the string represen-
for finding the following sibling of root in Figure[4. To tation, its descendants are those characters located in be-
avoid unnecessary page 1/O’s, we should exploit the max-tweenu and its following sibling (more precisely it should
imum and minimum level information in each page as de- be all characters in betweerand its first right-side charac-
scribed in the page header. The idea is based on the facter whose level igevel(u) — 1). This implies that the inter-
that if the current node with level I has a following sib-  val (p; * C + 01,pa * C + 02), Wherepy,pa, ¢1, ¢y are the
ling, the page that contains this following sibling must have page number) and offset ¢;) of a character and its corre-
a character)” with level [ — 1 (this is the closing parenthe-  sponding j ", respectively, can be used in the condition for
sis corresponding te). If I—1 is notin the rangélo, hi| of structural joins just as in the interval encoding approach.
apage, It IS clear that_thls page should not be loaded. As WeProposition 1 Given a string representation of the sub-
described in the previous section, we can keep all the page .

) . . ject treeS and a NoK pattern treé€P, suppose the maxi-
headers in main memory with very low cost, and greatly re-

, . mum number of descendants of the second level nodes (e.g.,

duce the number of page I/O’s. In the case of locatirgy

. - : nodes labeled wittb in Figure[2) in S is n. The physi-
following sibling, only two page I/0’s are needed (pages cal level NoK pattern matching algorithm reads every page
1 and 6). This optimization can be easily implemented by b galg ypag

modifying the READ-PAGE subroutine in Algorithn 2, so at '?‘OSt once (smgli-pashs), and rngrfei only pages in
we do not give the actual algorithm here. main memory (recall is the capacity of the page).

The HRST-CHILD and FOLLOWING-SIBLING subrou- PrRoOOF From the analysis of Algorithrn]1, we know that
tines correspond to thehild andfollowing-sibling axes in in a special case, the algorithm might access a subject tree
a path expression. Other axes (ejgrent, // and fol- nodew more than once ifevel(u) > 2. In our physical




storage scheme, the descendanta afe stored before its

following sibling. Since Algorithnj JL matches subject tree [ Query | Category | Example query

nodes in a depth-first manner (matches allusf descen- Q1 hpy | /a/ble="hi"]

dants first before following sibling and never reads back), Q2 hpn /alblcld

in the worst case we only need to read all the pages that Q3 hby lalb[c="hi"][d="hi"]/e

containu’s descendants in main memory, which requires a Q4 hbn fafb[c][d][e]If]

buffer size ofn/C pages, and match them against all pattern Q5 mpy /alb[z="mod"]/d/e

tree branches. After thedELOWING-SIBLING is called, Q6 mpn lalble

this buffer can be freed and those pages are read onlygnce. Q7 mby /a/b[c="mod"][d="mod"]
Since usually XML files are flat and the page capacity is Q8 mbn | /a/blc][d]e]

around1000, the number of pages needed in main memory Q9 Ipy /a/blc="low"]/d

is small in practice. We leave the development of a space Q10 lpn lalble

and time optimal algorithm as future work. Q11 loy | /a/blc="low"][d="low"]

Q12 Ion Jalb[c][d]
6. Experimental evaluation Table 2. Query categories

To assess the effectiveness of the proposed approach, we
conducted extensive experiments and compared them withTopology: The shape of the pattern tree could be a single-
the performance of existing systems or prototypes that are ~ path or bushy (two or more leaf nodes) and may con-

based on interval encoding or other native physical stor-  tain// -arcs. Some systems may have different perfor-
age schemes. Both the data and the queries are classified ~mance in these cases, but the I/O cost of our algorithm
into categories so that we can test the efficiency of all ap- should be the same, except that the main memory op-
proaches in different environments. erations in the bushy case could be greater. We would
like to experimentally verify the analytical results.
6.1. Experimental setting Value constraints: The existence of value constraints and
index on values may be used for fast locating the start-
We implemented the algorithms and physical storage ing point for NoK pattern matching, especially when
prototype in Java with JDK 4. All the experiments were the selectivity is high. Therefore, queries having value
conducted on a PC with Pentium Il 997MHz CPU, 512MB constraints may be used to justify the effectiveness of
RAM, and 40GB hard disk running Windows XP. value-based indexes.

We conducted our experiments using both synthetic andCombining these three criteria, we designed queries in
real data sets. The synthetic data sets (author, address, ar}%elve categories shown in Tal¢ 2. Each category is de-
catalog) are selected from XBench benchmark [27] in the | . by a string of length three, where each position de-
data-centric category. The rgal data sets. (Treebank and dblp?ﬁotes one of the above criterion. The character in each po-
are sellected' from University of Washington XML Data  iion stands for: low (1), moderate (m), or high () for se-
Repo_snory [1]. These data files are selected because theYectivity; path (p), or bushy (b) for topology: and yes (y),
are either bushy (author, address, dbip) or deep (catalogy, (n) for existence of value constraints. The tag names

'I;]rezbank). Tablg]l ShOW_S tdhe statistil():a_ll i?forhmatio_n tht_hi and constants in the example queries are dummy and they
the data sets and B+ tree indexes we built for them, inwhich gy, 14 pe replaced by appropriate values in different test

tree, B+, B+y, B+; denote the string representation of a5 \we also testetl  axis by randomly substituting it for
the tree structure, the B+ trees for tag names, values, an | axis.
Dewey IDs, respectively.

Queries were carefully selected for the experiments to
cover different aspects of path queries on the XML data.
Our selectioq is based on the following three properties of  \va tested our system against two join-based algorithms
path expressions: based on interval encoding—dynamic interval (DI)/[10] and
Selectivity: A path expression returning a small number of TwigStack [5], as well as a state-of-the-art native XML

results should be evaluated faster than those returning alatabase system X-Hive/DB version 4.1.1. For each data
large number of results. To evaluate whether our algo- set, we chose a representative path expression in each of
rithm is sensitive to selectivity, we divided queries into the twelve categories. The performance evaluation results
three categories based on their selectivity: high (sev- are shown in Table]3. Each running time is the average over
eral results), moderate (greater than 10 but less thanthree executions. Some categories are not applicable (de-
100 results), and low (greater than 100 results). noted as “NA’ in the table) to the data sets (e.g., author and

6.2. Performance evaluation and analysis



dataset | size #nodes | avg. depth | maxdepth | [tags| [ Jtree] | B+¢| | [B+v| | [B+i] |

author 1.2 MB 15,006 3 3 8 0.035MB | 0.18MB | 0.33MB | 0.4 MB
address | 17 MB 403, 201 3 3 7 0.5 MB 5 MB 12 MB 11 MB
catalog 30 MB 620, 604 5 8 51 1.2 MB 8 MB 15 MB 13 MB
TreeBank| 82MB | 2,437,666 8 36 250 5.3 MB 58 MB 80 MB 72 MB
dblp 133 MB | 3,332,130 3 6 35 8 MB 62 MB 150 MB | 180 MB

Table 1. Statistic information of data sets

address data sets do not have moderate selectivity querieive, but our system is not, as shown in TgHle 3.

without value constraints), or the queries we selected for  Moreover, since both materialization and re-computation

the category contain some functionalities that were not im- are expensive operations when the intermediate result is
plemented (denoted as “NI” in the table) by a particular sys- large, DI has to perform the same amount of work disre-

tem (e.g., DI does not support value comparisons other thargarding the result size, i.e., DI is not sensitive to the selec-
equality as of the date we perform the experimentation). tivity. Generally, the running time of our system decreases

To prepare for the test, we created all the indexes (ID, whgn the selectivity of thetarting points'ncrgases._Our ex-
tag-name, and value) for the data sets. To conduct fair comPeriment shows that the selectivity of staring points can be

parisons, we also created indexes (1D, tag-name, and value? fairly good approximation f_or s_electivity of final results
for X-Hive. We implemented the TwigStack algorithm ina ' We choose the most selective index (value or tag-name-
way such that different tree nodes with different tag names based) for Ios:atlng the startlng points. ) )

are stored separately in a file sorted by document order. N comparison to the TwigStack algorithm, our algorithm
Each file contains the nodes constituting an input stream asPerforms fewer fruitiess scans because it does not need to
sociated with a node in the twig. In order to speed up value fraverse a subtree if its root does not match a pattern tree
comparisons, we also created a B+ tree for the value nodesl0de. However, TwigStack has to scan all streams asso-

DI has only limited support for tag-name index at this time, ¢iatéd with leaf nodes in the pattern tree. Although XB-
so we did not use index on the tests for DI. This is one of tree [5] or other index structures [16] might compensate for

the reasons that DI did not perform as well as other systemshis problem, the storage basis (interval encoding) lacks the
We apply a very simple heuristic to index usage: whenever flexibility for update and for processing streaming XML.
there are value constraints, we always use the value index N summary, our system is comparable to DI, TwigStack,
to locate the starting point for NoK pattern matching. If and X-Hive in some cases and outperforms them in most
there are more than one value constraints, the most seleccases. In particular, our system is sensitive to the selectiv-
tive one is used. If there are no value constraints, we pick theity, insensitive to the topology of pattern tree, and could take
tag name which has the highest selectivity. If the selectivity @dvantage of the existence of value constraints.

is “high” (defined based on our heuristic), we use the tag-

name inQex for Iocqting stgrt.ing points, otherwise we use a7  Related work and comparisons

sequential scan. This heuristic allows us to test the effective-

ness O.f value and_tag-nqme indexes. Experiments show t_hat In general, tree pattern matching can be classified
sometimes value index is more effective than tag-name iN-ito ordered tree pattern matching (OTPM) problem and

d_ex (e.g. in Tree_bank h.'gh selective gategorles), and SOM€nordered tree pattern matching (UTMP) problem de-
times tag-name index is more effective (e.g., in catalog).

This is b | in Treebank dom! pending on the ordering of siblings in the pattern tree.
IS 1S because values In freebank were randomly genelry,  oppy problem can be solved very efficiently—
ated and has higher selectivity than tag names.

O(n+/m polylog m), wherem andn are respectively the
Another reason for the good performance of NoK (as sizes of pattern tree and data tree, by using suffix trees or
well as TwigStack) is that it does not need to materialize other data structures [115,]11]. However the pattern tree gen-
intermediate results for multiple joins. Materializing inter- erated by path expressions are generally unordered since
mediate results or recomputing partial results is inevitable branchings in the pattern tree are caused by multiple predi-
in bushy path expressions for DI. For example, in the path cates that are unordered. To be more precise, we shall con-

expressioria/b[c][d]/e , element needs to be tested sider partially ordered pattern tree since two nodes can be
for childrenc andd, and then return childres. Each of the ~ connected by théllowing-sibling or preceeding-sibling
three operations need a join with nodes returnedelly |, axes. The UTPM problem is generally tackled by the join-

while in a single-path query, DI could use a pipelined plan based approach introduced above. Early implementations
and avoid materialization. Therefore, DI is topology sensi- follow the formal semantics and treat a path expression as a



file systems| Q1 [ Q2 [ Q3 | Q4 [ Q5 | Q6 | Q7 [ Q8 [ Q9 | Q10 | Q11 | Q12 |

DI | 0.25| 0.24 | 0.6 0.24 NI NI 0.29 | NI 0.87
author X-Hive | 0.34| 0.28 | 0.45| NA 0.38| NA | 048 | NA | 0.78 | 0.43| 0.85 | 0.23
TwigStack | 0.25 | 0.21 | 0.28 0.34 1.5 16 | 0.38| 2.3 | 0.48
NoK | 0.2 | 0.23| 0.29 0.3 0.29 0.58 | 0.17 | 0.69 | 0.17
DI | 253 | 2.6 | 6.6 2.49 8.9 257 | 273 | NI 4.81
address X-Hive 0.3 1.7 | 0.47 NA 1.03| NA | 0.72| NA | 0.79| 23 | 0.87 | 4.73
TwigStack | 0.3 | 0.31 | 0.26 1.2 1.74 1.79| 1.9 101 | 4.2
NoK | 0.32 | 0.05 | 0.27 0.83 0.77 15 32 | 1.39| 38
DI 88 | 3.25| 14 9.4 NI 8.9 | 287 | NI 13
catalog .X-Hive 1.3 | 2.16 | 0.67 NA 1.4 NA 1.4 NA 1.7 4.9 1.6 54
TwigStack | 1.01 | 1.2 | 0.81 2.01 1.3 0.8 0.9 2.4 1.1
NoK | 0.37| 0.1 | 0.43 1.2 1.4 2.5 1.1 2.4 1.3
DI | 26.3 | 11.7 | 455 13 27.4 43 14.2 43.6
X-Hive | 0.61 | 8.2 0.6 7.2 NA | 19.7 | NA 14 NA 2.9 NA 14.2
Treebank .
TwigStack | 0.8 | 183 | 0.45| 20.1 1.62 1.9 1.8 4.2
NoK | 0.35| 0.77 | 0.37| 0.74 0.51 0.65 2.1 1.2
DI 27 185| 17.5| 18.3 | 60.8 26 188 | 176 | 17.4 18 75.2 | 26.6
dblp X-Hive | 0.97 | 194 | 12 11.36 | 108 | 86 | 129 | 885 | 2.78 | 16.2 | 9.7 | 10.7
TwigStack | 2.19 | 1.2 7.3 2.2 89 | 032] 92 | 045 1.2 14 | 129 | 138
NoK | 0.6 0.1 2.8 3.2 1.22 | 0.57| 10.8| 0.5 1.5 | 0.89 | 0.62 | 0.99

Table 3. Running time (in sec) for DI, X-Hive, TwigStack, and NoK on different queries and data sets

sequence of steps, each of which takes input from the pre{e.g., Ozone[[19]), and building native XML repositories
vious step and produces an output to the next step. This(e.g., Taminol[21], Natix[[12], X-Hive, and Xyleme). Re-
can be thought of as a special case of join-based approacleently, Koch[18] proposed a physical storage scheme based
that uses nested-loop join instead of merge join-like algo- on the binary representation of an unranked tree. The space
rithms. Experimental results show that implementations fol- it uses is comparable to ours but it requires more page /O
lowing this approach suffer from exponential runtime in the in the FOLLOWING-SIBLING operation if the tree is very
size the of path expressions in the worst case [13]. That pa-deep since they do not maintain the level information. Inter-
per proves that path expressions can be answered in polyestingly, his approach can also be extended to the stream-
nomial time, but their algorithm is based on main memory ing XML context but requires two sequential scans. We use
and cannot be adapted to streaming XML. Barton et al. [3] only one sequential scan in the worst case since NoK pattern
proposed a single-pass algorithm for streaming XML pro- tree is less expressive than the path expression he difined.
cessing. They defined a subset of path expressions that only

supportschild, parent, ancestor and descendant axes,
and no value constraints. Their algorithm is very similar
to NoK pattern matching in the streaming XML context,

but the latter is more efficient in the non-streaming context
since it takes advantage §t, 1o, hi) triples and value- tern tree—NoK pattern tree, and proposed a novel approach

based indexes to guide the navigation. Recently, Wang et©" €fficiently evaluating path expressions by NoK pattern
al. [25] proposed an index that is efficient in matching pat- Matching. The result of NoK pattern matching greatly re-
tern trees without using structural joins. However their in- duces the number of structural joins in the later step. NoK
dex only works on ordered pattern tree. For unordered onesPattern matching can be evaluated highly efficiently (only

they need to enumerate all possible ordered trees (which id€€d @ single scan of input data) using the physical storage
exponential) and perform an index look-up to each of them. scheme we proposed. Performance evaluation has shown
that our system has better or comparable performance than

On the XML physical storage part, a number of ap- the existing extended-relational (based on interval encod-
proaches have been proposed, including using flat file sys4ng) and native XML database management systems.
tems (e.g., Kweelt[[20]), extending mature DBMS tech-  To further improve the performance, we can do more op-
nologies such as relational DBMSs (e.g., IBM DB2, Ora- timization on the locating step of NoK pattern tree match-
cle, and Microsoft SQL Server) or object-oriented DBMS ing process. For example, instead of linear scan, we can pre-

8. Conclusion and future work

In this paper, we have defined a special type of pat-



process the NoK pattern tree in a similar fashion as Robin-[13]
Karp or Knuth-Morris-Pratt algorithms have done to string
pattern matching. Another improvement is to use path in-
dex instead of tag-name index. This is particularly efficient [14]
when the selectivity of individual tag names are low but the
selectivity of a path is high. Without exception, any stor-

age scheme in the database systems should consider hoY\iS]
to employ concurrency control and how it affect the update
process. Although these are extremely important issues, w
leave them as future work.
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