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A SUM-DIVISION ESTIMATE OF REALS

LIANGPAN LI AND JIAN SHEN

(Communicated by Ken Ono)

Abstract. Let A be a finite set of positive real numbers. We present a sum-
division estimate:

|A+A|2|A/A| ≥ |A|4

4
.

1. Introduction

Let A be a finite set of positive real numbers throughout. The sum-set, product-
set and ratio-set of A are defined respectively to be

A+A = {a+ b : a, b ∈ A},
AA = {ab : a, b ∈ A},
A/A = {a/b : a, b ∈ A}.

A famous conjecture of Erdös and Szemerédi [6] asserts that for any α < 2, there
exists a constant Cα > 0 such that

max
{
|A+A|, |AA|

}
≥ Cα|A|α.

In a series of papers [1, 2, 7, 11, 12, 13], upper bounds on α were found by many
authors. One highlight in this direction was a proof by Elekes [2], that α can be
taken to be 5

4 . His argument utilized a clever application of the Szemerédi-Trotter
theorem on point-line incidences. Recently, using the concept of multiplicative
energy and an ingenious geometric observation, Solymosi [14] obtained that if A is
not a singleton, then

(1) |A+A|2|AA| ≥ |A|4
4�log2 |A|� ,

which yields

(2) max
{
|A+A|, |AA|

}
≥ |A|4/3

2�log2 |A|�1/3 .

One cannot completely drop the logarithmic term in (2), since if we choose Ã =
{1, 2, . . . , n}, then [4, 5, 8, 15]

(3) |ÃÃ| = n2

(lnn)β+o(1)
, β = 1− 1 + ln ln 2

ln 2
= 0.0860713....

Received by the editors May 12, 2009, and, in revised form, May 18, 2009.

2000 Mathematics Subject Classification. Primary 11B75.
Key words and phrases. Sum-product estimate, sum-division estimate.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

101

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



102 LIANGPAN LI AND JIAN SHEN

There is a subtle difference between |ÃÃ| and |Ã/Ã|. In fact, Elekes and Ruzsa [3]
showed that there exists a universal constant γ > 0 such that

(4) |A+A|6|A/A| ≥ γ|A|8,
which yields

|Ã/Ã| ≥ γ

64
|Ã|2

by choosing A = Ã. This leads to a natural question: how to give a joint estimate
on |A+ A| and |A/A|? It is not difficult to use the Szemerédi-Trotter theorem on
point-line incidences to show that

(5) |A+A||A/A| ≥ C|A|5/2

holds for some universal constant C > 0. Besides, if we carefully analyze Solymosi’s
proof of (1), then

(6) |A+A|2|A/A| ≥ |A|4
4�log2 |A|� .

The main purpose of this paper is to drop the term �log2 |A|� in (6).

Theorem 1. Let A be a finite set of positive real numbers. Then

|A+A|2|A/A| ≥ |A|4
4

.

This implies a sum-division estimate

max
{
|A+A|, |A/A|

}
≥ |A|4/3

2
.

There is an explanation of Theorem 1 in plane geometry. View R2 naturally
as the complex plane C. Given a finite set A of positive real numbers, denote by
Rad(A×A) and Ang(A×A) respectively the radius-set and the angle-set of A×A.

Applying Theorem 1 with Â = {a2 : a ∈ A} yields

max
{
|Rad(A×A)|, |Ang(A×A)|

}
≥ |A|4/3

2
.

This shows the angle-set and the radius-set of A×A cannot be small simultaneously.

2. Proof of the main result

Suppose |A/A| = y and A/A =
{
zi
}y

i=1
. Suppose zi has mi representations in

A×A, that is,

mi =
∣∣∣{(a, b) ∈ A×A :

a

b
= zi

}∣∣∣ (i = 1, 2, . . . , y).

Without loss of generality we may order all mi’s as follows:

(7) m1 ≤ m2 ≤ · · · ≤ my.

Since |A|2 =
∑y

i=1 mi, there exists a unique integer k, 1 ≤ k ≤ y, such that

k−1∑
i=1

mi <
|A|2
2

≤
k∑

i=1

mi ≤ kmk.

Hence

(8) |A/A| ≥ k ≥ |A|2
2mk
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and

(9)

y∑
i=k

mi =
(
|A|2 −

k−1∑
i=1

mi

)
≥ |A|2

2
.

By (7) and Solymosi’s geometric observation [14],

(10) |A+A|2 = |(A×A) + (A×A)| ≥ mk

y∑
i=k

mi.

Multiplying (8), (9) and (10) yields

|A+A|2|A/A| ≥ |A|4
4

.

This proves Theorem 1.

Remark. Let Fn = {a/q : 1 ≤ a ≤ q ≤ n, (a, q) = 1} be the set of Farey fractions
of order n. It is well-known ([10]) that |Fn| ∼ 3

π2n
2 as n → ∞. Besides, it is not

difficult to deduce from (3) (see also [8, 9]) that

max{|Fn + Fn|, |Fn − Fn|, |FnFn|, |Fn/Fn|} ≤ n4

(lnn)β+o(1)
(n → ∞).

This shows generally that one cannot expect the estimate

max{|A+A|, |A/A|} 	 |A|2 (|A| → ∞).

We thank Dimitris Koukoulopoulos for communicating this example to us.
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