
Vol. 22 no. 15 2006, pages 1902–1909

doi:10.1093/bioinformatics/btl276BIOINFORMATICS ORIGINAL PAPER

Data and text mining

A suite of algorithms for the comprehensive analysis of

complex protein mixtures using high-resolution LC-MS
Matthew Bellew1, Marc Coram2, Matthew Fitzgibbon2, Mark Igra1,2, Tim Randolph2,
Pei Wang2, Damon May2, Jimmy Eng2, Ruihua Fang2, ChenWei Lin2, Jinzhi Chen2,3,
David Goodlett3, Jeffrey Whiteaker2, Amanda Paulovich2 and Martin McIntosh2,�
1LabKey Software, Seattle, WA 98109, USA, 2Fred Hutchinson Cancer Research Center, Seattle, WA
98109, USA and 3University of Washington, Seattle, WA 98195, USA

Received on March 6, 2006; revised on May 26, 2006; accepted on May 29, 2006

Advance Access publication June 9, 2006

Associate Editor: Martin Bishop

ABSTRACT

Motivation: Comparing two or more complex protein mixtures using

liquid chromatography mass spectrometry (LC-MS) requires multiple

analysis steps to locate and quantitate natural peptides within a

single experiment and to align and normalize findings across multiple

experiments.

Results: We describe msInspect, an open-source application com-

prising algorithms and visualization tools for the analysis of multiple

LC-MS experimental measurements. The platform integrates novel

algorithms for detecting signatures of natural peptides within a single

LC-MS measurement and combines multiple experimental meas-

urements into a peptide array, whichmay then bemined using analysis

tools traditionally applied to genomic array analysis. The platform sup-

ports quantitation by both label-free and isotopic labeling approaches.

The software implementation has been designed so that many key

components may be easily replaced, making it useful as a workbench

for integrating other novel algorithms developed by a growing research

community.

Availability: The msInspect software is distributed freely under an

Apache 2.0 license. The software as well as a Zip file with all peptide

feature files and scripts needed to generate the tables and figures in this

article are available at http://proteomics.fhcrc.org/

Contact: mmcintos@fhcrc.org

Supplementary Information: Supplementary materials are available

at http://proteomics.fhcrc.org/CPAS (select ‘Published Experiments’

from the list of Projects and then ‘msInspect Paper’).

1 INTRODUCTION

Researchers hope to improve our understanding of biology as well

as potentially revolutionize clinical care by identifying protein bio-

logical markers, or biomarkers, that can classify disease (Etzioni

et al., 2003). Mass spectrometry has become a key technology for

comparing biosamples because of its ability to broadly survey the

peptide or protein constituents of the samples.

The use of mass spectrometry to identify protein biomarkers was

first popularized using SELDI or MALDI technologies (Adam et al.,

2002; Listgarten and Emili, 2005; Morris et al., 2005; Petricoin
et al., 2002; Randolph and Yasui, 2006; Vlahou et al., 2001;

Yasui et al., 2003), which locate biomarkers in MS data by their

mass-to-charge ratio (m/z). Liquid chromatography mass spec-

trometry (LC-MS) provides a two-dimensional approach to profil-

ing a proteome and allows researchers to locate peptides by their

m/z and their LC retention time, both of which are related to the

chemical structure of the peptides. The additional level of separa-

tion offered by LC-MS may have several advantages over one-

dimensional approaches, including better sensitivity and resolution.

With both platforms the sequences of the potential biomarkers are

obtained by targeting their locations in a second interrogation using

tandem MS (e.g. with LC-MS/MS or MALDI-MS/MS) with a

compatible LC configuration (Domon and Aebersold, 2006).

In their comprehensive review, Listgarten and Emili (2005) point

out that using this two-stage approach with LC-MS data is recent

but not entirely new, and they describe several additional com-

putational challenges that must be addressed to extend one-

dimensional approaches into two dimensions. For example, unlike

in MALDI, peptides in LC-MS can obtain multiple charges, which

must be ascertained in order to compute a peptide’s mass. Moreover,

comparing peptide intensities across multiple experiments requires

aligning in two dimensions rather than in one, and the additional

retention time dimension varies unpredictably and non-linearly.

Many researchers have implemented algorithms to address one or

more of these aspects of the problem, including the identification

of peptides within a single experiment, quantitation of peptides and

alignment across runs (Li et al., 2005). One of the earliest imple-

mentations is by Smith et al. (2002) who describe an approach to

evaluate multiple LC-MS datasets and align them using a separate

accurate mass tag database. A more recent open-source platform is

mzMine, introduced by Katajamma et al. (Katajamaa et al., 2006;
Katajamaa and Oresic, 2005), which also includes a graphical inter-

face. Other researchers have recently begun to focus on improving

specific components of the analysis process rather than providing

complete comprehensive platforms. These components include

the peculiarities of normalization across LC-MS runs (Callister

et al., 2006; Wang et al., 2006b) and better techniques for matching

peptides across multiple experiments (Wang et al., 2006a).�To whom correspondence should be addressed.
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We describe a software platform called msInspect (Mass

Spectrometry In Silico Peptide Characterization Tool) that provides
a comprehensive pipeline for quantitatively comparing peptides

from biological samples using LC-MS data. msInspect processes

individual LC-MS data files to locate peptides in two dimensions,

and quantitates them by their signal intensity. Comparison of sam-

ples can be performed within an experiment using procedures

for identifying isotopically labeled pairs (e.g., ICAT, 16O/18O,

SILAC) or between experiments using a label-free approach that

aligns and then normalizes multiple experiments. The label-free

approach is intended to process multiple LC-MS experiments to

form a peptide array, at which point standard methods for analyzing

genomic arrays can be applied to classify the samples.

The algorithms in msInspect include multiple components

specifically designed for LC-MS data. The signal processing com-

ponent exploits the two-dimensional nature of the data to identify

co-eluting isotopes and then groups them based on the similarity of

the observed isotopic distributions to those of natural peptides. The

alignmentmethod estimates underlying non-linearmapping of reten-

tion times between experiments. The normalization approach adapts

methods developed for genomic arrays to accommodate natural

variation of LC-MS signal intensities across runs. msInspect was

designed to serve as a workbench for disseminating and developing

novel algorithms; many components of the signal processing, align-

ment and normalization procedures can be replaced without having

to alter either the framework of other supporting algorithms or the

downstream visualization tools. msInspect also supports interaction

with the freely available R statistical programming language.

The ability to identify biomarkers will depend on the repro-

ducibility of the analysis platform and also on the number and

size of differences that exist between any two types of biological

samples. This manuscript demonstrates msInpsect’s algorithms

using three sets of experiments. The first two establish the repro-

ducibility of labeling and label-free approaches from independent

interrogations of human serum. The third demonstrates the ability to

use tools from genomic array analysis to classify mutant and wild-

type forms of bacteria.

2 METHODS

2.1 Data inputs

The msInspect program accepts as input one or more LC-MS data

files represented in the standard mzXML data format (Pedrioli et al.,

2004) from instrumentation with resolution high enough to discern isotopic

distributions.

2.2 Graphical interface

The msInspect graphical interface allows a user to view and interrogate

LC-MS raw data and examine the results of the peptide location algorithms

(Figure 1). The primary pane (1A) displays an image of the raw data from a

single LC-MSmeasurement; the horizontal and vertical axes represent reten-

tion time and m/z, respectively, and the darkness of the color represents

signal intensity. The red points in Figure 1A represent the monoisotopic

mass and maximum intensity of each of the located peptides, the result

of step 1 described below. The user can overlay the peptides found in

other LC-MS data files as well (data not shown). Users can inspect a detailed,

close-up view of any smaller region of the image. Selecting a location

provides both a detailed two-dimensional image of the local region

(Fig. 1B) as well as one-dimensional cross sections of the mass- or retention

time-dimensions (Fig. 1C, detailed mass dimension shown here). Other

graphical functions include the ability to zoom in and out of the pane in

Figure 1A, to display the properties, such as intensity, of specific peptides

and to visually curate the results (Fig. 1D and described below).

2.3 Workflow

All functions are accessible via interactive tools and also via command

line. The functionality of msInspect can be described in three parts. Part 1

involves processing individual LC-MS images to produce a tab delimited

peptide feature file listing the mass and retention time of all peptides and

other descriptive information (see Section 3.1). Part 2 includes algorithms

that operate on individual peptide feature files such as allowing visual

curation and correction of the findings and providing further processing

to identify isotopically labeled pairs and their intensity ratios. Part 3 supports

label-free quantitation, including alignment of multiple peptide feature files

into a single peptide array and normalization to accommodate natural varia-

tion across experiments. The peptide array may then be further evaluated

using tools developed for analyzing genomic arrays. These three parts can be

used together in a sequence or independently using the output from previous

steps. More details can be found in Supplementary Material (Figure S1).

2.4 Software architecture

The msInspect software package is written in platform-independent Java

with alignment and normalization routines implemented in the freely avail-

able R statistical programming language. Many msInspect components

are modular so they can be replaced easily while maintaining the overall

graphical features. For example, alignment and normalization routines

may be easily replaced by exchanging R routines that have the defined inputs

and outputs. New signal processing algorithms, described in Part 1, can be

discovered at run-time and dynamically loaded by the Java class loader. In

addition to the two-dimensional algorithm described in this article, several

other signal processing implementations are provided for special purposes

(e.g. finding peptide features within a single scan).

The msInspect program is available under an Apache 2.0 License via

executables and via the Java Web Start package. In addition, msInspect

Fig. 1. ThemsInspectGraphical Interface. Themainwindowdisplays: (A) an

image of the mzXML file; (B) a tighter view of an area in the image that the

user selects and (C)m/z spectra and elution profiles corresponding to the point

in A that the user selects. The Heat Map tool (D) is used for visual curation.
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is built upon a number of other open-source tools including Swixml,

JFreeChart, the Woodstox StAX XML parser, the Jrap mzXML parser

and numerous components from the Apache Software Foundation. The

msInspect executables, source code and user documentation are available

at http://proteomics.fhcrc.org.

3 ALGORITHMS

Each part of msInspect contains multiple analytic steps, which are

described below.

3.1 Part 1: locating eluting isotopes and peptides in

individual LC-MS files

The first set of algorithms identifies the signatures of eluting

isotopes in an LC-MS image (Part A) and then assembles these

isotopes into peptides (Part B). The output of this step is a tab

delimited peptide feature file. Each step of Part 1 may be followed

using Figure 2, which shows the isotopic peaks of several peptides

displayed in the msInspect graphical interface.

Part A: locating eluting isotopes in LC-MS data
Step 1: estimate and remove local background from the LC-MS
image. The entire raw LC-MS image (Fig. 2A) is re-sampled to

form an indexed image so that signal intensity at any time orm/z can
be accessed. Background level across the image is conservatively

estimated and removed using two orthogonal (time then mass),

one-dimensional passes (result in Fig. 2B).

Step 2: identify local maxima within each scan (m/z profile).
Peaks or local maxima in each scan are identified using a wavelet

additive decomposition previously described (e.g. implementation

of the function ‘mra’ from the R statistical package) (Mallat, 1999;

Percival and Walden, 2000; Randolph and Yasui, 2006). For

example, the decomposed peaks in 2G are shown in 2H.

Step 3: identify local maxima that appear to be eluting isotopes.
The peaks are smoothed over time by taking advantage of the

two-dimensional nature of the image. This process identifies

peaks that are sustained over multiple scans. The black lines in

Figure 2C show the candidate eluting isotopes, with their maximum

indicated by an ‘x’.

Part B: Assembling isotopes into peptides. We assemble all

the isotopes into groups that appear, maximize and then disappear

at similar times, an indication of an eluting isotopic distribution

potentially from the same peptide. The co-eluting isotopes and their

observed intensities are then assembled into peptides based on their

match to naturally occurring isotopes, as predicted from a simple

Poisson distribution. We use a simple Poisson distribution because

of its utility for modeling rare events (the rare events here being

the rate of occurrence of heavy isotopes). The Poisson rate of

1/1800 was chosen based on its fit to the theoretical isotopic dis-

tributions calculated from 539 957 tryptic peptides from the human

proteome sequence database (see Supplementary Figure S2). We

use the Kullback–Leibler deviance (KL) (Kullback and Leibler,

1951) to compare the closeness of the observed and expected iso-

topic distributions. The choice of KL as a deviance score comes

from many of its theoretical properties, especially its properties

for measuring the discrimination information for two distributions.

Intuitively it can be interpreted as a sum of penalty weights (see

formula below) that will be more tolerant to deviations in

lower intensity isotopes, where the relative contribution of noise

is greater.

Step 1: Assemble isotopes that appear,maximize and disappear at
the same points in time and form all potential isotopic distributions.
The maximum intensity of an isotope with mass m and charge z is

denoted by IðrÞ, r ¼ m/z, and the d � 1 isotopes having higher m/z
values and within a tolerance of ðr þ xÞ · z, x ¼ 1‚ . . . ‚ðd � 1Þ are
selected. By default we choose d ¼ 6; if fewer than six co-eluting

isotopes are identified, the remaining are assigned the value of the

background intensity. An observed isotopic distribution (OID) of

this candidate peptide is formed by the following:

P̂PrzðxÞ ¼
Iðr þ x/zÞPd�1
x¼0 Iðr þ x/zÞ

‚ for x ¼ 1‚ . . . ‚ðd � 1Þ:

Step 2: Compare each OID to the theoretical expected isotopic
distribution (EID) of a natural peptide of the same mass. We

approximate the EID using a single parameter truncated Poisson

distribution given by the closed form analytic expression:

PmðxÞ ¼
1

Kd

ðlmÞx

x!
exp ð� lmÞ‚ x ¼ 0‚ . . . ‚ðd � 1Þ

where l ¼ 1/1800 and the constant K is a normalizing constant

to assure the distribution sums to unity when d <1 (see Results for

Fig. 2. Signal processing steps for peptide location and relative quantitation.

(A) Raw spectra; (B) background removal; (C) isotope detection; (D) peptide

cluster (isotope distribution) detection; (E) removal of peptides without con-

fident charge determination; (F) determination of isotopically labeled pairs

(vertical line joins a pair of ICAT labeled peptides); (G) rawdata froma single

scan and (H) peaks from G after Haar decomposition.
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discussion). Once the EID and OID are computed, we compare the

deviance between the EID for m ¼ r · z and OID using the KL

(Kullback and Leibler, 1951) defined by the following:

KL ¼
X
x

P̂Pðr þ x/zÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Weight

log
P̂Pðr þ x/zÞ
PmðxÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Penalty

Step 3: Assign isotopes to a peptide based on their quality scores.
Beginning first with the peptide candidates with the best KLs, iso-

topes are assigned to peptides and then removed from the cluster.

The process repeats until all isotopes are assigned. Unassigned

isotopes are given a charge state of zero. Figure 2D shows the

peptides (ellipses) located in this image, and 2E shows the charge

equal to 0 peptides filtered out. The assignment of isotopes to

peptides is not strictly based on KL when multiple possible assign-

ments each yield a high quality score (low KL); assignments are

biased toward peptides of lower m/z and higher charge state when

multiple low scores fall within 10% of each other. This mechanism

is intended to cope with the fact that isotopic distributions beginning

with the second (or third) isotope in a peptide also approximate

natural distributions well and may, owing to noise or natural vari-

ance, result in low KLs on their own (see Section 4.2). The same

issue holds when comparing potential assignments with two differ-

ent charge states: often every other isotope in a doubly-charged

peptide can have an intensity distribution signature that appears

similar to a natural singly charged peptide of half the mass. The

bias toward smaller m/z or higher charge helps to account for the

possibility of spectral noise in peak intensities resulting in a better

KL for the incorrect mass or charge assignment.

The performance of the peptide location component is demon-

strated by the larger mass peptide shown in Figure 2G and H. The

second peak in the cluster on the right, which has a mass exactly

9 Da greater than its lighter labeled pair on the left, is the mono-

isotopic peak. The confounding first peak is due to incomplete

incorporation of C13. Our deviance measure, KL, calculated

from this confounding first peak is 1.818, but the KL from the

true monoisotope, the second peak, is only 0.004. The KL computed

from the third and fourth peaks are 0.062 and 0.281, respectively.

Step 4: Quantitate each peptide and optionally combine multiple
charge states. Quantitation uses only the highest intensity peak

within a peptide (see Discussion) but may be reported as either

(1) the maximum intensity, (2) the intensity summed over the

entire elution profile or (3) the intensities summed over the multiple

charge states identified for that peptide. The option to combine

multiple charge states of the same peptide (deconvolution) is

available.

Following the final step, msInspect produces a peptide feature

file, which lists each located peptide, its charge state(s), the time of

maximum intensity, the signal intensity and several measures of

quality including the KL, number of isotopes identified in the pep-

tide and the first and last scans at which the peptide was observed.

3.2 Part 2: interrogation of individual LC-MS files

Visual curation of peptide feature files using observed isotopic
profiles. The isotopic distribution for each peptide in a peptide

feature file can be extracted from the raw mzXML for visual inspec-

tion of the results. Users can identify peptides that do not have the

correct isotopic shape (e.g. due to misidentified charge) and may

delete, correct, or annotate that feature in the peptide feature file.

For a peptide located at (t,m/z) we use the signal intensities between
(t, m/z � 5) and (t, m/z + 5) to construct the vector Y. Use M to

denote the vector of centered mass to charges (�5, +5). A plot of M

versus Y reconstructs the isotopic distribution. We view peptides of

the same charge together in heat maps (Fig. 1D). Each sub-pane

plots the identified peptide mass (horizontal axis) versus M (vertical

axis) by Y (color). All correctly located peptides should have

their monoisotope (first peak) centered at M ¼ 0 with other

peaks 1/z units apart. Users may select from the heat map those

peptides that do not follow this basic pattern, and msInspect brings

that peptide into focus (e.g. Fig. 1B and 1C) for closer visual

inspection.

Identification of isotopic pairs. Routines are provided that

locate all peptides within a single peptide feature file that (1)

have the same charge state; (2) start, end and maximize at approxi-

mately the same times and (3) have a mass consistent with the mass

difference between the ‘heavy’ and ‘light’ forms of the isotopic

label. These isotopic pairs are identified and their intensity ratios

are recorded. Figure 2F shows the location of an isotopic pair in

the msInspect graphical interface.

3.3 Part 3: supporting label-free quantitation

Label-free quantitation involves combining peptide feature files

from multiple LC-MS experiments into a peptide array. Much

like a genomic array, rows correspond to peptides with one set

of columns for every LC-MS measurement. Alignment of two or

more peptide feature files involves first mapping the retention times

onto a single scale and then registering peptides based on how

closely their masses and mapped retention times match. To align

n feature files the user first selects one peptide feature file as a

reference, and msInspect creates non-linear mappings from the

n � 1 remaining peptide feature files to this reference file. Matches

are based on the closeness of peptides in the mass dimension and on

this common time scale. The resulting peptide array may vary

slightly depending on the choice of the reference file but not on

the order of any of the other files. After the procedure has been

completed, the peptide array can be normalized.

Step 1: Estimate a non-linear mapping between the retention
times of LC-MS runs.We use iterative robust regression to estimate

a transformation f(·) that maps the retention times t1 from file 1 to

the times t0 from file 0, the reference file. To begin, we create

matches based on mass alone from the most intense features

(e.g. peptides above median intensity) and estimate a linear

mapping to predict t0 from t1. Robust regression is used so that

f(·) can be estimated in the presence of matching errors. We estimate

the quality of the prediction using the following:

Sf ¼
X
ðt0‚ t1Þ

min
f ðt1Þ � t0

s

� �2

‚1

" #
‚

where the sum is over all pairs of times t0, t1 and s reflects the scale

of departure between true matches. We then iterate to estimate non-

linear forms of f(·) by applying smoothing-spline regression meth-

ods from the previous model residuals (Huber, 1979; Hastie and

Tibshirani, 1990). See Supplementary Materials for more details.

This procedure is repeated for each file aligned to the reference.
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Step 2: Create matches based on closeness of mass and mapped
retention times. After Step 1, we apply the mapping to transform

retention times from all files to those of the reference file. We then

perform global alignment by applying divisive clustering (Kaufman

and Rousseeuw, 2005) separately to both the mass and retention

times of all peptides, and we select the level of clustering based on

user-supplied tolerances for the cluster diameter. Peptides are

aligned together, or registered, if they fall within the same cluster.

Step 3:Optionally use a dynamic procedure to choose the optimal
retention time window. Unlike instrument mass errors, the overall

tolerance used to define a match in retention time may vary from

experiment to experiment. We use procedures to dynamically

identify the correct tolerance for the retention time clustering.

We define the quality of an alignment by the number of perfect

clusters, or the number of clusters which include one and only one

peptide from every experiment. msInspect may optionally iterate

the retention time tolerance from small to large and select the cluster

sizes to maximize the number of perfect clusters.

Step 4: Normalize the intensities. We implemented a normal-

ization procedure described by Wang et al. (Callister et al., 2006;
Wang et al., 2006b) to normalize signal intensities across multiple

peptide feature files. We first extract the top order statistics from

each LC-MS experiment (i.e. top intensity peptides for each run)

then create a linear model using the log-intensity to predict

the intensity quintiles between two runs. Order statistics are used

rather than moments such as the mean and variance due to the data-

dependent missing values that may occur when instrument signal

intensities vary across runs. These general procedures have been

shown to remove systematic biases that can be introduced due to

experimental artifacts (Callister et al., 2006; Wang et al., 2006b).

4 IMPLEMENTATION AND RESULTS

4.1 Data and processing

We used three datasets to demonstrate the overall functionality and

performance of the platform. Two datasets interrogate indepen-

dently prepared identical aliquots of undepleted human sera

using either a label-free approach or Isotope Coded Affinity Tag

(ICAT) (Gygi et al., 1999) labeling. Identical aliquots are used to

establish the ability of the platform to recover reproducible signa-

tures from related samples, a basic component of performance that

governs the ability to locate peptides that may differentiate two

samples. We used msInspect to generate a peptide array from the

third dataset and then used general procedures for array analysis to

classify the samples.

Human serum. To evaluate label-free approaches we performed

10 independent trypsin digests of identical serum aliquots. To evalu-

ate labeling approaches, we independently labeled three pairs of

identical aliquots with heavy and light ICAT isotopes. Prepared

samples were interrogated on an LCT-Premier (Waters) ESI-TOF

instrument. Note that because sample preparation was performed

independently, the variability among the label-free and ICAT mea-

surements includes contributions from specimen processing. Raw

data were converted to mzXML format and processed by accessing

the msInspect functions via the command line using a GNU/Linux

computer (3.4 GHz Intel Xeon processor, Sun 1.5.0_06 JVM with

512 GB allocated for heap). Each file was acquired over a 120 min

period and averaged 6595 scans and 4.6 GB. Processing time

required 25 min per file plus 38 s for alignment and normalization.

Bacteria. Two bacterial strains, Francisella novicida U112

(FN01, wild type) and an isogenic mutant in virulence regulator

mglA (FN11, mglA), were processed as described in the Supple-

mentary Material to isolate the membrane-bound protein fraction.

The samples were then subjected to trypsin digestion prior to inter-

rogation by LTQ-FTMS (Thermo Finnigan). Each strain was evalu-

ated four times by LC-MS. Raw data were converted to mzXML

format and processed by accessing the msInspect functions via the

command line using a GNU/Linux computer (3.4 GHz Intel Xeon

processor, Sun 1.5.0_06 JVM with 512 MB allocated for heap).

Each file was acquired over an 80 min period and averaged 2336

scans and 48 MB. Processing time averaged 8 min per file plus 26 s

for alignment and normalization.

4.2 Signal processing and peptide location

performance

The performance of the peptide location component over a large

number of peptides may be seen with the visualization/curation

graphical interface. Figure 1D shows one example from the

label-free serum data. The visual character of the heat map speaks

to the overall validity of the signal processing method: the mono-

isotopic peaks line up, bands are 1/z apart and the thickness of the

band is indicative of a parts-per-million mass tolerance.

For high-throughput use, we use KL for filtering peptides.

Thresholds for accepting a good KL may vary by the number of

isotopes identified and by the signal intensity. Although no system-

atic study of optimal filtering has been performed, we have found

that removing all peptides with fewer than two isotopic peaks and

KL > 1 is conservative, meaning that relatively few confidently

located peptides (by visual inspection) will be removed. Filtering

out peptides with KL� 0.1 is too strict and will remove even highly

confident peptides (see Supplementary Materials).

Supplementary Table S1 summarizes the number of peptides

located for each of the 10 label-free experiments. The total number

of peptide candidates found before any filtering was between 6648

and 9020 (see Table S1, column 2), with a median of 7857 peptides.

Filtering out peptides with KL > 1 reduced that number to between

5109 and 7333 (median ¼ 6391). Subsequent combination of

multiple charge states (deconvolution) further reduced that number

to between 4481 and 6209, median of 5416.5, located peptides per

LC-MS measurement.

4.3 Alignment and label-free quantitation

We used msInspect to merge all 10 LC-MS measurements into a

peptide array for label-free profiling. To determine the specific

retention time tolerance allowable when registering peptides across

these runs (e.g. cluster diameter), msInspect automatically created

peptide arrays for a large range of tolerance windows. For these data

the optimization routine determined that a cluster diameter of 100

scans would maximize the number of unambiguous, or perfect,

matches.

Figure 3 shows the resulting retention time mapping of runs

2–10 onto run 1. The common retention time scale is shown on

the horizontal axis and the vertical axis shows how much each

individual run was adjusted. The black line represents the retention

time mapping from the first run to itself, and the remaining curves

show the mapping for all other LC-MS runs to this first run. The
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distance between the curves and the line can be represented by a

linear shift and a remaining non-linear component. The magnitude

of the reduction should be measured in relation to the final cluster

size, or tolerance, chosen. For the sera data, where a final retention

time deviation of 100 scans was used, the linear shift reduced the

retention time deviation by a median of 340 scans, or 340%, and the

non-linear component further reduced the required deviation by an

additional 36 scans, or 36% of the resulting tolerance.

To evaluate the ability to recover reproducible signatures when

using label-free approaches, we examined the signal intensity cor-

relation across pairs of experiments. Across all pairs, the Pearson

correlations fall between 0.816 and 0.956 (mean ¼ 0.905).

Figure 4A summarizes this correlation graphically by plotting

the log intensities for one of the 45 possible pairwise comparisons.

Fewer than 20% of all intensity ratios exceed a 2-fold change. Note

that because each interrogation was performed on serum samples

that were independently processed (e.g. protein digestion) these

reproducibility measurements contain multiple sources of variation,

including biochemical, instrumentation and data analysis. The

reproducibility shown here results from completely automated

analysis procedures and without strict filtering. Overall repro-

ducibility may improve by using more stringent filtering criteria

(e.g. requiring three identified isotopes), by using visual curation

to eliminate errors in feature detection, or perhaps by addressing

the reproducibility of specimen handling and biochemical pro-

cedures. The unfiltered data for these experiments are provided

in Supplementary Material.

4.4 Quantitation using stable isotopes

To establish reproducibility using isotopic labeling approaches,

we analyzed ICAT-labeled serum using msInspect and filtered to

remove peptides with KL > 1 and fewer than two isotopes. Peptides

were paired by assigning cleavable ICAT label weights (light ¼
227.126, heavy ¼ 236.156, with up to three labels) and assuming a

mass tolerance of 50 p.p.m. The numbers of peptides (and labeled

pairs) found in the six replicates were 8504 (2035), 7929 (1930),

5606 (1331), 4949 (1209), 8837 (2093) and 7926 (1911) from run

one to six, respectively. Figure 4B shows the intensities of the ‘light’

peptides plotted against the intensities of the corresponding ‘heavy’

peptides, with color indicating the number of labeling tags detected

for each pair; the remaining five plots for the ICAT-labeled serum

data are shown in the Supplementary Material Figure S3. The cor-

relations of the six runs, a measure of overall reproducibility, were

0.930, 0.954, 0.952, 0.978, 0.937 and 0.916 from run one to

six, respectively. Over 90% of all isotopic pairs found had ratios

within 1.5-fold change. Unfiltered data are provided in the Supple-

mentary Material.

4.5 Application of msInspect to molecular profiling

The examples above demonstrate the performance of individual

msInspect components. Here we use the LC-MS measurements

of two strains of bacteria to demonstrate the ability to correctly

classify two different biological samples using msInspect, including

one sample that was affected by an unplanned experimental artifact.

Following peptide location and filtering (deconvolution was not

applied), we found 1554, 1694, 1644 and 1628 peptides in the four

mutant samples (MUT) and 1437, 1372, 1313, 1867 peptides in the

four wild-type runs (WT). We performed alignment and normal-

ization using the procedures described above. We first evaluated

the similarity of the LC-MS measurements. The signal intensities

were more highly correlated within strains than between. Pearson

correlations within the WT and within the MUT groups averaged

0.933 and 0.951, respectively, but correlations between strains

averaged only 0.851.

We next subjected the peptide array to unsupervised clustering

following some modest filtering which eliminated all peptides that

were found in only one of the eight LC-MS measurements. A total

of 2024 peptides remained and were clustered using the Hierarchi-

cal Clustering command hclust from the R statistical package. The

results are shown in Figure 5. The dendrogram shows a strong

association was found within each of the WT and MUT strains

as well as a large degree of difference between groups.

Moreover, inspection of the dendrogram also shows that one

measurement, the fourth WT, was less similar to the other WT

samples even though it clustered strongly with them overall. We

used the retention time mapping plots (Supplementary Figure S4) to

investigate this observation. The overall experimental design inter-

rogated samples WT1 through WT4 then MUT1 through MUT4.

Figure S4 reveals that just prior to the interrogation of WT4

the gradient lengthened and the overall signal intensity dropped,

an unplanned and previously unknown occurrence. The effect of

this experimental artifact was to make the WT4 measurement arti-

ficially more similar in retention time and signal intensity to the

MUT groups than to the other WT group members. Despite this

artifact, msInspect graphical features detected this anomaly, reten-

tion time mapping and registration adjusted for the gradient length,

Fig. 3. Shift of peptides during the retention time mapping process. Hori-

zontal axis is the scan number of each peptide after mapping. Vertical axis is

the amount of ’shift’ applied to transform the scan number of each peptide

during retention time mapping. Each run is indicated by a different color.

A B

Fig. 4. Performance of quantitation using (A) label-free and isotopic (B)

labeling approaches. Point color indicates the number of isotopic labels

detected, red for one label, blue for two, and green for three.
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and normalization adjusted for the change in signal intensities

enough to allow this sample to be correctly classified with the

other members of its biologically similar group.

DISCUSSION

For the examples presented here, we demonstrate the ability of

msInspect to identify reproducible signatures from complex sam-

ples using both label-free and isotopic labeling approaches.

Although it is not possible to comprehensively evaluate each com-

ponent, we gave several examples that demonstrate the overall

ability of msInspect to locate and quantitate peptides and compare

complex mixtures. These examples included: (1) the ‘heat map’

visualization, which demonstrates that nearly all peptides found

contain the isotopic pattern expected given their charge state and

mass; (2) the high correlation of intensities from the labeled serum

samples, which demonstrates the general ability to quantitate those

peptides; (3) the correlation of intensities from the label-free

approach, which demonstrates the ability to map retention times

and register peptides across multiple LC-MS measurements and (4)

the molecular classification of two strains of bacteria, which demon-

strates the overall ability to put all components together to address

biologically relevant questions.

As we developed the algorithms for msInspect, we made several

choices based on knowledge of basic quantitative principles and

routine visual inspection of data. For example, of the many quality

measures we could use to improve peptide location, we chose to

compare resulting distributions to a simple Poisson approximation

to identify natural isotopic shapes. We found the Poisson approx-

imation performed as well as the more computationally-intensive

approaches described by Gay et al. (1999) but was more accurate

when used outside the range they considered. Also, when assigning

a quantity to a located peptide we chose to use only the maximum

intensity of its isotopes rather than summing intensities over all of

its identified isotopes. We made this choice because the most

intense peaks are typically those measured with greatest precision,

and a simple summation that includes the less-intense, less-

precisely measured isotopes could result in a reduction in overall

precision. A related argument holds when considering the option

of summing multiple charge states. Simply summing different

components, each measured with different precision, could result

in reduced reliability overall. Thus, although we provide a mecha-

nism to combine multiple charge states by summing their intensi-

ties, we do not recommend doing so until better procedures for

combining multiple charge states are developed.

It is unlikely that any single implementation of the entire pipeline

outlined by Listgarten and Emili (2005) will contain the best

approach at every step, and continued research will be needed

for each of the individual components. The best step forward

may come from integrating and comparing the different open-

source algorithm implementations (Katajamaa, et al., 2006;

Katajamaa and Oresic, 2005). The msInspect program has been

designed to allow replacement of many individual components

with alternate, competing methods, and, like other approaches

with different algorithms, the source code has been made available

in order to foster the synthesis of the best components into one or

more platforms.
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