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Abstract We present an approach to email filtering based on the suffix tree data structure. A

method for the scoring of emails using the suffix tree is developed and a number of scoring and

score normalisation functions are tested. Our results show that the character level representa-

tion of emails and classes facilitated by the suffix tree can significantly improve classification

accuracy when compared with the currently popular methods, such as naive Bayes. We believe

the method can be extended to the classification of documents in other domains.
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1. Introduction

Just as email traffic has increased over the years since its inception, so has the proportion that

is unsolicited; some estimations have placed the proportion as high as 60%, and the average

cost of this to business at around $2000 per year, per employee (see (unspam.com, 2004)

for a range of numbers and statistics on spam). Unsolicited emails—commonly known as

spam—have thereby become a daily feature of every email user’s inbox; and regardless of

advances in email filtering, spam continues to be a problem in a similar way to computer

viruses which constantly reemerge in new guises. This leaves the research community with

the task of continually investigating new approaches to sorting the welcome emails (known

as ham) from the unwelcome spam.
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We present just such an approach to email classification and filtering based on a well studied

data structure, the suffix tree (see (Lloyd, 2000) for a brief introduction). The approach is

similar to many existing ones, in that it uses training examples to construct a model or profile

of the class and its features, then uses this to make decisions as to the class of new examples;

but it differs in the depth and extent of the anaysis. For a good overview of a number of text

classification methods, see (Sebastiani, 2002; Aas & Eikvil, 1999; Weiss et al., 2005).

Using a suffix tree, we are able to compare not only single words, as in most current

approaches, but substrings of an arbitrary length. Comparisons of substrings (at the level of

characters) has particular benefits in the domain of spam classification because of the methods

spammers use to evade filters. For example, they may disguise the nature of their messages

by interpolating them with meaningless characters, thereby fooling filters based on keyword

features into considering the words, sprinkled with random characters, as completely new

and unencountered. If we instead treat the words as character strings, and not features in

themselves, we are still able to recognise the substrings, even if the words are broken.

Section 2 gives examples of some of the methods spammers use to evade detection which

make it useful to consider character level features. Section 3 gives a brief explanation of the

naive Bayes method of text classification as an example of a conventional approach. Section 4

briefly introduces suffix trees, with some definitions and notations which are useful in the

rest of the paper, before going on to explain how the suffix tree is used to classify text and

filter spam. Section 5 describes our experiments, the test parameters and details of the data

sets we used. Section 6 presents the results of the experiments and provides a comparison

with results in the literature. Section 7 concludes.

2. Examples of spam

Spam messages typically advertise a variety of products or services ranging from prescrip-

tion drugs or cosmetic surgery to sun glasses or holidays. But regardless of what is being

advertised, one can distinguish between the methods used by the spammer to evade detection.

These methods have evolved with the filters which attempt to intercept them, so there is a

generational aspect to them, with later generations becoming gradually more common and

earlier ones fading out; as this happens, earlier generations of filters become less effective.

We present four examples of spam messages, the first of which illustrates undisguised

spam while the other three illustrate one or more methods of evasion.

1. Undisguised message. The example contains no obfuscation. The content of the message is

easily identified by filters, and words like “Viagra” allow it to be recognised as spam. Such

messages are very likely to be caught by the simplest word-based Bayesian classifiers.

Buy cheap medications online, no prescription needed.

We have Viagra, Pherentermine, Levitra, Soma, Ambien, Tramadol and many

more products.

No embarrasing trips to the doctor, get it delivered directly to your door.

Experienced reliable service.

Most trusted name brands.

Your solution is here: http://www.webrx-doctor.com/?rid=1000
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2. Intra-word characters.

Get the low.est pri.ce for gen.eric medica.tions!

Xa.n.ax - only $100

Vi.cod.in - only $99

Ci.al.is - only $2 per do.se

Le.vit.ra - only $73

Li.pit.or - only $99

Pr.opec.ia - only $79

Vi.agr.a - only $4 per do.se

Zo.co.r - only $99

Your Sav.ings 40% compared Average Internet Pr.ice!

No Consult.ation Fe.es! No Pr.ior Prescrip.tions Required! No Ap-

poi.ntments!

No Wait.ing Room! No Embarra.ssment! Private and Confid.ential! Disc.reet

Packa.ging!

che ck no w:

<http://priorlearndiplomas.com/r3/?d=getanon>

The example above shows the use of intra-word characters, which may be non-alpha-

numeric or whitespace. Here the word “Viagra” has become “Vi.agr.a”, while the

word “medications” has become “medica.tions”. To a simple word-based Bayesian

classifier, these are completely new words, which might have occurred rarely, or not

at all, in previous examples. Obviously, there are a large number of variations on

this theme which would each time create an effectively new word which would not

be recognised as spam content. However, if we approach this email at the char-

acter level, we can still recognise strings such as “medica” as indicative of spam,

regardless of the character that follows, and furthermore, though we do not deal

with this in the current paper, we might implement a look-ahead window which at-

tempts to skip (for example) non-alphabetic characters when searching for spammy

features.

Certainly, one way of countering such techniques of evasion is to map the ob-

fuscated words to genuine words during a pre-processing stage, and doing this will

help not only word-level filters, but also character-level filters because an entire word

match, either as a single unit, or a string of characters, is better than a partial word

match1.

1 The subject of spam de-obfuscation has been addressed in a recent paper: Honglak Lee and Andrew Y. Ng,
Spam deobfuscation using a hidden Markov model, Proceedings of the Second Conference on Email and
Anti-Spam (CEAS, 2005), Stanford University, CA.
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However, some other methods may not be evaded so easily in the same way, with each

requiring its own special treatment; we give two more examples below which illustrate

the point.

3. Word salad.

Buy meds online and get it shipped to your door Find out more here

<http://www.gowebrx.com/?rid=1001>

a publications website accepted definition. known are can Commons the

be definition. Commons UK great public principal work Pre-Budget but

an can Majesty’s many contains statements statements titles (eg includes

have website. health, these Committee Select undertaken described may

publications

The example shows the use of what is sometimes called a word salad–meaning a random

selection of words. The first two lines of the message are its real content; the paragraph

below is a paragraph of words taken randomly from what might have been a government

budget report. The idea is that these words are likely to occur in ham, and would lead

a traditional algorithm to classify this email as such. Again, approaching this at the

character level can help. For example, say we consider strings of length 8, strings such

as “are can” and “an can”, are unlikely to occur in ham, but the words “an”, “are” and

“can” may occur quite frequently. Of course, in most ’bag-of-words’ implementations,

words such as these are pruned from the feature set, but the argument still holds for other

bigrams.

4. Embedded message (also contains a word/letter salad). The example below shows an

embedded message. Inspection of it will reveal that it is actually offering prescription

drugs. However, there are no easily recognised words, except those that form the word

salad, this time taken from what appear to be dictionary entries under ‘z’. The value

of substring searching is highly apparent in this case as it allows us to recognise words

such as “approved”, “Viagra” and “Tablets”, which would otherwise be lost among the

characters pressed up against them.

These examples are only a sample of all the types of spam that exist. For an excellent

and often updated list of examples and categories, see (Graham-Cummings, 2004; de Freitas

& Levene, 2004). Under the categories suggested in Wittel & Wu (2004), example 2 and 4

would count as ‘Tokenisation’ and/or ‘Obfuscation’, while examples 2 and 3 would count as

‘Statistical’.

We look next at a bag-of-words approach, naive Bayes, before considering the suffix tree

approach.
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zygotes zoogenous zoometric zygosphene zygotactic zygoid zucchettos

zymolysis zoopathy zygophyllaceous zoophytologist zygomaticoauricular

zoogeologist zymoid zoophytish zoospores zygomaticotemporal zoogonous

zygotenes zoogony zymosis zuza zoomorphs zythum zoonitic zyzzyva

zoophobes zygotactic zoogenous zombies zoogrpahy zoneless zoonic zoom

zoosporic zoolatrous zoophilous zymotically zymosterol

FreeHYSHKRODMonthQGYIHOCSupply.IHJBUMDSTIPLIBJT

* GetJIIXOLDViagraPWXJXFDUUTabletsNXZXVRCBX
<http://healthygrow.biz/index.php?id=2>

zonally zooidal zoospermia zoning zoonosology zooplankton zoochemical

zoogloeal zoological zoologist zooid zoosphere zoochemical

& Safezoonal andNGASXHBPnatural
& TestedQLOLNYQandEAVMGFCapproved

zonelike zoophytes zoroastrians zonular zoogloeic zoris zygophore zoograft

zoophiles zonulas zygotic zymograms zygotene zootomical zymes zood-

endrium zygomata zoometries zoographist zygophoric zoosporangium

zygotes zumatic zygomaticus zorillas zoocurrent zooxanthella zyzzy-

vas zoophobia zygodactylism zygotenes zoopathological noZFYFEPBmas

<http://healthygrow.biz/remove.php>

3. Naive Bayesian classification

Naive Bayesian (NB) email filters currently attract a lot of research and commercial interest,

and have proved highly successful at the task; Sahami et al. (1998) and Michelakis et al.

(2004) both provide excellent studies of this approach to email filtering. We do not give

detailed attention to NB as it is not the intended focus of this paper; for a general discussion

of NB see Lewis (1998), for more context in text categorisation see Sebastiani (2002), and

for an extension of NB to the classification of structured data, see (Flach & Lachiche, 2004).

However, an NB classifier is useful in our investigation of the suffix tree classifier, and in

particular, our own implementation of NB is necessary to investigate experimental conditions

which have not been explored in the literature. We therefore briefly present it here.

We begin with a set of training examples with each example document assigned to one of

a fixed set of possible classes, C = {c1, c2, c3, . . . cJ}. An NB classifier uses this training data

to generate a probabilistic model of each class; and then, given a new document to classify,

it uses the class models and Bayes’ rule to estimate the likelihood with which each class

generated the new document. The document is then assigned to the most likely class. The

features, or parameters, of the model are usually individual words; and it is ‘naive’ because

of the simplifying assumption that, given a class, each parameter is independent of the others.

McCallum and Nigam (1998) distinguish between two types of probabilistic models

which are commonly used in NB classifiers: the multi-variate Bernoulli event model and
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the multinomial event model. We adopt the latter, under which a document is seen as a series

of word events and the probability of the event given a class is estimated from the frequency

of that word in the training data of the class.

Hence, given a document d = {d1d2d3...dL}, we use Bayes’ theorem to estimate the prob-

ability of a class, c j :

P(c j | d) = P(c j )P(d | c j )

P(d)
(1)

Assuming that words are independent given the category, this leads to:

P(c j | d) = P(c j )
∏L

i=1 P(di | c j )

P(d)
(2)

We estimate P(c j ) as:

P̂(C = c j ) = Nj

N
(3)

and P(di | c j ) as:

P̂(di | c j ) = 1 + Nij

M + ∑M
k=1 Nkj

(4)

where N is the total number of training documents, N j is the total number of training

documents belonging to class j , Ni j is the number of times word i occurs in class j (similarly

for Nkj ) and M is the total number of words considered.

To classify a document we calculate two scores, for spam and ham, and take the ratio,

hsr = hamScore
spamScore , and classify the document as ham if it is above a threshold, th, and as spam

if it is below (see Section 5.1.3).

4. Suffix tree classification

4.1. Introduction

The suffix tree is a data storage and fast search technique which has been used in fields

such as computational biology for applications such as string matching applied to DNA

sequences (Bejerano and Yona, 2001; Lu & Chen, 2003). To our knowledge it has not been

used in the domain of natural language text classification.

We adopted a conventional procedure for using a suffix tree in text classification. As

with NB, we take a set of documents D, each of which is known to belong to one

class, c j , in a set of classes, C, and build one tree for each class. Each of these trees

is then said to represent (or profile) a class (a tree built from a class will be referred to

as a “class tree”).

Given a new document d, we score it with respect to each of the class trees and the class

of the highest scoring tree is taken as the class of the document.

We address the scoring of documents in Section 4.4, but first, we consider the construction

of the class tree.
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4.2. Suffix tree construction

We provide a brief introduction to suffix tree construction. For a more detailed treatment,

along with algorithms to improve computational efficiency, the reader is directed to Gusfield

(1997). Our representation of a suffix tree differs from the literature in two ways that are

specific to our task: first, we label nodes and not edges, and second, we do not use a special

terminal character. The former has little impact on the theory and allows us to associate

frequencies directly with characters and substrings. The latter is simply because our interest

is actually focused on substrings rather than suffixes; the inclusion of a terminal character

would therefore not aid our algorithms, and its absence does not hinder them. Furthermore,

our trees are depth limited, and so the inclusion of a terminal character would be meaningless

in most situations.

Suppose we want to construct a suffix tree from the string, s = “meet”. The string has

four suffixes: s(1) = “meet”, s(2) = “eet”, s(3) = “et”, and s(4) = “t”.

We begin at the root of the tree and create a child node for the first character of the suffix

s(1). We then move down the tree to the newly created node and create a new child for the

next character in the suffix, repeating this process for each of the characters in this suffix.

We then take the next suffix, s(2), and, starting at the root, repeat the process as with the

previous suffix. At any node, we only create a new child node if none of the existing children

represents the character we are concerned with at that point. When we have entered each

of the suffixes, the resulting tree looks like that in Fig. 1. Each node is labelled with the

character it represents and its frequency. The node’s position also represents the position

of the character in the suffix, such that we can have several nodes labelled with the same

character, but each child of each node (including the root) will carry a character label which

is unique among its siblings.

If we then enter the string, t = “feet”, into the tree in Fig. 1, we obtain the tree in Fig. 2.

The new tree is almost identical in structure to the previous one because the suffixes of

the two strings are all the same but for t(1) = “feet”, and as we said before, we need only

create a new node when an appropriate node does not already exist, otherwise, we need only

increment the frequency count.

Thus, as we continue to add more strings to the tree, the number of nodes in the tree

increases only if the new string contains substrings which have not previously been encoun-

tered. It follows that given a fixed alphabet and a limit to the length of substrings we consider,

there is a limit to the size of the tree. Practically, we would expect that, for most classes, as

we continue to add strings to the class tree, the tree will increase in size at a decreasing rate,

and will quite likely stabilise.

4.3. Class trees and their characteristics

For any string s we designate the i th character of s by si ; the suffix of s beginning at the i th

character by s(i); and the substring from the i th to the j th character inclusively by s(i, j).

Any node, n, labeled with a character, c, is uniquely identified by the path from the

root to n. For example, consider the tree in Fig. 2. There are several nodes labelled with

a “t”, but we can distinguish between node n = (“t” given “mee”) = (t |mee) and p =
(“t” given “ee”) = (t |ee); these nodes are labelled n and p in Fig. 2. We say that the path

of n is
−→
P n = “mee”, and the path of p is

−→
P p = “ee”; furthermore, the frequency of n is 1,

whereas the frequency of p is 2; and saying n has a frequency of 1 is equivalent to saying

the frequency of “t” given “mee” is 1, and similarly for p.
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Fig. 2 A Suffix Tree after insertion of strings “meet” and “feet”

If we say that the root node, r , is at level zero in the tree, then all the children of r are at

level one. More generally, we can say that the level of any node in the tree is one plus the

number of letters in its path. For example, level(n) = 4 and level(p) = 3.

The set of letters forming the first level of a tree is the alphabet, � - meaning that all the

nodes of the tree are labelled with one of these letters. For example, considering again the

tree in Fig. 2, its first level letters are the set, � = {m, e, t, f }, and all the nodes of the tree

are labelled by one of these.

Suppose we consider a class, C , containing two strings (which we might consider as

documents), s = “meet” and t = “feet”. Then we can refer to the tree in Fig. 2 as the class
tree of C , or the suffix tree profile of C ; which we denote by TC .

The size of the tree, |TC |, is the number of nodes it has not counting the root node, and

it has as many nodes as C has unique substrings. For instance, in the case of the tree in
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Fig. 2:

UC = uniqueSubstrings(C) =
{

meet, mee, me, m, eet, ee, e, et, t,

feet, fee, fe, f

}
|UC | = |uniqueSubstrings(C)| = 13

|TC | = numberOfNodes(TC ) = 13

This is clearly not the same as the total number of substrings in C :

AC = allSubstrings(C) =
{

meet, mee, me, m, eet, ee, e, et, e, t,

feet, fee, fe, f, eet, ee, e, et, e, t

}

|AC | = |AllSubstrings(C)| = 20

As an example, note that the four “e”s in the set are in fact the substrings s(1,1), s(2,2),

t(1,1) and t(2,2).

Furthermore, as each node in the tree, TC , represents one of the substrings in UC, the size

of the class, AC, is equal to the sum of the frequencies of nodes in the tree TC .

|AC | = |allSubstrings(C)| = sumOfFrequencies(TC ) = 20

In a similar way, the suffix tree allows us to read off other frequencies very quickly and

easily. For example, if we want to know the number of characters in the class C , we can sum

the frequencies of the nodes on the first level of the tree; and if we want to know the number

of substrings of length 2, we can sum the frequencies of the level two nodes; and so on.

This also allows us to very easily estimate probabilities of substrings of any length (up to

the depth of the tree), or of any nodes in the tree. For example, we can say from the tree in

Fig. 2, that the probability of a substring, u, of length two, having the value, u = “ee”, given

the class C , is the frequency, f , of the node n = (e|e), divided by the sum of the frequencies

of all the level two nodes in the tree TC :

estimatedTotalProbability(u) = f (u)∑
i∈Nu

f (i)
(5)

where Nu is the set of all nodes at same level as u.

Similarly one can estimate the conditional probability of u as the frequency of u divided

by the sum of the frequencies of all the children of u’s parent:

estimatedConditionalProbability(u) = f (u)∑
i∈nu

f (i)
(6)

where nu is the set of all children of u’s parent.

Throughout this paper, whenever we mention p̂(u), we mean the second of these

(formula 6): the conditional probability of a node u.
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4.4. Classification using Suffix Trees

Researchers have tackled the problem of the construction of a text classifier in a variety of

different ways, but it is popular to approach the problem as one that consists of two parts:

1. The definition of a function, CSi : D → R, where D is the set of all documents; such

that, given a particular document, d , the function returns a category score for the class

i . The score is often normalised to ensure that it falls in the region [0, 1], but this is

not strictly necessary, particularly if one intends, as we do, simply to take as the class

prediction the highest scoring class (see Part 2 below). The interpretation of the meaning

of the function, CS, depends on the approach adopted. For example, as we have seen,

in naive Bayes, CS(d), is interpreted as a probability; whereas in other approaches such

as Rocchio (1971), CS(d) is interpreted as a distance or similarity measure between two

vectors.

2. A decision mechanism which determines a class prediction from a set of class scores.

For example, the highest scoring class might be taken as the predicted class: PC =
argmaxc j ∈C {CS j (d)}. Alternatively, if CS(d) is interpreted as a value with definite range,

such as a probability, the decision may be based on a threshold, th, such that the predicted

class is taken as c j if CS j (d) > th, and as not c j otherwise.

Lewis et al. (1996) and Duda and Hart (1973) refer to probabilistic models such as naive

Bayes as parametric classifiers because they attempt to use the training data to estimate the

parameters of a probability distribution, and assume that the estimated distribution is correct.

Non-parametric, geometric models, such as Rocchio (1971), instead attempt to produce a

profile or summary of the training data and use this profile to query new documents to decide

their class.

It is possible to approach the construction of a suffix tree classifier in either of these

two ways and indeed a probability-based approach has been developed by Bejerano and

Yona (2001) for use in gene sequence matching. However, Bejerano & Yona (2001) did not

find the suffix tree entirely convenient for developing a probabilistic framework and instead

developed a probabilistic analogue to the suffix tree and used this modified data structure to

develop probabilistic matching algorithms.

In this paper, we retain the original structure of the suffix tree and favour a non-parametric,

or geometric, approach to classifier construction. In such a framework a match between a

document and a suffix tree profile of a class is a set of coinciding substrings each of which

must be scored individually so that the total score is the sum of individual scores. This

is analogous to the inner product between a document vector and class profile vector in

the Rocchio algorithm (Rocchio, 1971). We did experiment with probabilistic models, and

found that it was possible to construct one without altering the structure of the suffix tree

(indeed, some of the flavours of the scoring system we present can be seen as approximating

a probabilistic approach (see Section 4.4.1, Part 1C)) even though the branches are not

independent: each corresponds to a set of strings which may overlap. However we found that

additive scoring algorithms performed better and in the current paper we describe only this

approach. The method, the details of which are presented in the next section, is governed by

two heuristics:

H1 Each substring s(i) that a string s has in common with a class T indicates a degree

of similarity between s and T , and the longer the common substrings the greater the

similarity they indicate.
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H2 The more diverse2 a class T , the less significant is the existence of a particular common

substring s(i, j) between a string s and the class T .

Turning to the second issue in classifier construction, for our current two-class problem, we

take the ratio of two scores, hsr = hamScore
spamScore , just as we did in the case of our naive Bayesian

classifier, and classify the document as ham if the ratio is greater than a threshold, th, and

as spam if the ratio is below th. By raising and lowering this threshold we can change the

relative importance we place on miss-classified spam and ham messages (see Section 5.1.3).

4.4.1. Scoring

The suffix tree representation of a class is richer than the vector representation of more

traditional approaches and in developing a scoring method we can experiment with various

properties of the tree, each of which can be seen as reflecting certain properties of the class

and its members.

We begin by describing how to score a match between a string and a class, then extend

this to encompass document scoring. Conceptually dividing the scoring in this way allowed

us to introduce and experiment with two levels of normalisation: match-level, reflecting

information about strings; and tree-level, reflecting information about the class as a whole.

The end of this section elaborates on the underlying motivation for the described scoring

method.

1. Scoring a match

(a) We define a match as follows: A string s has a match m = m(s, T ) in a tree T if there

exists in T a path, from the root,
−→
P = m, where m is a prefix of s.

(b) The score, score(m), for a match m = m0m1m2...mn , has two parts, firstly, the scoring

of each character (and thereby, each substring), mi , with respect to its conditional prob-

ability, using a significance function of probability, φ[ p̂] (defined below in part(1C)),

and secondly, the adjustment (normalisation), ν(m|T ), of the score for the whole match

with respect to its probability in the tree:

score(m) = ν(m|T )
n∑

i=0

φ[ p̂(mi )] (7)

Using the conditional probability rather than the total probability has the benefit of

supporting heuristic H1: as we go deeper down the tree, each node will tend to have

fewer children and so the conditional probability will be likely to increase; conversely,

there will generally be an increasing number of nodes at each level and so the total

probability of a particular node will decrease. Indeed we did experiment with the total

probability and found that performance was significantly decreased.

Furthermore, by using the conditional probability we also only consider the in-

dependent parts of features when deriving scores. So for example, if m = “abc”, by

the time we are scoring the feature represented by “abc”, we have already scored the

feature “ab”, so we need only score “c” given “ab”.

(c) A function of probability, φ[ p̂], is employed as a significance function because it is not

always the most frequently occurring terms or strings which are most indicative of a

2 Diversity is here an intuitive notion which the scoring method attempts to define and represent in a number
of different ways.
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class. For example, this is the reason that conventional pre-processing removes all stop

words, and the most and least frequently occurring terms; however, by removing them

completely we give them no significance at all, when we might instead include them,

but reduce their significance in the classification decision. Functions on the probability

can help to do this, especially in the absence of all pre-processing, but that still leaves

the question of how to weight the probabilities, the answer to which will depend on the

class.

In the spam domain, some strings will occur very infrequently (consider some of

the strings resulting from intra-word characters in the examples of spam in Section 2

above) in either the spam or ham classes, and it is because they are so infrequent that

they are indicative of spam. Therefore, under such an argument, rather than remove

such terms or strings, we should actually increase their weighting.

Considerations such as these led to experimentation with a number of specifications

of the significance function, φ[ p̂]:

φ[ p̂] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 constant

p̂ linear

p̂ 2 square
√

p̂ root

ln( p̂) − ln(1 − p̂) logit

1

1 + exp(− p̂)
sigmoid

The first three functions after the constant are variations of the linear (linear, sub-linear

and super-linear). The last two are variations on the S-curve; we give above the simplest

forms of the functions, but in fact, they must be adjusted to fit in the range [0,1].

Although in this paper we are not aiming to develop a probabilistic scoring method,

note that the logistic significance function applied to formula (7) may be considered

an approximation of such an approach since we generally have a large alphabet and

therefore a large number of children at each node, and so for most practical purposes

ln(1 − p̂) ≈ 0.

(d) Turning our attention to match-level normalisation, we experimented with three spec-

ifications of ν(m|T ):

ν(m|T ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 match unnormalised

f (m|T )∑
i∈(m∗|T ) f (i |T )

match permutation normalised

f (m|T )∑
i∈(m ′ |T ) f (i |T )

match length normalised

where m∗ is the set of all the strings in T formed by the permutations of the letters in

m; and m ′ is the set of all strings in T of length equal to the length of m.

Match permutation normalisation (MPN) is motivated by heuristic H2. The more

diverse a class (meaning that it is represented by a relatively large set of substring
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features), the more combinations of characters we would expect to find, and so finding

the particular match m is less significant than if the class were very narrow (meaning

that it is fully represented by a relatively small set of substring features). Reflecting this,

the MPN parameter will tend towards 1 if the class is less diverse and towards 0 if the

class is more diverse.

Match length normalisation (MLN) is motivated by examples from standard linear

classifiers (see Lewis et al. (1996) for an overview), where length normalisation of feature

weights is not uncommon. However, MLN actually runs counter to heuristic H1 because

it will tend towards 0 as the match length increases. We would therefore expect MLN to

reduce the performance of the classifier; thus MLN may serve as a test of the intuitions

governing heuristic H1.

2. Scoring a document

(a) To score an entire document we consider each suffix of the document in turn and score

any match between that suffix and the class tree. Thus the score for a document s is the

sum:

SCORE(s, T ) =
n∑

i=0

score(s(i), T ) (8)

where the score(s(i), T ) searches for a match, m, between suffix s(i) and tree T , and

if one is found, scores it according to formula (7).

We experimented with a number of approaches to tree-level normalisation of the

sum in (8) motivated again by heuristic H2 and based on tree properties such as size, as

a direct reflection of the diversity of the class; density (defined as the average number of

children over all internal nodes), as an implicit reflection of the diversity; and total and

average frequencies of nodes as an indication of the size of the class3; but found none of

our attempts to be generally helpful to the performance of the classifier. Unfortunately,

we do not have space in this paper to further discuss this aspect.

The underlying mechanism of the scoring function can be grasped by considering its

simplest configuration: using the constant significance function, with no normalisation. If

the scoring method were used in this form to score the similarity between two strings, it

would simply count the number of substrings that the two strings have in common. For

example, suppose we have a string t = “abcd”. If we were to apply this scoring function to

assessing the similarity that t has with itself, we would obtain a result of 10, because this

is the number of unique substrings that exist in t . If we then score the similarity between t
and t0 = “Xbcd”, we obtain a score of 6, because the two strings share 6 unique substrings;

similarly, a string t1 = “aXcd” would score 4.

Another way of viewing this is to think of each substring of t as representing a feature

in the class that t represents. The scoring method then weights each of these as 1 if they are

present in a query string and 0 otherwise, in a way that is analogous to the simplest form of

weighting in algorithms such as Rocchio.

Once seen in this way, we can consider all other flavours of the classifier as experiment-

ing with different approaches to deciding how significant each common substring is, or

in other words, deciding how to weight each class feature—much the same as with other

non-parametric classifier algorithms.

3 Class size is defined as the total number of substrings in the documents of the class, and tree size as the
number of nodes in the tree, that is, the number of unique substrings in the class (see Section 4.3).
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5. Experimental setup

All experiments were conducted under ten-fold cross validation. We accept the point made

by Meyer and Whateley (2004) that such a method does not reflect the way classifiers are

used in practice, but the method is widely used and serves as a thorough initial test of new

approaches.

We follow convention by considering as true positives (TP), spam messages which are

correctly classified as spam; false positives (FP) are then ham messages which are incor-

rectly classified as spam; false negatives (FN) are spam incorrectly classified as ham; true

negatives (TN) are ham messages correctly classified as ham. See Section 5.3 for more on

the performance measurements we use.

5.1. Experimental parameters

5.1.1. Spam to ham ratios

From some initial tests we found that success was to some extent contingent on the pro-

portion of spam to ham in our data set—a point which is identified, but not systemati-

cally investigated in other work (Meyer and Whateley, 2004)—and this therefore became

part of our investigation. The differing results further prompted us to introduce forms

of normalisation, even though we had initially expected the probabilities to take care of

differences in the scale and mix of the data. Our experiments used three different ra-

tios of spam to ham: 1:1, 4:6, 1:5. The first and second of these (1:1 and 4:6) were

chosen to reflect some of the estimates made in the literature of the actual proportions

of spam in current global email traffic. The last of these (1:5) was chosen as the mini-

mum proportion of spam included in experiments detailed in the literature, for example in

Androutsopoulos et al. (2000).

5.1.2. Tree depth

It is too computationally expensive to build trees as deep as emails are long. Furthermore, the

marginal performance gain from increasing the depth of a tree, and therefore the length of

the substrings we consider, may be negative. Certainly, our experiments show a diminishing

marginal improvement (see Section 6.2.1), which would suggest a maximal performance

level, which may not have been reached by any of our trials. We experimented with depths

of length of 2, 4, 6, and 8.

5.1.3. Threshold

From initial trials, we observed that the choice of threshold value in the classification criterion

can have a significant, and even critical, effect on performance, and so introduced it as an

important experimental parameter. We used a range of threshold values between 0.7 and 1.3,

with increments of 0.1, with a view to probing the behaviour of the scoring system.

Varying the threshold is equivalent to associating higher costs with either false positives

or false negatives because checking that (α/β) > t is equivalent to checking that α > tβ.
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5.2. Data

5.2.1. Text corpora

Three corpora were used to create the training and testing sets:

1. The Ling-Spam corpus (LS)

This is available from: http://www.aueb.gr/users/ion/data/lingspam public.
tar.gz. The corpus is that used in Androutsopoulos et al. (2000). The spam messages

of the corpus were collected by the authors from emails they received. The ham mes-

sages are taken from postings on a public online linguist bulletin board for profession-

als; the list was moderated, so does not contain any spam. Such a source may at first

seem biased, but the authors claim that this is not the case. There are a total of 481

spam messages and 2412 ham messages, with each message consisting of a subject and

body.

When comparing our results against those of Androutsopoulos et al. (2000) in

Section 6.1 we use the complete data set, but in further experiments, where our aim

was to probe the properties of the suffix tree approach and investigate the effect of dif-

ferent proportions of spam to ham messages, we use a random subset of the messages

so that the sizes and ratios of the experimental data sets derived from this source are the

same as data sets made up of messages from other sources (see Table 1 below).

2. Spam Assassin public corpus (SA)

This is available from: http://spamassassin.org/publiccorpus. The corpus was

collected from direct donations and from public forums over two periods in 2002 and

Table 1 Composition of email data sets (EDSs) used in the experiments

Spam Source Ham Source

EDS Code (number from source) (number from source)

LS-FULL LS (481) LS (2412)

LS-11 LS (400) LS (400)

LS-46 LS (400) LS (600)

LS-15 LS (200) LS (1000)

SAe-11 SAs-G2 (400) SAe-G2 (400)

SAe-46 SAs-G2 (400) SAe-G2 (600)

SAe-15 SAs-G2 (200) SAe-G2 (1000)

SAeh-11 SAs-G2 (400) SAe-G2 (200) + SAh (200)

SAeh-46 SAs-G2 (400) SAe-G2 (400) + SAh (200)

SAeh-15 SAs-G2 (200) SAe-G2 (800) + SAh (200)

BKS-LS-11 BKS (400) LS (400)

BKS-LS-46 BKS (400) LS (600)

BKS-LS-15 BKS (200) LS (1000)

BKS-SAe-11 BKS (400) SAe-G2 (400)

BKS-SAe-46 BKS (400) SAe-G2 (600)

BKS-SAe-15 BKS (200) SAe-G2 (1000)

BKS-SAeh-11 BKS (400) SAe-G2 (200) + SAh (200)

BKS-SAeh-46 BKS (400) SAe-G2 (400) + SAh (200)

BKS-SAeh-15 BKS (200) SAe-G2 (800) + SAh (200)
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2003, of which we use only the later. The set from 2003 comprise a total of 6053

messages, approximately 31% of which are spam. The ham messages are split into ‘easy

ham’ (SAe) and ‘hard ham’ (SAh), the former being again split into two groups (SAe-G1

and SAe-G2); the spam is similarly split into two groups (SAs-G1 and SAs-G2), but there

is no distinction between hard and easy. The compilers of the corpus describe hard ham

as being closer in many respects to typical spam: use of HTML, unusual HTML markup,

coloured text, “spammish-sounding” phrases, etc.

In our experiments we use ham from the hard group and the second easy group

(SAe-G2); for spam we use only examples from the second group (SAs-G2). Of

the hard ham there are only 251 emails, but for some of our experiments we re-

quired more examples, so whenever necessary we padded out the set with ran-

domly selected examples from group G2 of the easy ham (SAe-G2); see Table 1.

The SA corpus reproduces all header information in full, but for our purposes, we

extracted the subjects and bodies of each; the versions we used are available at:

http://dcs.bbk.ac.uk/∼rajesh/spamcorpora/spamassassin03.zip
3. The BBKSpam04 corpus (BKS)

This is available at: http://dcs.bbk.ac.uk/∼rajesh/spamcorpora/bbkspam04.zip.

This corpus consists of the subjects and bodies of 600 spam messages received by the

authors during 2004. The Birkbeck School of Computer Science and Information Systems

uses an installation of the SpamAssassin filter (apache.org, 2005) with default settings,

so all the spam messages in this corpus have initially evaded that filter. The corpus is

further filtered so that no two emails share more than half their substrings with others in

the corpus. Almost all the messages in this collection contain some kind of obfuscation,

and so more accurately reflect the current level of evolution in spam.

One experimental email data set (EDS) consisted of a set of spam and a set of ham. Using

messages from these three corpora, we created the EDSs shown in Table 1. The final two

numbers in the code for each email data set indicate the mix of spam to ham; three mixes

were used: 1:1, 4:6, and 1:5. The letters at the start of the code indicate the source corpus

of the set’s spam and ham, respectively; hence the grouping. For example, EDS SAe-46 is

comprised of 400 spam mails taken from the group SAs-G2 and 600 ham mails from the

group SAe-G2, and EDS BKS-SAeh-15 is comprised of 200 spam mails from the BKS data

set and 1000 ham mails made up of 800 mails from the SAe-G2 group and 200 mails from

the SAh group.

5.2.2. Pre-processing

For the suffix tree classifier, no pre-processing is done. It is likely that some pre-processing

of the data may improve the performance of an ST classifier, but we do not address this issue

in the current paper.

For the the naive Bayesian classifier, we use the following standard three pre-processing

procedures:

1. Remove all punctuation.

2. Remove all stop-words.

3. Stem all remaining words.

Words are taken as strings of characters separated from other strings by one or more whites-

pace characters (spaces, tabs, newlines). Punctuation is removed first in the hope that many of

the intra-word characters which spammers use to confuse a Bayesian filter will be removed.
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Our stop-word list consisted of the 57 of the most frequent prepositions, pronouns, articles

and conjunctives. Stemming was done using an implementation of Porter’s 1980 algorithm,

more recently reprinted in Porter (1997). All words less than three characters long are ig-

nored. For more general information on these and other approaches to pre-processing, the

reader is directed to Manning and Schutze (1999) and Weiss et al. (2005).

5.3. Performance measurement

There are generally two sets of measures used in the literature; here we introduce both in

order that our results may be more easily compared with previous work.

Following Sahami et al. (1998), Androutsopoulos et al. (2000), and others, the first set of

measurement parameters we use are recall and precision for both spam and ham. For spam

(and similarly for ham) these measurements are defined as follows:

Spam Recall (SR) = SS

SS + SH
, Spam Precision (SP) = SS

SS + H S

where XY means the number of items of class X assigned to class Y ; with S standing for

spam and H for ham. Spam recall measures the proportion of all spam messages which were

identified as spam and spam precision measures the proportion of all messages classified as

spam which truly are spam; and similarly for ham.

However, it is now more popular to measure performance in terms of true positive (TP)

and false positive (FP) rates:

TPR = SS

SS + SH
, FPR = H S

H H + H S

The TPR is then the proportion of spam correctly classified as spam and the FPR is the

proportion of ham incorrectly classified as spam. Using these measures, we plot in Section 6

what are generally referred to as receiver operator curves (ROC) (Fawcett, 2004) to observe

the behaviour of the classifier at a range of thresholds.

To precisely see performance rates for particular thresholds, we also found it useful to

plot, against threshold, false positive rates (FPR) and false negative rates (FNR):

FNR = 1 − TPR

Effectively, FPR measures errors in the classification of ham and FNR measures errors in

the classification of spam.

6. Results

We begin in Section 6.1 by comparing the results of the suffix tree (ST) approach to the

reported results for a naive Bayesian (NB) classifier on the the Ling Spam corpus. We then

extend the investigation of the suffix tree to other data sets to examine its behaviour under

different conditions and configurations. To maintain a comparative element on the further

data sets we implemented an NB classifier which proved to be competitive with the classifier

performance as reported by Androutsopoulos et al. (2000) and others. In this way we look at

each experimental parameter in turn and its effect on the performance of the classifier under

various configurations.
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6.1. Assessment

Table 2 shows the results reported by Androutsopoulos et al. (2000), from the application

of their NB classifier on the LS-FULL data set, and the results of the ST classifier, using a

linear significance function with no normalisation, on the same data set.

As can be seen, the performance levels for precision are comparable, but the suffix tree

simultaneously achieves much better results for recall.

Androutsopoulos et al. (2000) test a number of thresholds (th) and found that their NB

filter achieves a 100% spam precision (SP) at a threshold of 0.001. We similarly tried a

number of thresholds for the ST classifier, as previously explained (see Section 5.1), and

found that 100% SP was achieved at a threshold of 0.98. Achieving high SP comes at the

inevitable cost of a lower spam recall (SR), but we found that our ST can achieve the 100%

in SP with less cost in terms of SR, as can be seen in the table.

As stated in the table (and previously: see Section 5.2.2), we did no pre-processing and no

feature selection for the suffix tree. However, both of these may well improve performance,

and we intend to investigate this in future work.

As we mentioned earlier (and in Section 3), we use our own NB classifier in our further

investigation of the performance of our ST classifier. We therefore begin by presenting in

Table 3 the results of this classifier (NB*) on the LS-FULL data set. As the table shows, we

found our results were, at least in some cases, better than those reported in Androutsopoulos

et al. (2000). This is an interesting result which we do not have space to investigate fully

in this paper, but there are a number of differences in our naive Bayes method which may

account for this.

Table 2 Results of Androutsopoulos et al. (2000) on the Ling-Spam corpus. In the pre-processing
column: ‘bare’ indicates no pre-processing. The column labelled ‘No. of attrib.’ indicates the number
of word features which the authors retained as indicators of class. Androutsopoulos et al. (2000)
quote a ‘cost value’, which we have converted into equivalent values comparable to our threshold;
these converted values are presented, in the ‘th’ column, in a rounded format. Results are shown at the
bottom of the table from ST classification using a linear significance function and no normalisation;
for the ST classifier, we performed no pre-processing and no feature selection

Pre-processing No. of attrib. th SR(%) SP(%)

NB

(a) bare 50 1.0 81.10 96.85

(b) stop-list 50 1.0 82.35 97.13

(c) lemmatizer 100 1.0 82.35 99.02

(d) lemmatizer + stop-list 100 1.0 82.78 99.49

(a) bare 200 0.1 76.94 99.46

(b) stop-list 200 0.1 76.11 99.47

(c) lemmatizer 100 0.1 77.57 99.45

(d) lemmatizer + stop-list 100 0.1 78.41 99.47

(a) bare 200 0.001 73.82 99.43

(b) stop-list 200 0.001 73.40 99.43

(c) lemmatizer 300 0.001 63.67 100.00

(d) lemmatizer + stop-list 300 0.001 63.05 100.00

ST

bare N/A 1.00 97.50 99.79

bare N/A 0.98 96.04 100.00
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Table 3 Results of in-house nave Bayes on the LS-FULL data set, with stop-words removed and all
remaining words lemmatized. The number of attributes was unlimited, but, for the LS-FULL data set,
in practice the spam vocabulary was approximately 12,000, and the ham vocabulary approximately
56,000, with 7,000 words appearing in both classes

Pre-processing No. of attrib. th SR(%) SP(%)

NB*

lemmatizer + stop-list unlimited 1.0 99.16 97.14

lemmatizer + stop-list unlimited 0.94 89.58 100.00

Firstly, Androutsopoulos et al. (2000) use a maximum of 300 attributes, which may

not have been enough for this domain or data set, whereas we go to the other extreme

of not limiting our number of attributes, which would normally be expected to ultimately

reduce performance, but only against an optimal number, which is not necessarily the num-

ber used by Androutsopoulos et al. (2000). Indeed, some researchers (Li & Jain, 1998;

Zhang et al., 2004) have found NB does not always benefit from feature limitation, while

others have found the optimal number of features to be in the thousands or tens of thou-

sands (Schneider, 2003; McCallum & Nigam, 1998). Secondly, there may be significant

differences in our pre-processing, such as a more effective stop-word list and removal

of punctuation; and thirdly, we estimate the probability of word features using Laplace

smoothing (see formula (4)), which is more robust than the estimated probability quoted by

Androutsopoulos et al. (2000).

There may indeed be further reasons, but it is not our intension in this paper to analyse the

NB approach to text classification, but only to use it as a comparative aid in our investigation

of the performance of the ST approach under various conditions. Indeed, other researchers

have extensively investigated NB and for us to conduct the same depth of investigation would

require a dedicated paper.

Furthermore, both our NB* and ST classifiers appear to be competitive with quoted results

from other approaches using the same data set. For example, Schneider (2003), experiments

on the Ling-Spam data set with different models of NB and different methods of feature selec-

tion, and achieves results approximately similar to ours. Schneider (2003) quotes “breakeven”

points, defined as the “highest recall for which recall equaled precision”, for both spam and

ham; Table 4 shows the results achieved by the author’s best performing naive Bayes con-

figuration (which we label as ‘NB′’) alongside our naive Bayes (NB*) and the suffix tree

(ST) using a linear significance function and no normalisation. As can be seen, NB* achieves

slightly worse results than the NB′, while ST achieves slightly better results; but all are clearly

competitive. And as a final example, Surkov (2004) applies developments and extentions of

support vector machine algorithms (Vapnik, 1999) to the Ling-Spam data set, albeit in a

different experimental context, and achieves a minimum sum of errors of 6.42%; which is

slightly worse than the results achieved by our NB* and ST classifiers.

Table 4 Precision-recall
breakeven points on the
LS-FULL data set

Classifier Spam(%) Ham(%)

NB′ 96.47 99.34

NB* 94.96 98.82

ST 98.75 99.75

Springer



328 Mach Learn (2006) 65:309–338

Thus, let us proceed on the assumption that both our (NB* and ST) classifiers are at least

competitive enough for the task at hand: to investigate how their performance varies under

experimental conditions for which results are not available in the literature.

6.2. Analysis

In the following tables, we group email data sets (EDSs), as in Table 1, Section 5.2.1, by

their source corpora, so that each of the EDSs in one group differ from each other only in the

proportion of spam to ham they contain.

6.2.1. Effect of depth variation

For illustrative purposes, Table 5 shows the results using the constant significance function,

with no normalisation using the LS-11 data set. Depths of 2, 4, 6, and 8 are shown.

The table demonstrates a characteristic which is common to all considered combina-

tions of significance and normalisation functions: performance improves as the depth in-

creases. Therefore, in further examples, we consider only our maximum depth of 8. No-

tice also the decreasing marginal improvement as depth increases, which suggests that

there may exist a maximal performance level, which was not necessarily achieved by our

trials.

6.2.2. Effect of significance function

We found that all the significance functions we tested worked very well, and all of them

performed better than our naive Bayes. Figure 3 shows the ROC curves produced by each

significance function (with no normalisation) for what proved to be one of the most difficult

data sets (SAeh-11: see Section 5.2.1).

We found little difference between the performance of each of the functions across

all the data sets we experimented with, as can be seen from the summary results in Ta-

ble 6, which shows the minimum sum of errors (FPR+FNR) achieved at a threshold of

1.0 by each significance function on each data set. The constant function looks marginally

the worst performer and the logit and root functions marginally the best, but this dif-

ference is partly due to differences in optimal threshold (see Section 6.2.3) for each

function: those that perform less well at a threshold of 1.0 may perform better at other

thresholds.

Table 7 presents the minimum sum of errors achieved by each function at its individual

optimal threshold. In this table there is even less difference between the functions, but still

the root is marginally better than the others in that it achieves the lowest average sum of

errors over all data sets. And so, for the sake of brevity we favour this function in much of

our following analysis.

Table 5 Classification errors by
depth using a constant
significance function, with no
normalisation, and a threhsold of
1 on the LS-11 email data set

Depth FPR(%) FNR(%)

2 58.75 11.75

4 0.25 4.00

6 0.50 2.50

8 0.75 1.50
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Fig. 3 ROC curves for all significance functions on the SAeh-11 data set

6.2.3. Effect of threshold variation

We generally found that there was an optimal threshold (or range of thresholds) which

maximised the success of the classifier. As can be seen from the four example graphs shown

in Fig. 4, the optimal threshold varies depending on the significance function and the mix of

ham and spam in the training and testing sets, but it tends to always be close to 1.

Obviously, it may not be possible to know the optimal threshold in advance, but we expect,

though have not shown, that the optimal threshold can be established during a secondary stage

of training where only examples with scores close to the threshold are used—similar to what

Meyer & Whateley (2004) call “non-edge training”.

In any case, the main reason for using a threshold is to allow a potential user to decide

the level of false positive risk they are willing to take: reducing the risk carries with it an

inevitable rise in false negatives. Thus we may consider the lowering of the threshold as

attributing a greater cost to miss-classified ham (false positives) than to miss-classified spam;

a threshold of 1.0 attributes equal importance to the the two.

Figure 4 Graphs (a–c) show three different combinations of significance function and

data set, the shapes of which are representative of all combinations. The performance of a

particular scoring configuration is reflected not only by the minimums achieved at optimal

thresholds but also by the steepness (or shallowness) of the curves: the steeper they are, the

more rapidly errors rise at sub-optimal levels, making it harder to achieve zero false positives

without a considerable rise in false negatives. Graph (d) shows that our NB classifier is the

most unstable in this respect.

Springer



330 Mach Learn (2006) 65:309–338

Table 6 Sum of errors (FPR+FNR) values at a conventional threshold of 1 for all significance functions
under match permutation normalisation (see Section 6.2.4). The best scores for each email data set are
highlighted in bold

Sum of Errors (%) at th = 1

for specifications of φ[ p̂]

EDS Code Constant Linear Square Root Logit Sigmoid

LS-11 1.5 2.25 2.5 1.75 1.75 1.75

LS-46 1.33 1.42 1.92 1.08 1.58 1.42

LS-15 1.33 1.33 1.55 1.33 1.55 1.89

SAe-11 0.25 0.5 0.5 0.5 0.25 0.75

SAe-46 0.5 0.75 0.5 0.5 0.25 0.75

SAe-15 1.00 1.50 1.8 1.5 1.1 2.00

SAeh-11 7.00 7.00 7.50 6.75 5.49 6.50

SAeh-46 4.33 4.58 4.92 5.00 4.42 4.92

SAeh-15 9.3 7.5 8.00 7.7 7.6 8.6

BKS-LS-11 0 0 0 0 0 0
BKS-LS-46 0 0 0 0 0 0
BKS-LS-15 0 1.5 1.5 1.00 0 1.5

BKS-SAe-11 4.75 1.75 1.5 1.5 1.5 1.75

BKS-SAe-46 4.5 1.75 2.00 1.75 1.5 2.75

BKS-SAe-15 9.5 6.00 6.00 5.50 5.50 8.5

BKS-SAeh-11 9.25 5.75 7.25 5.00 5.75 7.25

BKS-SAeh-46 10.25 5.25 7.00 4.25 5.00 7.25

BKS-SAeh-15 15.5 9.5 9.5 9.5 9.5 14.5

6.2.4. Effect of normalisation

We found that there was a consistent advantage to using match permutation normalisation,

which was able to improve overall performance as well as making the ST classifier more

stable under varying thresholds. Figure 5 shows the ROC curves produced by the constant

significance function under match permutation normalisation (MPN); match length normali-

sation (MLN) reduced performance so much that the resulting curve does not even appear in

the range of the graph. The stabilising effect of match permutation normalisation is reflected

in ROC curves by an increase in the number of points along the curve, but may be better seen

in Fig. 6 as a shallowing of the FPR and FNR curves. The negative effect of MLN concurs

with our heuristics from Section 4.4. These effects of MPN and MLN were observed, to a

greater or lesser degree, for all significance functions and data sets.

6.2.5. Effect of spam to ham ratios

We initially found that the mix of spam to ham in the data sets could have some effect on

performance, with the degree of difference in performance depending on the data set and the

significance function used; however, with further investigation we found that much of the

variation was due to differences in the optimal threshold. This can be seen by first examining

the differences in performance for different spam:ham ratios shown in Table 6, in which a 1:5

ratio appears to result in lower performance than the more balanced ratios of 4:6 and 1:1; then

examining the results presented in Table 7, where differences are far less apparent. These
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Fig. 4 Effect of threshold variation. Graphs (a–c) show suffix tree false positive (FP) and false negative (FN)
rates for three specification of φ( p̂) under no normalisation; graph (d) shows naive Bayes FP and FN rates

observations are reinforced by the graphs shown in Fig. 7. In Graph (a) which shows the ROC

curves produced by the constant significance function with no normalisation on the SAeh

data sets, we can see that the curves produced by different ratios appear to achieve slightly

different maximal performance levels but roughly follow the the same pattern. Graphs (b–d)

further show that the maximal levels of performance are achieved at different threshold for

each ratio. The difference between Graph (b) and Graph (c) is not great as the difference

between the ratios (1:1 and 4:6) is not great; however, the curves shift slightly to the right.

The shift is more apparent in Graph (d) because there is a greater change in the ratio (from

1:1 to 1:5).

6.2.6. Overall performance across email data sets

Table 8 summarises the results for both the ST and NB classifiers at a threshold of 1.0 and

Table 9 summarises results at the individual optimal thresholds which minimise the sum of

the errors (FPR+FNR).

We found that the performance of the NB is in some cases dramatically improved at its

optimal threshold, for example in the case of the BKS-LS data sets. But at both a threshold of

1.0 and at optimal thresholds, the NB classifier behaves very much as expected, supporting our
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Fig. 6 Effect of match permutation normalisation. False positive (FP) and false negative (FN) rates using a
constant significance function on the LS-11 EDS. Graph (a) shows the false positive (FP) and false negative
(FN) rates under no normalisation and Graph (b) shows FP and FN rates under match permutation normalisation

initial assumptions as to the difficulty of the data sets. This can be clearly seen in Table 9: on the

SAeh data sets which contain ham with ‘spammy’ features, the NB classifier’s false positive

rate increases, meaning that a greater proportion of ham has been incorrectly classified as

spam; and on the BKS-SAeh data sets which additionally contain spam which is disguised
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Table 7 Sum of error (FPR+FNR) values at individual optimal thresholds for all significance functions
under match permutation normalisation (see Section 6.2.4). The best scores for each data set are highlighted
in bold

Sum of Errors (%) at optimal th

for specifications of φ[ p̂]

EDS Code Constant Linear Square Root Logit Sigmoid

LS-11 1.25 1.00 1.00 1.00 1.00 1.00
LS-46 1.08 1.08 1.00 1.08 1.08 0.83
LS-15 1.33 1.33 1.33 1.33 1.33 1.33

SAe-11 0.25 0 0 0 0 0.25

SAe-46 0.42 0.33 0.33 0.25 0.25 0.5

SAe-15 1.00 1.3 1.4 1.1 1.1 1.2

SAeh-11 7.00 6.50 6.00 6.25 6.25 6.50

SAeh-46 4.00 4.58 4.92 4.42 4.33 4.92

SAeh-15 6.50 6.60 6.70 6.50 6.60 6.30

BKS-LS-11 0 0 0 0 0 0
BKS-LS-46 0 0 0 0 0 0
BKS-LS-15 0 0 0 0 0 0

BKS-SAe-11 0 0 0 0 0 0
BKS-SAe-46 0 0 0 0 0 0
BKS-SAe-15 0.2 0 0 0 0.2 0.50

BKS-SAeh-11 2.75 1.75 2.00 1.75 2.00 2.00

BKS-SAeh-46 1.33 1.17 1.50 1.17 1.00 1.33

BKS-SAeh-15 1.1 1.2 2.00 1.30 1.1 2.1

to appear as ham, the NB classifier’s false negative rate increases, meaning that a greater

proportion of spam has been misclassified as ham.

The performance of the ST classifier also improves at its optimal thresholds, though not

so dramatically, which is to be expected considering our understanding of how it responds to

changes in the threshold (see Section 6.2.3). The ST also shows improved performance on

data sets involving BKS data. This may be because the character level analysis of the suffix

tree approach is able to treat the attempted obfuscations as further positive distinguishing

features, which do not exist in the more standard examples of spam which constitute the LS

data sets. In all cases except on the SAeh data, the ST is able to keep the sum of errors close

to or below 1.0%, and in some cases, it is able to achieve a zero sum of errors. Furthermore,

the suffix tree’s optimal performance is often achieved at a range of thresholds, supporting

our earlier observation of greater stability in its classification success.

6.2.7. Computational performance

For illustrative purposes, in this section we provide some indication of the time and space

requirements of the suffix tree (ST) classifier using a suffix tree of depth, d = 8. However,

it should be stressed that in our implementation of the ST classifiers we made no attempts

to optimise our algorithms as performance was not one of our concerns in this paper. The

figures quoted here may therefore be taken as indicators of worst-case performance levels.

Table 10 summarises the time and space requirements of the suffix tree classifier on four

of our email data sets. The suffix tree approach clearly and unsurprisingly has high resource
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Fig. 7 Effect of varying ratios of spam:ham on the SAeh data using a constant significance function with no
normalisation. Graph (a) shows the ROC curves produced for each ratio; while graphs (b–d) show the FP and
FN rates separately for ratios of 1:1, 4:6 and 1:5 respectively

demands, far above the demands of a naive Bayes classifier which on the same machine

typically uses no more than 40MB of memory and takes approximately 10 milliseconds (ms)

to make a classification decision.

The difference in performance across the data sets is, however, exactly as we would expect

considering our assumptions regarding them. The first point to note is that the mapping from

data set size to tree size is non-linear. For example, the LS-FULL EDS is 5 times larger than

the LS-11 EDS but results in a tree only 2.95 times larger. This illustrates the logarithmic

growth of the tree as more information is added: the tree only grows to reflect the diversity

(or complexity) of the training data it encounters and not the actual size of the data. Hence,

though the BKS-LS-11 EDS is in fact approximately 25% smaller than the LS-11 data set,

it results in a tree that is over 30% larger. We would therefore expect to eventually reach a

stable maximal size once most of the complexity of the profiled class is encoded.

The current space and time requirements are viable, though demanding, in the context

of modern computing power, but a practical implementation would obvious benefit from

optimisation of the algorithms.4

4 The literature on suffix trees deals extensively with improving (reducing) the resource demands of suffix
trees (Ukkonen, 1992; Giegerich & Kurtz, 1997; Kurtz, 1999).
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Table 8 Classification errors at
threshold of 1, for Naive Bayes
(NB) and a Suffix Tree (ST) using
a root significance function and
match permutation normalisation

Naive Bayes Suffix Tree

EDS Code FPR (%) FNR (%) FPR (%) FNR (%)

LS-11 1.25 0.50 1.00 1.75

LS-46 0.67 1.25 0.83 0.25

LS-15 1.00 1.00 0.22 0.13

SAe-11 0 2.75 0 0.50

SAe-46 0.17 2.00 0 0.50

SAe-15 0.30 3.50 0 1.50

SAeh-11 10.50 1.50 3.50 3.25

SAeh-46 5.67 2.00 2.00 3.00

SAeh-15 4.10 7.00 0.70 7.00

BKS-LS-11 0 12.25 0 0

BKS-LS-46 0.17 13.75 0 0

BKS-LS-15 0.20 30.00 0 1.00

BKS-SAe-11 0 9.00 0 1.50

BKS-SAe-46 0 8.25 0 1.75

BKS-SAe-15 1.00 15.00 0 5.5

BKS-SAeh-11 16.50 0.50 0 5.00

BKS-SAeh-46 8.17 0.50 0 4.25

BKS-SAeh-15 8.10 5.50 0 9.50

Table 9 Classification Errors at optimal thresholds (where the sum of the errors is minimised)
for Naive Bayes (NB) and a Suffix Tree (ST) using a root significance function and match
permutation normalisation

Naive Bayes Suffix Tree

EDS Code OtpTh FPR (%) FNR (%) OptTh FPR (%) FNR (%)

LS-11 1.0 1.25 0.50 0.96 0 1.00

LS-46 1.02 1.00 0.67 0.96 0.33 0.75

LS-15 1.00 1.00 1.00 0.98 – 1.00 0.22 1.11

SAe-11 1.06 0.25 0 1.10 0 0

SAe-46 1.04 0.33 0.25 1.02 0 0.25

SAe-15 1.02 2.30 1.50 1.02 0.1 1.00

SAeh-11 0.98 10.50 1.50 0.98 2.75 3.50

SAeh-46 1.00 5.67 2.00 0.98 1.16 3.25

SAeh-15 1.02 7.60 1.50 1.10 3.50 3.00

BKS-LS-11 1.04 0.75 2.25 0.78 – 1.22 0 0

BKS-LS-46 1.06 2.50 1.25 0.78 – 1.16 0 0

BKS-LS-15 1.10 5.50 1.50 1.02 – 1.22 0 0

BKS-SAe-11 1.04 – 1.06 0 0.25 1.04 – 1.28 0 0

BKS-SAe-46 1.06 0.50 0.25 1.18 – 1.28 0 0

BKS-SAe-15 1.04 6.90 0 1.20 0 0

BKS-SAeh-11 0.98 8.00 2.00 1.06 0 1.75

BKS-SAeh-46 0.98 4.00 3.75 1.14 – 1.16 0.67 0.5

BKS-SAeh-15 1.00 8.10 5.50 1.24 – 1.26 0.80 0.50

Springer



336 Mach Learn (2006) 65:309–338

Table 10 Computational performance of suffix tree classification on four bare
(no pre-processing) data sets. Experiments were run on a pentium IV 3 GHz
Windows XP laptop with 1 GB of RAM. Averages are taken over all ten folds
of cross-validation

EDS Code (size) Training AvSpam AvHam AvPeakMem

LS-FULL (7.40MB) 63s 843 ms 659 ms 765 MB

LS-11 (1.48MB) 36s 221 ms 206 ms 259 MB

SAeh-11 (5.16MB) 155s 504 ms 2528 ms 544 MB

BKS-LS-11 (1.12MB) 41s 161 ms 222 ms 345 MB

Time could certainly be reduced very simply by implementing, for example, a binary

search over the children of each node; the search is currently done linearly over an alphabet

of approximately 170 characters (upper- and lower-case characters are distinguished, and all

numerals and special characters are considered; the exact size of the alphabet depends on the

specific content of the training set). And there are several other similarly simple optimisations

which could be implemented.

However, even with a fully optimised algorithm, the usual trade-off between resources

and performance will apply. With regard to this, an important observation is that resource

demands increase exponentially with depth, whereas performance increases logarithmically.

Hence an important factor in any practical implementation will be the choice of the depth of

the suffix tree profiles of classes.

7. Conclusion

Clearly, the non-parametric suffix tree performs universally well across all the data sets

we experimented with, but there is still room for improvement: whereas in some cases, the

approach is able to achieve perfect classification accuracy, this is not consistently maintained.

Performance may be improved by introducing some pre-processing of the data or post-

processing of the suffix tree profile, and we intend to investigate this in future work. Certainly,

the results presented in this paper demonstrate that the ST classifier is a viable tool in the

domain of email filtering and further suggests that it may be useful in other domains. However,

this paper constitutes an initial exploration of the approach and further development and

testing is needed.

In the context of the current work, we conclude that the choice of significance function is

the least important factor in the success of the ST approach because all of them performed

acceptably well. Different functions will perform better on different data sets, but the root

function appeared to perform marginally more consistently well on all the email data sets we

experimented with.

Match permutation normalisation was found to be the most effective method of normalisa-

tion and was able to improve the performance of all significance functions. In particular it was

able to improve the success of the filter at all threshold values. However, other methods of nor-

malisation were not always so effective, with some of them making things drastically worse.

The threshold was found to be a very important factor in the success of the filter. So much

so, that the differences in the performances of particular configurations of the filter were

often attributable more to differences in their corresponding optimal thresholds than to the

configurations themselves. However, as a cautionary note, variations in the optimal threshold

may be due to peculiarities of the data sets involved, and this could be investigated further.
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In the case of both the NB and ST filters, it is clear that discovering the optimal

threshold—if it were possible—is a good way of improving performance. It may be pos-

sible to do this during an additional training phase in which we use some proportion of the

training examples to test the filter and adjust the threshold up or down depending on the

outcome of each test. Of course, the threshold may be continuously changing, but this could

be handled to some extent dynamically during the actual use of the filter by continually

adjusting it in the light of any mistakes made. This would certainly be another possible line

of investigation.

We also found that the false positive rate (FPR) and false negative rate (FNR) curves

created by varying the threshold, were in all cases relatively shallower for our ST classifier

than those for our NB classifier, indicating that the former always performs relatively better at

non-optimal thresholds, thereby making it easier to minimise one error without a significant

cost in terms of the other error.

Finally, any advantages in terms of accuracy in using the suffix tree to filter emails, must be

balanced against higher computational demands. In this paper, we have given little attention

to minimising this factor, but even though available computational power tends to increase

dramatically, cost will nevertheless be important when considering the development of the

method into a viable email filtering application, and this is clearly a viable line of further

investigation. However, the computational demands of the approach are not intractable, and

a suffix tree classifier may be valuable in situations where accuracy is the primary concern.
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