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Abstract

In this paper, we propose a new hardware unit that per-
forms a16 × 1 SAD operation. The hardware unit is in-
tended to augment a general-purpose core. Further, we
show that the16× 1 SAD implementation used can be eas-
ily extended to perform the16 × 16 SAD operation, which
is commonly used in many multimedia standards, including
MPEG-1 and MPEG-2. We have chosen to implement the
16 × 1 SAD operation in field-programmable gate arrays
(FPGAs), because it provides increased flexibility, sufficient
performance, and faster design times. We performed simu-
lations to validate the functionality of the16×1 SAD imple-
mentation using the MAX+plus II (version 9.23 BASELINE)
software from Altera and synthesis using the FPGA Express
(version 3.4) software from Synopsis. Targeting the Altera’s
FLEX20KE family, synthesis of our16 × 1 SAD unit pro-
duced the following results for area and clock frequency:
1699 look-up tables (LUTs) and 197 MHz, respectively.

1 Introduction

In video coding, similarities between video frames can
be exploited to achieve higher compression ratios. How-
ever, moving objects within a video scene diminish the
compression efficiency of the straightforward approach that
only considers pels1 located at the same position in the
video frames. In order to achieve higher compression ef-
ficiency,motion estimationwas introduced in an attempt to
accurately capture such movements. It is performed for ev-
ery macroblock, i.e., an array of16×16 pels, in the to be en-
coded frame by finding its ‘best’ match in a reference frame.
The most commonly used metric is the “sum of absolute
differences” (SAD), which adds up the absolute differences

1Pel stands for picture element and represents the smallest color data
unit of a picture or video frame.

between corresponding elements in the macroblocks. The
SAD operation is very time-consuming due to the complex
nature of the absolute operation and the subsequent multi-
tude of additions. In [15], a parallel hardware implemen-
tation was proposed to speed up the SAD computation pro-
cess. This paper describes this parallel hardware implemen-
tation of the SAD operation in field-programmable gate ar-
rays (FPGAs).

Traditionally, the design of embedded multimedia pro-
cessors were very much similar to the design of microcon-
trollers. This meant that for each targeted set of multimedia
applications, an embedded multimedia processor needed to
be designed in specialized hardware (commonly referred
to as Application Specific Integrated Circuits (ASICs)).
In the early nineties, we were witnessing a shift in the
embedded processor design approach fueled by the need
for faster time-to-market times. This resulted in the de-
sign of embedded processors utilizing programmable pro-
cessor cores augmented with specialized hardware units
implemented in ASICs. Consequently, time-critical tasks
were implemented in specialized hardware units while other
tasks were implemented in software to be run on the pro-
grammable processor core [13]. This approach allowed a
programmable processor core to be re-used for different sets
of applications and only the augmented units need to be de-
signed for specific application areas.

Currently, we are witnessing a new trend in embedded
processor design that is again quickly reshaping the embed-
ded processor design. Instead of implementing the time-
critical tasks in ASICs, these tasks are to be implemented in
field-programmable gate arrays (FPGA) structures or com-
parative technologies [4, 14, 16, 6]. The reasons for and the
benefits of such an approach include the following:

• Increased flexibility: The functionality of the embed-
ded processor can be quickly changed without requir-
ing another roll-out of the embedded processor itself
and design faults can be quickly rectified. It also al-



lows for quick adaptation of new (possibly unforeseen)
developments.

• Sufficient performance: The performance of FPGAs
has increased tremendously and is quickly approach-
ing that of ASICs [2]. This seems to be mainly due
to the faster adaptation of new technological advance-
ments by FPGAs than by ASICs.

• Faster design times:Faster design times are achieved
by re-using intellectual property (IP) cores or by
slightly modifying them. More importantly, high-level
design languages (such as VHDL) can be used in the
design process and thereby speeding it up significantly.

The mentioned advantages and enabling FPGA have
even resulted in that programmable processor cores are un-
der consideration to be implemented in the same FPGA
structure, e.g., Nios from Altera [1] and MicroBlaze from
Xilinx [3].

In this paper, we have developed a VHDL model for a
functional unit that is able to perform the16 × 1 SAD op-
eration as introduced in [15]. It is to be implemented in
field-programmable gate arrays (FPGAs) and it is intended
to augment a general-purpose processor core. As shown
later in this paper, the proposed hardware unit can be eas-
ily extended to perform the16 × 16 SAD operation. We
performed simulations to validate its functionality using the
MAX+plus II (version 9.23 BASELINE) software from Al-
tera and synthesis using the FPGA Express (version 3.4)
software from Synopsis. When our16 × 1 SAD unit was
synthesized on the FLEX20KE family of Altera, we ob-
tained the following results for area and clock frequency:
1699 LUTs and 197 MHz, respectively.

2 Sum of Absolute Differences

Digital video compression entails the utilization of many
coding techniques with the ultimate goal to reduce the size
of the digital representation of a video sequence. The
same techniques used to compress digital pictures, e.g., in
the JPEG picture standard, can be applied to single video
frames. Such techniques exploit the fact that colors in pho-
tographic images tend to only gradually change when tra-
versed from one side to another. In the video coding case,
the fact that subsequent video frames do not differ much
can be similarly exploited in order to increase compression
efficiency.

All coding techniques can be categorized into two main
categories, namely lossy and lossless techniques. Lossy
coding techniques remove pel information that the human
eye is unable to perceive using coding techniques such as
the discrete cosine transform and quantization. The infor-
mation that has been removed in most cases cannot be ex-
actly regained, but it usually can only be approximated. On

the other hand, lossless coding techniques do not remove
any information. Instead, it exploits redundancies, i.e., sim-
ilarities, between pels found in and between video frames
which results in the representation of pel information us-
ing fewer bits. A lossless coding technique is predictive
coding which predictscurrent pel(s) usingreferencepel(s)
and then store the difference(s) between the predictionand
the current pel(s). Assuming redundancy between pels, the
differences are usually small and can be coded using less
bits than the coding of the original pels. Predictive cod-
ing can use pels from the same video frame as reference
pels (intra-coding) or pels from other video frames (inter-
coding). Inter-frame predictive coding can contribute to the
overall compression efficiency, because consecutive video
frames are usually similar, i.e., they do not differ much. In
this sense, the reference pels can be found in a reference
frame located at the same position as the current pels in the
current to be coded frame. This approach can also be used
to capture scene changes by choosing the reference frames
in the near future of the current (to be encoded) frame in-
stead from its past. However, such a straightforward ap-
proach has one major drawback. Objects in a video scene
tend to move around resulting in poor compression perfor-
mance of the straightforward inter-frame predictive coding
method, because pels located at the same location in con-
secutive frames are now quite different.

Motion estimation has been introduced in an attempt to
capture the motion of objects within a video scene. I.e.,
find the best match between the pel(s) in the current frame
and the pel(s) in the reference frame. To this end, a search
area within the reference frame must be traversed in order
to find the best match. After finding the best match, the dif-
ference(s) between the pels must be coded together with the
difference between the locations (motion vector). Motion
estimation can be performed for single pels in the current
frame, but it is rarely used, because the coding of motion
vectors for single pels reverses the gains of predictive cod-
ing. Therefore, block-based motion estimation is the most
commonly used form in which a search is performed in the
reference frame for a block of pels in the current frame.

Two key issues are associated with motion estimation in
general, namely the size of the search area and which met-
ric to use for determining the ‘best match’. The first issue
is an interesting one, because a limited search area reduces
the possibility of finding a ‘best match’ and an exceedingly
large search area results in many unnecessary computations.
In order to reduce the number of computations, many search
area traversing methods have been proposed in literature
[11, 7, 9, 8]. The second issue relates to finding a met-
ric that will guarantee a good coding performance. Two of
such metrics are themean square error(MSE) and themean
absolute difference(MAD).

Considering that block-based motion estimation is most



commonly used in multimedia standards such as MPEG-
1 [12], MPEG-2 [5], and Px64 [10], we briefly highlight
the block-based forms of the MSE and the MAD metrics.
Such a block is usually16 × 16 large and is referred to as
macroblock. The MSE is calculated as follows:

MSE(x, y, r, s) =
1

256

15∑

i=0

15∑

j=0

(A(x+i,y+j) −B((x+r)+i,(y+s)+j))
2

with 0 ≤ x, y < framesize
with (r, s) being the motion vector
with A(x,y) being a current frame pel at (x, y)
with B(x,y) being a reference frame pel at (x, y)

Due to the square operation on the differences, this op-
eration is less commonly used. Instead, the MAD is used
more often and it is calculated as follows:

MAD(x, y, r, s) =
1

256

15∑

i=0

15∑

j=0

|(A(x+i,y+j) −B((x+r)+i,(y+s)+j))|

with 0 ≤ x, y < framesize
with (r, s) being the motion vector
with A(x,y) being a current frame pel at (x, y)
with B(x,y) being a reference frame pel at (x, y)

The vector(x, y) denotes the location of the to be en-
coded macroblock in the current frame. Bothx andy are
multiples of 16 due to the blocksize is16 × 16. The (mo-
tion) vector2 (r, s) denotes the location of the macroblock
to be used as a prediction in the reference block relative to
the location of the to be coded macroblock in the current
frame. Due to the computational simplicity of the MAD, it
is being used more often than the MSE. The MAD can be
rewritten to:

MAD(x, y, r, s) =
SAD(x, y, r, s)

256

The division by256 in (binary) computer arithmetic is
translated into an easy shifting the final SAD result by8
bits. Therefore, we are focusing solely on the SAD in the
remainder of this paper. All the absolute operations of the
SAD operation can be performed serially, per column in
parallel, per row in parallel, or all256 operations in par-
allel. While it is possible to perform all the operations

2Contrary tox andy, arer ands not multiples of 16 as the granularity
of the search area is on the pel level.

serially, this approach is time-consuming and not efficient
performance-wise. Performing the operations per row or
per column in parallel are exactly the same with the only
difference being the indexing of the pels. Considering that
the completely parallel approach is a simple extension of
the per-row or per-column approaches, we focus in this pa-
per on the16 × 1 SAD that processes all the pels in a row
in parallel. An additional advantage of the per row paral-
lel approach is because the pel data is stored in consecutive
locations in the main memory. This alleviates the need for
special reordering hardware. The complete SAD operation
can be rewritten to:

SAD(x, y, r, s) =
15∑

j=0

SAD16j(x, y, r, s)

with theSAD16j being defined as:

SAD16j(x, y, r, s) =
15∑

i=0

|A(x+i,y+j) −B((x+r)+i,(y+s)+j)|

with 0 ≤ x, y < framesize
with (r, s) being the motion vector
with A(x,y) being a current frame pel at (x, y)
with B(x,y) being a reference frame pel at (x, y)

In the remainder of this paper, all data unitsAi andBi

are considered to be unsigned 8 bits numbers. Subtraction
of two unsigned numbers (e.g.,A − B) is performed by
addingA with a bit invertedB (B = 2n−1−B) and adding
a ‘hot’ one:A+(2n−1−B)+1 = 2n +A−B. Assuming
thatB ≤ A, the resulting carry (2n) of the addition can be
ignored. TheSAD16j operation can be performed in three
steps:

• Compute(Ai −Bi) for all 16× 1 pel locations.

• Determine which(Ai − Bi)’s are negative, i.e., when
no carry was generated and compute(Bi−Ai) instead
if this was the case.

• Add all 16 absolute values together.

This approach requires one addition in the first step and
an occasional second addition in the second step. In [15],
another approach was introduced to parallelize and speedup
theSAD16 operation without the uncertainty of the second
step. Its approach is briefly highlighted below:

• Determine the smallest of the two operands.

• Invert the smallest operand.



• Pass both operands to an adder tree.

• Add a correction term to the adder tree.

• Reduce the33 addition terms to2.

• Add the remaining two terms using an adder.

The first step is performed by computingA + B. In case
no carry was generated, this means thatB ≯ A and thus
B should inverted. Otherwise,A should be inverted. Next
to passing the operands to an adder tree, an additional cor-
rection term must be added to counter the effects of using
inverted values. The adder tree reduces the adder terms two
terms which are then passed to an adder. For precise math-
ematical details of the approach, we refer to [15].

3 The VHDL implementation

In the previous section, we have highlighted the signifi-
cance of motion estimation in video coding. An important
metric used in motion estimation is the sum of absolute dif-
ferences (SAD). The absolute difference operation can be
implemented in several ways: serial, per column in parallel,
per row in parallel, and fully parallel. In this paper, we fo-
cus on theSAD16 operation that performs the SAD on one
row of a macroblock (16× 1). All the input values are 8-bit
unsigned binary numbers. By iteration or parallel execution
of theSAD16 operation, the complete SAD operation for
the16 × 16 macroblock can be performed. In this section,
we discuss the VHDL implementation ofSAD16 operation
using a method introduced in [15] and present the results af-
terwards. First, we discuss the steps necessary to perform
theSAD16 operation in more detail:

• Determine the smallest of the two operandsAs
suggested in [15], it is only necessary to determine
whetherA + B produces a carry or not.

• Invert the smallest operandIf no carry was produced,
B must be inverted, otherwise,A must be inverted.
This is done by utilizing an exor.

• Pass both operands to an adder treeAfter inverting
eitherA or B, the operands must be passed to an adder
tree. Thus, the values (A, B) or (A, B) are passed
further.

• Add a correction term to the adder tree Also dis-
cussed in [15], an additional correction term must be
added to the adder tree which is16 in this case.

• Reduce the33 addition terms to 2 All 33 addition
terms must be reduced to2 terms before the final addi-
tion can be applied. This can be done using an 8-stage
carry save adder tree using 243 carry save adders. This
results in two term as shown in Figure 1.

12 11 10 9 8 7 012346 5

Result 1

Result 2

BIT

Figure 1. The resulting terms after the adder
tree.

• Add the remaining two terms using an adderThe
final two addition terms are added using a 8-bit carry
lookahead adder for the most significant bits. The re-
sult is a 13-bit unsigned binary number. However, as
stated in [15], the most significant bit of this result can
be disregarded resulting in a final 12-bit unsigned bi-
nary number.

In Figure 2, the first three steps are depicted. The de-
termination wether the additionA + B generates a carry
is performed without actually calculating the addition. In-
stead, this is achieved by only utilizing certain parts within
a carry lookahead adder that calculate the carry. The result-
ing carry and inverted carry are fed to two exors that will
invert the correct term.

Exor Exor

Invert

Carry_generator

Carry Carry

B

A_out B_out

A

Figure 2. The first three steps.

The inversion of eitherAs orBs for all 16 absolute op-
erations can be carried out in parallel and can be fed to an
adder tree at the same time as shown in Figure 3.

A B B B B BA A A16

33 -> 2 reduction
reduction

2 -> 1

A

Figure 3. The SAD16 operation.



Figure 3 depicts the completeSAD16 operation that has
been implemented in VHDL. Next to the parallel execution
of the first three steps, the figure also depicts the addition of
a correction term of16, the33 → 2 reduction tree, and the
final 2 → 1 reduction. The implementation is synchronous
and fully pipeline-able.

Before we present the results on this implementation, we
discuss two methods of how we can utilize theSAD16 unit
to implement the complete16× 16 SAD operation:

• When optimizing for speed, we replicate theSAD16
unit 16 times as depicted in Figure 4. In this figure, the
2 → 1 reduction in theSAD16 unit has been disabled,
because it is a time-consuming operation compared to
an additional reduction stage of the ensuing reduction
tree. The2 → 1 reduction takes several clock cycles
while passing the two results directly to the32 → 2 re-
duction tree only results in one additional clock cycle.
The resulting two operands from this reduction tree are
added using another2 → 1 reduction.

A B B B B BA A A16

33 -> 2 reduction

A B B B B BA A A16

33 -> 2 reduction

A B B B B BA A A16

33 -> 2 reduction

reduction
32 -> 2

reduction
2 -> 1

SAD

A B B B B BA A A16

33 -> 2 reduction

A

A

A

A

Figure 4. A 16× 16 SAD.

• When optimizing for area, we can re-use theSAD16
unit as depicted in Figure 3. Instead of performing
the 2 → 1 reduction for each row, the two terms
are buffered until the whole macroblock has been pro-
cessed. Then, all the buffered 32 terms are inserted
into 33 → 2 together with a correction term of0. This
is followed by the final2 → 1 reduction. We have to
note that the bit widths of both the33 → 2 reduction
tree and the2 → 1 must be extended to support larger
binary numbers.

Assumptions In this section, we have discussed the
SAD16 operation and how this can be implemented in
hardware. VHDL code was written for the approach dis-
cussed in this section. Its functionality was validated using
MAX+PLUS II, version 9.23 baseline software from Al-
tera. Then, the VHDL model was synthesized using FPGA
Express from Synopsis, build 3.4.0.5211 by targeting the
FLEX20KE family from Altera. From the synthesis, we
obtained results about area and clock frequencies.
Results The VHDL code describes a synchronous and
pipelined design which takes19 clock cycles to produce the
first result. The results of the synthesis of the VHDL model
are the following. The area of theSAD16 implementation
is 1699 look-up tables (LUTs). The highest achievable fre-
quency is197 MHz. At this clock frequency, the19 clock
cycles of theSAD16 unit translates into 96ns.

Finally, some estimations will be given regarding the
number of clock cycles it takes to perform the16×16 SAD
using theSAD16 unit according to the two methods dis-
cussed earlier:

• When optimizing for speed, we note that there is only
one additional32 → 2 reduction tree (see Figure 4)
when compared to theSAD16 unit depicted in Fig-
ure 3. Due to the fact that this reduction tree is of simi-
lar complexity as the33 → 2 one, which takes 8 clock
cycles, we only add 8 additional clockcycles resulting
in a total of27 clock cycles.

• When optimizing for area, producing all the pairs after
the33 → 2 reduction tree for all16 rows takes14+15
clock cycles.14 cycles are needed to obtain the first
pair and all 15 subsequent pairs take one cycles each.
Then,8 clock cycles are needed to perform the32 → 2
reduction and5 for the last2 → 1 reduction resulting
in 42 clock cycles.

The second method is about 1.5 times slower than the
first one, but it also requires considerably less area. We must
keep in mind that the area utilized by theSAD16 unit in the
second method is larger than 1699 LUTs. This is due to the
fact that longer binary inputs must be supported resulting
in a longer binary output. Furthermore, the second method
is also less efficient performance-wise in the calculation of



subsequent16×16 SADs that are usually required in motion
estimation. This is due to the buffering of the intermediate
results between the first stage results (after the33 → 2)
and the final stage which eliminates the intrinsic pipelined
behavior of the proposedSAD16 unit.

4 Conclusion

In this paper, we have proposed theSAD16 unit which
performs a16 × 1 SAD operation. It is intended to aug-
ment a general-purpose processor core by speeding up the
overall 16 × 16 SAD operation. We have shown that the
SAD16 unit can be used to perform the complete16 × 16
operation, either by replicating the unit 16 times or exploit-
ing its pipeline characteristic. TheSAD16 implementation
produces its first result after19 clock cycles. By replicat-
ing theSAD16 unit and adding another adder tree, the re-
sulting fully parallelized implementation requires27 clock
cycles to produce the16 × 16 SAD result. Another more
area efficient method utilizing the pipelinedSAD16 unit
requires42 clock cycles to perform the16× 16 SAD oper-
ation. We have chosen to implement the16× 1 SAD oper-
ation in field-programmable gate arrays (FPGAs), because
it provides increased flexibility, sufficient performance, and
faster design times. We have performed simulations to val-
idate functionality of theSAD16 implementation using the
MAX+plus II (version 9.23 BASELINE) software from Al-
tera and synthesis using the FPGA Express (version 3.4)
software from Synopsis. When ourSAD16 unit was syn-
thesized on the FLEX20KE family of Altera, we obtained
the following results for area and clock frequency: 1699
look-up tables (LUTs) and 197 MHz, respectively.
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