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Abstract

In recent years, substantial progress has been made in the field of reverberant speech signal processing, including

both single- and multichannel dereverberation techniques and automatic speech recognition (ASR) techniques that

are robust to reverberation. In this paper, we describe the REVERB challenge, which is an evaluation campaign that was

designed to evaluate such speech enhancement (SE) and ASR techniques to reveal the state-of-the-art techniques and

obtain new insights regarding potential future research directions. Even though most existing benchmark tasks and

challenges for distant speech processing focus on the noise robustness issue and sometimes only on a single-channel

scenario, a particular novelty of the REVERB challenge is that it is carefully designed to test robustness against

reverberation, based on both real, single-channel, andmultichannel recordings. This challenge attracted 27 papers, which

represent 25 systems specifically designed for SE purposes and 49 systems specifically designed for ASR purposes. This

paper describes the problems dealt within the challenge, provides an overview of the submitted systems, and

scrutinizes them to clarify what current processing strategies appear effective in reverberant speech processing.
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1 Introduction
Speech signal processing technologies, which have made

significant strides in the last few decades, now play

various important roles in our daily lives. For exam-

ple, speech communication technologies such as (mobile)

telephones, video-conference systems, and hearing aids

are widely available as tools that assist communication

between humans. Speech recognition technology, which

has recently left research laboratories and is increasingly

coming into practical use, now enables a wide spectrum

of innovative and exciting voice-driven applications. How-

ever, most of these applications consider a microphone

located near the talker as a prerequisite for reliable perfor-

mance, which prevents further proliferation.

Speech signals captured with distant microphones

inevitably contain interfering noise and reverberation,
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which severely degrade the audible speech quality of the

captured signals [1] and the performance of automatic

speech recognition (ASR) [2, 3]. A reverberant speech

signal y(t) at time t can be expressed as

y(t) = h(t) ∗ s(t) + n(t), (1)

where h(t) corresponds to the room impulse response

between the speaker and the microphone, s(t) is the clean

speech signal, n(t) is the background noise, and ∗ is the

convolution operator.

Although a range of signal processing and speech recog-

nition techniques is available for combating the effect of

additive noise (i.e., n(t) in Eq. (1)) [2, 3], finding practical

algorithms that can reduce the detrimental effect of rever-

beration (i.e., h(t) in Eq. (1)) remains one of the toughest

challenges in the field of distant-speech enhancement and

recognition research.

In recent years, however, research on reverberant

speech processing has achieved significant progress in

both the audio processing and ASR fields [4, 5], mainly
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driven by multidisciplinary approaches that combine

ideas from room acoustics, optimal filtering, machine

learning, speech modeling, enhancement, and recogni-

tion. These novel techniques are now ready to be eval-

uated for real-world speech enhancement and speech

recognition applications.

1.1 Motivation behind REVERB challenge

Numerous papers have reported significant progress on

these techniques. However, due to the lack of common

evaluation frameworks and databases in this research

area, all contributions had different foundations. This

complicated accurately determining the importance of the

progress that they represent and consequently impedes

further technological advancement. Therefore, the moti-

vation behind the challenge is to provide a common eval-

uation framework, i.e., tasks and databases, to assess and

collectively compare the state-of-the-art algorithms and

gain new insights regarding the potential future research

directions for reverberant speech processing technology.

This paper summarizes the outline and the achieve-

ments of the REVERB challenge, which took place in 2014

as a community-wide evaluation campaign for speech

enhancement (SE) and ASR techniques handling rever-

berant speech [6, 7]. Although existing benchmark tasks

and challenges [8–10] mainly focus on the noise robust-

ness issue and sometimes only in a single-channel sce-

nario, a particular novelty of the REVERB challenge is

that it is carefully designed to test robustness against

reverberation, based on both single-channel and multi-

channel recordings made under moderately noisy envi-

ronments. Another novel feature of the challenge is that

its entire evaluation is based on real recordings and sim-

ulated data, part of which has similar characteristics to

real recordings. This allows the participants to thoroughly

evaluate their algorithms in terms of both the practical-

ity in realistic conditions and robustness against a wide

range of reverberant conditions. The challenge is com-

prised of two types of tasks: ASR and SE. In the ASR

task, the submitted systems are evaluated in terms of word

error rate (WER), and in the SE task, an SE algorithm’s

performance is evaluated based on instrumental mea-

sures and listening tests evaluating the perceived amount

of reverberation and the overall quality of processed

signals. The large-scale evaluation of various SE tech-

niques with common instrumental measures and listening

tests may provide important insights to help us decide

which metrics should be used for properly evaluating

SE techniques; this question has not yet been answered

satisfactorily.

1.2 Highlight of challenge achievements

The challenge results offer a few important insights for

the research community. First, it reveals that notable

ASR performance can be accomplished through the care-

ful combination of several well-engineered processing

strategies, such as an effective multichannel SE includ-

ing dereverberation, deep neural network (DNN)-based

acoustic modeling, and acoustic model adaptation. While

the performance of the challenge baseline GMM-HMM

system with multi-condition training and constrained

maximum likelihood linear regression (CMLLR) achieved

a WER of 49.2 % for the real recordings, the best

performing system achieved 9.0 % using eight micro-

phones. The SE task results reveal that we can now

effectively reduce the perceived amount of reverbera-

tion in both the single-channel and multichannel sce-

narios and simultaneously improve the overall sound

quality, even in severely reverberant real environments.

In addition, after analyzing the relationship between the

results of the listening and instrumental tests, we show

that even though a subjective judgment of the perceived

amount of reverberation can be roughly captured with

instrumental measures, the overall sound quality cannot

be well represented with the metrics employed in this

challenge.

1.3 Organization

The remainder of this paper is organized as follows. In

Sections 2 and 3, we describe the challenge’s design.

Section 2 details the problem posed by the chal-

lenge and reviews the test datasets. Section 3 intro-

duces its two tasks, SE and ASR, and the evaluation

metrics used in each one. In Section 4, we pro-

vide an overview of the submitted systems and their

key components. Sections 5 and 6 present the results

obtained from the ASR and SE tasks. We analyzed the

results to identify trends, reveal the state-of-the-art, and

clarify the remaining challenges faced by reverberant

speech-processing research. The paper is concluded in

Section 6.

2 Dataset
The challenge assumes scenarios in which an utter-

ance spoken by a single spatially stationary speaker in a

reverberant room is captured with single-channel (1-ch),

two-channel (2-ch), or eight-channel (8-ch) circular

microphone arrays (Fig. 1). As a part of the challenge, we

provided a dataset that consists of a training set, a devel-

opment (Dev) test set, and an evaluation (Eval) test set,

all of which were provided as 1-ch, 2-ch, and 8-ch record-

ings at a sampling frequency of 16 kHz. All of the data

related to the challenge are available through the chal-

lenge webpage [7] in its “download” section. Although the

specifications of the challenge data have been summarized

[6, 7], we briefly review them here for completeness. An

overview of all the datasets is given in Fig. 2. Details of

each one are given in the following subsections.
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Fig. 1 Target scenarios of REVERB challenge. Here, distances among adjustment microphones are all 7.5 cm

2.1 Test data: development and evaluation sets

When preparing the test data, we took special care regard-

ing the following points:

• The test data have to allow the challenge participants

to thoroughly evaluate their algorithms for (i)

practicality in realistic conditions and (ii) robustness

against a wide range of reverberant conditions. To

simultaneously fulfill these conditions, both the Dev

and Eval test sets were designed to consist of real

recordings (RealData) and simulated data (SimData)

(Fig. 2).
• To allow a degree of comparison between SimData

and RealData, part of the former was designed to

have similar characteristics to the latter in terms of

acoustic conditions, i.e., reverberation time and

speaker-microphone distance, and complexity of

utterance content, i.e., text prompts.

Based on the above design concepts for the test data,

Simdata and RealData were prepared as follows:

• SimData is comprised of reverberant utterances

generated based on the WSJCAM0 corpus [11].

These utterances were artificially distorted by

convolving clean WSJCAM0 signals with measured

room impulse responses (RIRs) and subsequently

adding measured stationary ambient noise signals

with a signal-to-noise ratio (SNR) of 20 dB. SimData

simulated six different reverberation conditions:

Fig. 2 Overview of datasets used in REVERB challenge. Average durations of utterances in training and test sets are about 7.5 and 6.9 s, respectively
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three rooms with different volumes (small, medium,

and large) and two distances between a speaker and a

microphone array (near = 50 cm and far = 200 cm).

Hereafter, the rooms are referred to as SimData-

room1, -room2, and -room3. The reverberation times

(i.e., T60) of SimData-room1, -room2, and -room3

are about 0.3, 0.6, and 0.7 s, respectively. The

direct-to-reverberation ratios (i.e., D50) for

SimData-room1 near and far, -room2 near and far,

and -room3 near and far conditions are 99, 98, 95, 79,

97, and 81 %, respectively. D50 refers to the

percentage of the energy of the direct path plus early

reflections up to 50ms, relative to the total energy of

the RIR. The RIRs and added noise were recorded in

the corresponding reverberant room at the same

position with the same microphone array, an 8-ch

circular array with a diameter of 20 cm. The array is

equipped with omni-directional microphones. The

recorded noise was stationary diffuse background

noise, which was mainly caused by the air

conditioning systems in the rooms, and thus has

relatively large energy at lower frequencies.
• RealData, which is comprised of utterances from the

MC-WSJ-AV corpus [12], consists of utterances

spoken by human speakers in a noisy and reverberant

room. Consequently the sound source cannot be

regarded as completely spatially stationary due to the

speaker’s head movements. The room used for the

RealData recording is different from the rooms used

for SimData. The room’s reverberation time was

about 0.7 s [12]. The recordings contain some

stationary ambient noise, which was mainly caused by

the air conditioning systems. RealData contains two

reverberation conditions: one room and two distances

between the speaker and the microphone array

(near∼100 cm and far∼250 cm). The recordings were

measured with an array whose geometry is identical

as that used for SimData. Judging by the reverberation

time and the distance between the microphone array

and the speaker, RealData’s characteristics will

probably resemble those of the SimData-room-3-far

condition. The text prompts of the utterances used in

RealData and in part of SimData are the same.

Therefore, we can use the same language and

acoustic models for both SimData and RealData.

For both SimData and RealData, we assumed that the

speakers stay in the same room for each test condition.

However, within each condition, the relative speaker-

microphone position changes from utterance to utterance.

Note that the term “test condition” in this paper refers to

one of the eight reverberation conditions that comprise

two conditions in RealData and six conditions in SimData

(Fig. 2).

2.2 Training set

As shown in Fig. 2, the training dataset consists of (i)

a clean training set taken from the original WSJCAM0

training set and (ii) a multi-condition (MC) training set,

which was generated from the clean WSJCAM0 training

data by convolving the clean utterances with 24 measured

room impulse responses and adding recorded background

noise at an SNR of 20 dB. The reverberation times of

the measured impulse responses for this dataset range

roughly from 0.2 to 0.8 s. Different recording rooms were

used for the Dev set, the Eval set, and the training data.

3 Tasks in REVERB challenge
The REVERB challenge consists of two tasks: one for SE

and another for ASR, both of which are based on the

dataset explained in the previous section. The follow-

ing subsections describe the details of each task and the

evaluation metric(s) employed.

3.1 ASR task

The ASR task is to recognize each test reverberant utter-

ance without a priori information about the speaker

identity/label, room parameters such as the reverberation

time, the speaker-microphone distance and the speaker

location, and the correct transcription. Therefore, sys-

tems have to perform recognition without knowing which

speaker is talking in which acoustic condition. A base-

line ASR systemwas provided. The baseline system, which

is based on HTK, is a triphone GMM-HMM recognizer

trained on clean/multi-condition training data. It also

includes a function to perform CMLLR-based adaptation.

The language model was a bigram scheme. Participants

were allowed to take part in either (or both) single-channel

and multichannel tasks by employing any input features,

acoustic models, training criteria, decoding strategies, and

advanced single-channel/multichannel front-end process-

ing technologies, which could be completely different

from the challenge baseline ASR systems. Although the

relative speaker-microphone position changed randomly

from utterance to utterance, the participants were allowed

to use all the utterances from a single test condition and

to perform full-batch processing. Thus, they could per-

form, e.g., multiple passes of unsupervised adaptation on

the data of a single test condition until the final results

are achieved. The world error rate (WER) was used as an

evaluation metric.

3.2 SE task

For the SE task, the participants were allowed to par-

ticipate in either (or both) the single-channel and multi-

channel tasks using their speech enhancement algorithms.

Processed signals were evaluated by listening tests and

several different instrumental measures summarized in

the following subsections. This evaluation approach was
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taken because no universally accepted set of instrumen-

tal measures has yet been fully established for evaluating

dereverberation algorithms. The SE task is designed not

only to reveal the relative merits and demerits of differ-

ent SE approaches but also to elucidate the characteristics

of each instrumental measure, which may facilitate the

future research and development of SE algorithms.

3.2.1 Instrumental test

The following instrumental measures were employed:

frequency-weighted segmental SNR (FWSegSNR) [13],

cepstral distance (CD) [13], log-likelihood ratio (LLR)

[13], speech-to-reverberation modulation energy ratio

(SRMR) [14], and optionally PESQ [15]. The metrics

FWSegSNR, CD, LLR, and PESQ were selected because

they correlated well with the listening test results for

evaluating the overall quality of the signals processed by

various speech enhancement algorithms [13]. The SRMR

metric was selected because it concentrates on measuring

the dereverberation effect and is non-intrusive unlike the

others. This is a favorable characteristic especially when

we have no access to reference clean speech signals but

only to the observed signals.

3.2.2 Listening test

The audible quality of the processed signals was evaluated

in the framework of a multiple stimuli with hidden ref-

erence and anchor (MUSHRA) test [16]. Researchers in

the speech signal processing field were asked to partici-

pate in the test in a crowdsourcing manner. Because of

time constraints, we chose this non-standardized listening

test style, although it contains the following limitations.

For instance, although the subjects were instructed to use

headphones in a quiet room, neither the quality of the

headphones nor the background noise level in the listen-

ing room could be controlled. In addition, it could not be

guaranteed that all the subjects had normal hearing.

During the test, all the subjects were first guided to

training sessions in which they familiarized themselves

with the listening test. Following the training sessions, in

each test session, a subject compared a reference sound

excerpt (i.e., a clean or headset recording) and a number of

test sound excerpts that included an unmarked reference

sound (serving as a hidden reference), a noisy reverberant

sound (serving as an anchor signal), and processed ver-

sions of the same utterance. The following two metrics

were used to evaluate the audible quality:

• Perceived amount of reverberation: This metric,

which represents the perceptual impressions of the

degree to which the reference and test sound

excerpts are reverberant, assessed the degree of

dereverberation a system performed.
• Overall quality: This metric evaluated the “sound

quality” in a general sense. Subjects gave ratings

based on their own judgment regarding any and all

detected differences (in terms of naturalness,

processing distortion, timbral and reverberation

characteristics, additive noise, and so on) between the

reference and test sound excerpts.

Figure 3 shows examples of the computer screen used

for testing each listening test attribute. The grading scale

Fig. 3 Example test screens: a •perceived amount of reverberation” test and b •overall quality” test
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ranged from “very large” to “very small” in the “perceived

amount of reverberation” test and from “bad” to “excel-

lent” in the “overall quality” test. The subjects used sliders,

such as those depicted in Fig. 3, to record their ratings of

each test item. As in the standard MUSHRA, prior to the

test, the subjects were informed that the reference sound

excerpt (i.e., a clean or a headset recording) was hidden

among the test items as a hidden reference. They were

asked to find it and to give it a high-end rating, i.e., “very

small” (or “excellent”).

In the test, 1-ch, 2-ch, and 8-ch systems were evaluated

separately, since the number of test items was too large to

evaluate all of them together. All submitted systems were

first regrouped into categories (i.e., 1-ch, 2-ch, and 8-ch)

according to the number of microphones they employed.

All systems from a given category were assigned to a

single test session, meaning that a subject was asked to

evaluate all systems from a given category in an assigned

test session. The systems were evaluated under four dif-

ferent test conditions: SimData-room2 near and far and

RealData near and far. RealData was selected to evaluate

the systems in realistic severe reverberation conditions,

while SimData-room2 was selected to perform evalua-

tion in moderate reverberation conditions. Evaluations

in other conditions, SimData-room1 and -room3, were

omitted due to time constraints. For each reverberation

condition, two female and two male utterances were ran-

domly selected as test materials. In total, 48 sessions were

prepared, i.e., three groups of systems (1-ch, 2-ch, 8-ch),

four types of utterances (two females, two males) and four

reverberation conditions (RealData near and far, SimData-

room2 near and far). Each subject was assigned to one

of the 48 sessions and evaluated all systems assigned to

the session for the perceived amount of reverberation and

overall quality.

4 Submitted systems
Twenty-seven papers were submitted to the REVERB

challenge [17–43], which include 25 systems for the SE

task and 49 systems for the ASR task. In general, each

submitted system had all or a subset of the components

shown in Fig. 4. The participants in the SE task mainly

focused on the development of the enhancement part in

Fig. 4, but the ASR task participants focused on both the

enhancement and recognition parts.

Table 1 summarizes information about which task(s)

each participant addressed as well as the character-

istics of the enhancement and recognition system(s)

proposed in each submission. Note that one submis-

sion often proposed more than one system. In such

cases, if one of the proposed systems in a submission

adopted an attribute listed in Table 1, the submission

was marked with an “x” under the corresponding feature

category.

4.1 Algorithms related to enhancement part

This subsection summarizes the characteristics of the SE/

feature enhancement (FE) algorithms submitted to the

challenge, which correspond to the components in the

enhancement part in Fig. 4. Here, rather than listing all

the SE/FE components of the submitted systems, we high-

light the methods that effectively dealt with reverberation,

based on the challenge results that will be detailed later.

4.1.1 STFT-domain inverse filteringmethods

Amethod proposed in [20] effectively dealt with reverber-

ation by adopting accurate RIR modeling, i.e., convolution

in the short-time Fourier transformation (STFT) domain,

and removing the distortion by inverse filtering to correct

both the amplitude and the phase information. To esti-

mate the inverse filter, a weighted linear prediction error

(WPE) method was utilized [20]. TheWPE algorithm per-

forms long-term linear prediction at each frequency bin

in the STFT domain as follows:

yn[ f ]=

T⊤
∑

τ=T⊥

Gτ [ f ]
Hyn−τ [ f ]+en[ f ] , (2)

where yn is a vector comprised of the STFT coefficients

of single/multiple microphone signals, en is the predic-

tion error vector, Gτ is a complex-valued square matrix,

called prediction matrix, n is the time frame index, T⊤

and T⊥ are integers with T⊤ > T⊥ > 0, and super-

script H is a conjugate transposition. Note that, due to

the time-varying nature of speech, clean speech signal

is not correlated with its past samples (after some delay

T⊥). Since late reverberation components are generated

from reflections of the past speech samples, they are

uncorrelated with the present speech signal. Therefore,

linear prediction can only predict the late reverberation

and not the clean speech signal component, which will

remain as the prediction error/residual. Accordingly, the

term
∑T⊤

τ=T⊥
Gτ [ f ]

Hyn−τ [ f ] represents the late reverber-

ant components contained in microphone signals yn[ f ],

and en[ f ] corresponds to the mixture of clean speech

signal and early reflection components. The prediction

matrices are optimized for each utterance by minimizing

the power of an iteratively re-weighted prediction error.

Dereverberated signals ŝn can be obtained as prediction

errors

ŝn[ f ]= yn[ f ]−

T⊤
∑

τ=T⊥

Gτ [ f ]
Hyn−τ [ f ] . (3)

One attractive characteristic of this approach is that it

suppresses only the late reverberation components of the

observed signal and virtually shortens the room impulse

responses between a speaker and microphones by linear

time-invariant inverse filtering, as seen in Eq. (3). Since

the algorithm can keep the direct path and early reflection
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Fig. 4 General block diagram encompassing most systems submitted to REVERB challenge

Table 1 Overview of processing strategies employed by submitted systems

Task Characteristics of enhancement part Characteristics of recognition part

SE ASR
# of channels

Derev.
Advanced NN-based Feat./model Advanced

1-ch 2-ch 8-ch feature AM adaption decoding

Alam [17] x x x x x x

Astudillo [18] x x x x

Cauchi [19] x x x x x

Delcroix [20] x x x x x x x x x

Epain [21] x x x

Feng [22] x x x x x x

Geiger [23] x x x x x x

Gonzalez [24] x x x

Hirsch [25] x x x

Kallasjoki [26] x x x x x

Kondo [27] x x x

Leng [28] x x x x x x x

Lopez [29] x x x

Mimura [30] x x x x

Mitra [31] x x x x x

Moshirynia [32] x x x

Ohtani [33] x x x

Palomaki [34] x x x x

Parada [35] x x x x

Tachioka [36] x x x x x x x

Veras [37] x x x

Wang [38] x x x x x

Weninger [39] x x x x x x x

Wisdom [40] x x x x x

Xiao [41] x x x x x x x x

Xiong [42] x x x x x

Yu [43] x x x
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components of each microphone unchanged, it preserves

essential information such as the time difference of arrival

(TDOA) and thus subsequently allows multichannel noise

reduction techniques based on beamforming to be effec-

tively performed.

4.1.2 Methods based on non-negative RIRmodeling

Many submissions utilized a 1-ch algorithm that models

the convolutional effect of reverberation in the ampli-

tude domain [17, 26, 29, 32, 43] and showed its effi-

cacy. They assumed that at each frequency bin f, the

observed amplitude spectrum Yn[ f ] at frame n is gen-

erated by the convolution of the amplitude spectra of

clean speech Sn−M−1[ f ] , . . . , Sn[ f ] and those of an RIR

H0[ f ] , . . . ,HM−1[ f ] as

Yn[ f ]=

M−1
∑

m=1

Sn−m[ f ]Hm[ f ] . (4)

Although the potential maximum performance of this

type of approach may not be as high as the above inverse

filtering approaches due to the non-negative approxima-

tion in RIR modeling, such types might be more robust

against additive noise and other unexpected distortions

because approaches which correct only amplitude infor-

mation are in general more robust than the ones which

aim to correct both the amplitude and phase information.

A popular approach in this category is based on non-

negativematrix factor deconvolution (NMFD) [26, 32, 43],

in which the above equation is expressed using matrix

convolution with a shift operator “m →” as:

Y =

M−1
∑

m=0

Hm

m→

S , (5)

Y =

⎛

⎜

⎝

Y1[1] · · · YN [1]
...

. . .
...

Y1[F] · · · YN [F]

⎞

⎟

⎠
, (6)

Hm =

⎛

⎜

⎝

Hm[1] 0

. . .

0 Hm[F]

⎞

⎟

⎠
, (7)

S =

⎛

⎜

⎝

S1[1] · · · SN [1]
...

. . .
...

S1[F] · · · SN [F]

⎞

⎟

⎠
, (8)

where F and N correspond to the total number of fre-

quency bins and the total number of observed frames. The

shift operator “m →” shifts the columns of its argument

bym positions to the right:

0→
S =

(

1 2 3 4

5 6 7 8

)

,
1→
S =

(

0 1 2 3

0 5 6 7

)

. (9)

Entries of the matrics Y , Hm, S are all non-negative. The

parameter M is chosen to be sufficiently large such that

it can cover the energy of reverberation. NMFD decom-

poses the observed amplitude spectrogram Y into the

convolution of the amplitude domain RIR H0, . . . ,HM−1

and the clean speech spectrogram S. Some research

[26, 32] further decomposed estimated clean spectrogram

S based on the non-negative matrix factorization (NMF)

concept. By doing so, they introduced a widely used

NMF-based speech model, i.e., a pretrained dictionary

of the clean amplitude spectrum, to the NMFD-based

dereverberation framework, which allows them to per-

form semi-supervised speech enhancement. With such a

pretrained dictionary, the clean speech characteristics in

dereverberated signals can be preserved.

4.1.3 Methods based on statistical RIRmodeling

Another widely used effective 1-ch approach employed a

simple statistical model for the RIRs [44]. In this approach,

the RIR h(t) is modeled as white noise modulated by

an exponentially decaying envelope whose decay rate is

determined by the reverberation time [44] as follows:

h(t) =

{

a(t)e−�t , for t > 0

0, (otherwise)
(10)

� =
3ln(10)

RT60
,

where a(t) is a zero-mean white noise sequence with

variance σ 2
a and RT60 is the reverberation time.

Assuming that the observation is generated through

the time-domain convolution of clean speech with this

simplified RIR, an estimate of the reverberation’s power

spectrum at the n-th frame, |Rn[ f ] |
2, is obtained simply

by weighting the observed power spectrum at past frame

|Yn−K [ f ] |
2 as

|R̂n[ f ] |
2 = e−2�Td |Yn−K [ f ] |

2. (11)

Here, K = ⌊Tdfs/λ⌋, and Td is generally set roughly to

50 ms. λ denotes the frame shift of the STFT in samples.

Dereverberated speech is then obtained by subtracting the

estimated reverberant power spectrum |R̂n[ f ] |
2 from the

observed power spectrum |Yn[ f ] |
2 as in spectral subtrac-

tion [19, 36–38, 41, 42]. Alternatively, some extensions

have also been proposed to this approach, e.g., analy-

sis and synthesis in the short-time fan-chirp transform

domain [40]. The apparent advantages of this approach

are its low computational complexity and robustness

against noise.

4.1.4 Methods based on nonlinearmapping

Some submissions used an approach in which no explicit

reverberation model was assumed. In this type of

approach, stereo training data are used to learn a non-

linear mapping function between noisy reverberant and

clean speech. Typical approaches in this category include
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a denoising auto-encoder (DAE) that uses fully con-

nected feed-forward DNNs [30, 41] or bidirectional long

short-term memory (BLSTM) recurrent neural networks

(RNNs) [39]. Given a sequence of the input features (e.g.,

log Mel-filterbank features), Y1, . . . ,YN , it estimates the

output feature at the n-th frame Ŝn based on a pretrained

highly nonlinear mapping function, i.e., a neural network,

as

Ŝn = F{{Y1, . . . ,YN }; θ}, (12)

whereF{·; θ} represents a nonlinear transformation based

on a neural network with parameters θ . Although such

an approach is guaranteed to work effectively if the test

and training conditions are matched, it is very interest-

ing to determine whether it can be generalized to unseen

acoustic conditions. The challenge results indicate that

DAE can be generalized to handle RealData which is quite

different from the DAE training data. An advantage of

these approaches is that since they work in the same

feature domain as ASR systems, they can be smoothly

integrated with any back-end system. It is also possi-

ble to integrate them tightly with DNN-based acoustic

models by optimizing θ jointly with the acoustic model

parameters based on the same constraint as the ASR

systems.

4.2 Algorithms related to the recognition part

This subsection summarizes the characteristics of the

ASR algorithms submitted to the challenge that corre-

spond to the components in the recognition part in Fig. 4.

In Table 1, the recognition part of each submission is

characterized with respect to the presence/absence of the

following strategies:

• Advanced features (e.g., i-vector [17], gammatone

cepstral coefficient [17])
• Deep neural network (DNN)-based acoustic model

(AM) [17, 20, 23, 28, 30, 36, 39, 41]
• Feature/model-space adaptation (e.g., maximum

likelihood linear regression (MLLR) [18, 22, 23, 26,

28, 29, 31, 34, 36, 38, 41, 42], modified imputation

[18], layer adaptation of DNN [20])
• Advanced decoding (e.g., recognizer output voting

error reduction (ROVER) [17, 18, 31, 36, 42],

minimum Bayes risk decoding [36], recurrent neural

network-based language model [20])

In general, the top-performing systems employed quite

advanced techniques regarding these processing strate-

gies. However, all the recognition approaches employed

in the challenge, i.e., robust features, acoustic model-

ing scheme, feature/model-space adaptation, advanced

decoding, are not the ones designed specifically for rever-

beration robustness, but rather for general robustness

purposes. Therefore, for conciseness, we omit a detailed

description of the ASR techniques employed in the sub-

mitted systems. However, note that the challenge results,

which will be detailed later, indicate that higher ASR

performance was achieved not only with a powerful

enhancement algorithm but also with the advanced ASR

strategies for acoustic modeling, adaptation, and decoding

techniques.

5 ASR results and related discussions
In this section, we present the ASR results of all 49

systems submitted to the challenge. Then, we scruti-

nize the data to uncover hidden trends and provide

insights about effective processing strategies for the

reverberant speech recognition task. Finally, building

on the findings of this analysis, we summarize cur-

rent achievements and the remaining challenges of this

task.

5.1 Overall results

The overall results of the ASR task are presented in Fig. 5.

To make the comparisons as fair as possible, we grouped

the submitted results by the processing conditions (i.e.,

number of microphones, data used for acoustic model

training) employed in each system and presented them

in one of nine panels in Fig. 5. The vertical axes have

a logarithmic scale for the sake of visibility. Panels (a)

to (c) show the results obtained based on acoustic mod-

els trained with the clean training data. Panels (a), (b),

and (c) correspond to the results based on 1-ch, 2-ch,

and 8-ch processing schemes, respectively. The results

presented in panels (d) to (f ) correspond to the results

obtained with acoustic models trained with the multi-

condition data provided by the challenge. The results

presented in panels (g) to (i) were obtained with acous-

tic models trained with the extended (multi-condition)

data prepared by each participant. Interactive graphs of

the overall results can be found on the challenge webpage

[7]. As mentioned above, one submission often proposed

more than one system and submitted multiple results to

the challenge. To handle these cases in a simple manner in

Fig. 5, such multiple results belonging to one submission

are indicated with the same colored line under the name

of each submission. We summarized the overall trends

of the results in Appendix A. In the following, we focus

more on the top-performing systems [20, 22, 36, 39] to

determine the essential components to achieve the lowest

WERs.

5.2 Key components in systems achieving lowest WERs

In this subsection, we focus on the analysis of the systems

that achieved the lowestWERs by average RealData scores

[20, 22, 36, 39]. We first discuss the ideas shared by these
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Fig. 5WERs of submitted systems, listed separately by number of microphones and data used for acoustic model training
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systems and then briefly review the key components used

in each of the top-performing systems.

Most top-performing systems employed advanced tech-

nique(s) in all or some of the following processing com-

ponents, each of which contributed to significantly reduce

WER.

• Speech/feature enhancement such as beamforming

and inverse filtering
• Advanced acoustic modeling such as DNN
• Acoustic model adaptation

More specifically, in [20, 22, 36, 39], they commonly

focused on employing (1) beamforming and/or derever-

beration techniques that utilize multichannel acoustic

diversity, (2) powerful acoustic models such as DNN or a

subspace Gaussian mixture model (SGMM) trained with

discriminative training criteria, and (3) acoustic model

adaptation techniques to mitigate the mismatch between

the training data and the signal processed by the SE/FE

front-end. The fact that the above processing architec-

ture and ideas are common to all the top-performing

systems might implicitly indicate that these key compo-

nents should be jointly utilized and optimized to achieve

the lowest WERs.

This finding certainly coincides well with previous stud-

ies. For example, it was already shown that beamform-

ing techniques can greatly improve the performance of

distant speech recognition even when used with pow-

erful DNN-based acoustic models [45]. An interesting

finding, which may be unique to the REVERB chal-

lenge results, is that since the top-performing systems

employed dereverberation techniques; dereverberation

in addition to beamforming is necessary to achieve

high recognition performance in severe reverberant and

noisy environments. Moreover, although it was already

known that DNN-based acoustic models outperform

legacy GMM-HMM models under environments with

additive noise and channel distortions [45, 46], they also

work well in reverberant environments. Various acous-

tic model adaptation schemes were also found effective

when jointly used with front-end processing including

dereverberation.

Next, we briefly describe the characteristics of each

top-performing system [20, 22, 36, 39] and reveal to the

highest extent possible why in particular these systems

worked well.

• The front-end processing of the system proposed by

Delcroix et al. [20] employed linear prediction-based

multichannel dereverberation (introduced in Section

4.1.), followed by minimum variance distortionless

response (MVDR) beamforming. The use of the

multichannel dereverberation technique allows them

to exploit multi-microphone acoustic diversity for

both dereverberation and beamforming. Moreover,

filtering operation of these front-end processings are

completely linear so that they did not introduce

unfavorable nonlinear distortion to the processed

signal. Their result shows that the 8-ch

dereverberation achieved more than 30 % relative

WER reduction (RWERR), while MVDR

beamforming also achieved about 30 % RWERR when

they are used with a DNN-based acoustic model. In

their back-end, they showed that just by changing the

baseline GMM-HMM acoustic model to DNN and

introducing a trigram language model, they achieved

about 60 % RWERR. In addition, adapting a layer of

the DNN model brought about 15 % RWERR.
• Tachioka et al. [36] employed simple but robust

front-end processing for steady improvement and

focused more on strong acoustic models that were

combined with various advanced training and

adaptation schemes. In their multichannel front-end

system, they first applied delay-sum beamforming to

the input signal before the statistical RIR-based 1-ch

dereverberation technique introduced in

Section 4.1.3. The delay-sum beamformer achieved

about 10 % RWERR, and dereverberation achieved a

few percent of RWERR. In their systems, adaptation

schemes such as feature-space MLLR and maximum

likelihood linear transformation (MLLT) greatly

contributed to the improvement and achieved about

30 % RWERR. They used a unique technique called a

dual system combination to construct various (> 10)

complementary acoustic models and combined their

outputs using ROVER, which contributed to about

7 % RWERR.
• Weninger et al. [39] employed a feature enhancement

scheme based on a state-of-the-art neural network,

i.e., BLSTM-based DAE introduced in Section 4.4,

and achieved good performance, combining it with

back-end systems that employ a number of feature

transformation and adaptation techniques. Their

front-end system achieved substantial improvement,

i.e., more than 30 % RWERR, when a BLSTM-based

DAE was combined with a simple 8-ch

delay-and-sum beamformer. This improvement was

obtained based on a strong GMM-HMM back-end

system combined with feature adaptation techniques

such as feature-space MLLR and BMMI-based

discriminative training.
• Feng et al. [22] strongly focused on multiple passes of

unsupervised feature- and model-space speaker

adaptation using CMLLR, MLLR, and vocal tract

length normalization (VTLN). Combining such

techniques with their front-end beamformer, they

achieved a total of more than 70 % RWERR.
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Note that a common characteristic of the systems that

achieved the lowest WERs is that their performance was

achieved not as the result of a single standout algo-

rithm but through the careful combination of multichan-

nel front-end processing, strong acoustic modeling, and

feature-/model-space adaptation.

5.3 Current achievements and remaining challenges for

ASR

Figure 6 shows the WERs obtained by the 1-ch, 2-ch,

and 8-ch top-performing systems. The vertical axis cor-

responds to the averaged WERs of RealData and the

horizontal axis to those of SimData. The striped rectan-

gular area indicates recognition errors that might not be

related to the environmental distortions. This region is

determined by the recognition rate of the clean/headset

speech (SimData; 3.5 %, RealData; 6.9 %), which was

obtained with a state-of-the-art DNN-HMM speech

recognizer [20].

From Fig. 6 and the previous section, we can summarize

the current achievements and the remaining challenges as

follows:

• Although the multichannel systems, especially the

8-ch systems, closely approached the clean/headset

performance, the 1-ch systems remain greatly

inferior, suggesting considerable room for future

improvement. Since the 8-ch algorithms generally

impose severe hardware constraints on the overall

system and are impractical in many situations, 1-ch

algorithms must achieve the recognition

performance currently achieved by 8-ch systems.

Fig. 6 Scatter plot showing WERs of top-performing 1-ch/2-ch/8-ch

systems. The Striped rectangular area indicates errors caused by

factors other than environmental distortions

• The top-performing systems introduced in the

previous section accomplish their current level of

performance by repeatedly processing the input data

by several enhancement algorithms and performing

multiple passes of feature-/model-space adaptation.

However, since many ASR applications require

real-time/online processing, pursuing research on

such processing schemes is critical.
• Apart from the problems of ASR techniques,

concerning the challenge data preparation stage,

challenges remain in simulating acoustic data that are

close to actual recordings. The results obtained with

SimData-room3 and RealData are strongly correlated

on a gross level, as shown in Appendix B. But, Figs. 5

and 6 show that although the acoustic conditions

simulated with SimData-room3 are supposed to be

close to RealData, their WER performances are very

different if we only look at the top-performing

systems [20, 22, 36, 39]. Developing better simulation

techniques remains another important research

direction since simulations can be useful to evaluate

techniques and generate relevant training data for

acoustic model training.

6 SE results and related discussions
In this section, we first present the overall SE results in

terms of instrumental measures and then briefly men-

tion the single- andmultichannel algorithms that achieved

good scores and their relations to the ASR results. Finally,

we present the results of a listening test and discuss their

general tendencies.

6.1 Instrumental test results

In this subsection, we describe the instrumental test

results of the SE task. Because of space limitations, we only

present the results in terms of FWSegSNR, which repre-

sent the general tendencies well that were observed in the

instrumental test and coincides well with the listening test

results in terms of the perceived amount of reverberation.

Please refer to the challenge’s webpage [7] for the complete

results.

Figure 7 separately summarizes the FWSegSNR results

of the 1-ch, 2-ch, and 8-ch systems. In general, it most suc-

cessfully improved their performance. Some 1-ch systems

had difficulty with SimData-room1 where the reverber-

ation level was quite low. Not surprisingly, the systems

that employedmultichannel processing tended to perform

better in most conditions.

Next, we briefly mention the single- and multichannel

algorithms that achieved high FWSegSNRs, describing

how they are different/similar to the other systems and

their relations to the results obtained from the ASR task.

The following single-channel algorithms achieved high

FWSegSNRs [32, 41]:
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Fig. 7 Frequency-weighted Segmental SNR of submitted systems, listed separately by number of microphones

• Moshirynia et al. [32] showed that NMFD combined

with joint dictionary learning, introduced in

Section 4.1.2, works well for 1-ch dereverberation. In

their algorithm, they first applied NMFD to remove

the late reverberation components, which were

caused by the signals from the past frames, and

subsequent joint-dictionary-based NMF removed the

early reflection effect. The joint dictionary used for

NMF learned pairs of exemplars with and without

the early reflection effect, and thus it can map a signal

that contains the early reflection effect, i.e., the signal

processed by NMFD, to the one without the early

reflection effect. Note that this technique is a

relatively rare method that can remove both late and

early reflections.
• Xiao et al. [41] employed statistical RIR-based

dereverberation (Section 4.1.3). Interestingly,

although some submissions [19, 40] employed the

same or similar methods, they achieved lower

FWSegSNR scores, possibly due to implementation

issues or parameter tuning strategies.

Similarly, the following multichannel systems achieved

high FWSegSNRs [20, 40]

• Delcroix et al. [20] employed a linear time-invariant

inverse filtering method (Section 4.1.1) followed by

an MVDR beamformer, which was also found

effective for ASR.
• Wisdom et al. [40] proposed a method consisting of

beamforming followed by statistical RIR-based 1-ch

dereverberation (Section 4.1.3).

This simple combination was also investigated for the

ASR task in a different submission [36] and provided

steady improvement.

Great similarity can be found among the methods effec-

tive for ASR and the instrumental test.

6.2 Results of listening test and general tendencies

To investigate the relationship between the SE instrumen-

tal test results and the actual audible quality, we conducted

the listening test described in Section 3.2.2. Figure 8

shows the listening test results of each submitted system.

They are based on 126 valid responses for the “perceived

amount of reverberation” test and 128 valid responses for

the “overall quality” test1. We obtained these responses

after a post-screening that rejected the responses from

subjects who failed to find the hidden reference signal

and rated it with a score of less than 95. All the mean

scores were plotted with their associated 95 % confidence

intervals.

The scores in Fig. 8 are MUSHRA differential scores

[47], which are calculated based on the raw MUSHRA
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Fig. 8 Listening test results. MUSHRA differential scores for submitted systems under all four test conditions: SimData room-2 near and far and

RealData near and far. The top two panels show results for all 1-ch systems in terms of the perceived amount of reverberation (upper panel) and

overall quality (lower panel). Two panels inmiddle and bottom show results of 2-ch and 8-ch systems
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scores obtained from the subjects. As is commonly

known, raw MUSHRA scores tend to be significantly

biased due to the sense of each subject. For instance,

even if two subjects hear exactly the same reverber-

ant sound and are asked about their perceived amount

of reverberation, their responses will probably be dif-

ferent. Consequently, a simple average of the raw data

without taking these biases into account might result

in very large variances, further complicating statistical

analysis and decreasing its reliability. To remove such

potential biases, we calculated the MUSHRA differen-

tial scores by subtracting the scores for the unpro-

cessed signal (hidden anchor signal) from all the other

scores.

The top two panels in Fig. 8 show the results for all the

1-ch systems in terms of the perceived amount of rever-

beration (upper panel) and overall quality (lower panel).

The two middle panels show the results for the 2-ch

systems, and the bottom two show them for the 8-ch sys-

tems. Directly comparing the numbers among the 1-ch,

2-ch and 8-ch systems should be avoided, since MUSHRA

tests were carried out separately for each group of sys-

tems. The scores for each system are composed of four

error bars, each of which shows the result obtained in

a certain room and under a certain microphone-speaker

distance condition. The scores of each system are plot-

ted in conjunction with those of the clean/headset signal

(i.e., far left in each panel) and the unprocessed noisy

reverberant signal (i.e., indicated as “No proc.”). Accord-

ing to the nature of MUSHRA differential scores, the “No

proc.” scores remained exactly at zero. Thus, if a system

has a score significantly higher than zero, its output can

be rated significantly better than “No proc.”, meaning a

lower perceived amount of reverberation or better overall

quality.

The listening test results have to be interpreted with

great caution, since this test was conducted in a non-

standardized crowdsourcing manner, where test condi-

tions such as listening environment and subject quality

were not perfectly controlled. With this caution in mind,

we conclude that the figure indicates the following

tendencies:

• 1-ch systems:Many systems significantly reduced

the perceived amount of reverberation. However,

improving the overall quality is more challenging.

Among the 1-ch systems, only the one proposed by

Cauchi et al. [19] performed significantly better than

“No proc.” for both metrics.
• Multichannel systems:Many systems significantly

reduced the perceived amount of reverberation and

significantly improved the overall quality. The trends

are similar for the 2-ch and 8-ch cases. One of the

biggest advantages of multichannel systems is their

capability of incorporating linear spatial filtering,

which does not induce unnatural nonlinear distortion

that might reduce the overall quality.
• Results under different test conditions:On the

whole, we identified similar trends among the four

different test conditions. We found no significant

differences among the rankings under each test

condition.

6.3 Relationship between listening and instrumental test

results

Next, we discuss the validity of the instrumental measures

by comparing their scores with the listening test results.

Table 2 shows the correlation coefficients that indicate the

relationship between the instrumental and listening test

results in terms of the perceived amount of reverberation.

Table 3 shows the correlation coefficients with the “over-

all quality” test. We calculated the correlation coefficients

separately for each system category (1-ch, 2-ch, and 8-ch).

Numbers in the table were obtained by calculating corre-

lation betweenMUSHRA scores of each system (averaged

over all subjects and all sentences) for SimData room-2

near and far conditions and corresponding instrumental

test scores.

CD and LLR indicate lower values when the qual-

ity is good, unlike the MUSHRA scores. In such cases,

strong negative correlation indicates that themetrics work

appropriately as indicators of audible quality2.

Table 2 shows the relationship between the instrumental

test results and the “perceived amount of reverberation”

test. If we compare the rows for the 1-ch, 2-ch, and

8-ch systems, we see that they have similar and consis-

tent values, although there are some minor variations.

On average, metrics such as CD and FWSegSNR exhibit

a relatively strong correlation and seem to roughly cap-

ture the subjectivity regarding the perceived amount of

reverberation.

Table 3 shows the relationship between the instrumen-

tal test results and the “overall quality” test. In this case,

comparing the rows for the 1-ch, 2-ch, and 8-ch systems,

we surprisingly find that they take different signs in the

1-ch and multichannel cases. Although for the multichan-

nel systems (especially 2-ch systems), the instrumental

measures more or less coincide with the listening test

results, the results obtained with the 1-ch systems showed

Table 2 Correlation coefficients between results of instrumental

and listening tests in terms of perceived amount of reverberation

CD FWSegSNR LLR SRMR (PESQ)

1-ch system −0.43 0.51 −0.14 0.48 (0.65)

2-ch system −0.91 0.87 −0.72 0.81 (0.83)

8-ch system −0.76 0.74 −0.42 0.59 (0.84)
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Table 3 Correlation coefficients between results of instrumental

and listening tests in terms of overall quality

CD FWSegSNR LLR SRMR (PESQ)

1-ch system 0.29 −0.29 0.47 −0.45 (−0.75)

2-ch system −0.97 0.96 −0.72 0.76 (0.91)

8-ch system −0.38 0.49 −0.39 0.06 (0.67)

different trends. These results might simply suggest that

no instrumental measure adequately captured the sub-

jective sense of the overall quality, especially in the 1-ch

systems. Such a claim can be supported, for example,

by the fact that the 1-ch system developed by Cauchi

et al. [19] is the only one among 11 submitted 1-ch

systems that significantly reduced the perceived amount

of reverberation and improved overall quality, whereas

their system ranked 5th in terms of FWSegSNR score.

Listening tests conducted with more subjects and more

controlled listening conditions must be carried out in

the future to confirm this trend. As a consequence, with

the current results, we could not find instrumental mea-

sures that represent the subjective sense regarding overall

quality.

7 Conclusions
Reverberation is an inevitable problem when a speech sig-

nal is captured unobtrusively with distant microphones

because it degrades the audible quality of speech and the

performance of ASR systems. This paper outlined the

achievements of the REVERB challenge, a community-

wide campaign that evaluated speech enhancement and

recognition technologies in reverberant environments.

The REVERB challenge is comprised of two tasks, SE and

ASR, both of which are based on the same data including

real recordings.

An analysis of the results obtained in the ASR task indi-

cated that the top-performing systems [20, 22, 36, 39]

performed better not due to the standout effect of one

particular algorithm but rather by carefully combining

several powerful processing strategies. More specifically,

their processing strategies seem to commonly emphasize

the joint utilization of the following:

• front-end processing such as beamforming and

dereverberation that effectively utilize multichannel

acoustic diversity by linear filtering,
• strong acoustic models such as DNNs, and
• appropriate acoustic model adaptation schemes that

mitigate the mismatch between the front- and

back-ends.

No single panacea-like algorithm exists that can alone

solve the problem of reverberant speech recognition.

Based on the SE task results, we found the following:

• Almost all the systems improved the results of the

instrumental measures.
• Based on the listening test results, many 1-ch SE

systems still have difficulty improving the overall

speech quality in a consistent and significant manner,

even though they did manage to reduce the perceived

amount of reverberation. However, one well-

engineered and carefully tuned enhancement system

[19] effected significant improvement in both metrics.
• Many multichannel systems succeeded in

significantly reducing the perceived amount of

reverberation as well as significantly improving the

overall quality.
• Based on an analysis of the relationship between the

listening and instrumental test results, although the

subjective sense of the perceived amount of

reverberation was roughly captured with some

instrumental measures, the overall quality could not

be represented with any of the instrumental measures

tested here. However, larger scale listening tests must

be performed to clarify this issue.

Finally, although the development of an algorithm that

can reduce the detrimental effect of reverberation is con-

sidered one of the toughest remaining challenges in this

research field, the REVERB challenge confirmed that sig-

nificant progress has recently been made and has identi-

fied a number of effective and practical solutions. We are

confident that the challenge’s data and achievements will

fuel future research on reverberant speech enhancement

and recognition.

Appendix A: General tendencies observed in ASR
results
Since the massive number of results presented in Fig. 5

makes it very difficult to extract trends, we converted

it into a bubble chart (Fig. 9) to analyze the data from

different perspectives. The bubble chart’s purpose is to

discover what processing schemes significantly impacted

the final results on a gross level. Figure 9 shows only the

gross effect of each processing scheme on the collection

of results, which quite often does not reflect the effec-

tiveness of a particular algorithm proposed in a certain

submission. Since the validity of each particular algorithm

is confirmed experimentally in each submission, we refer

to the corresponding papers for a closer look at the effects

of the algorithms and schemes.
In Fig. 9, the area of each circle is proportional to the

number of systems that fall into the ±2 % range of WER

corresponding to the middle of the circle. The vertical axis

shows the average WER of RealData, and the horizontal

axis shows the processing conditions. Here, we focused

only on the RealData results, since the RealData and

SimData results are closely correlated (Appendix B). Eight
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Fig. 9 Bubble chart showing relationship among average WERs of RealData and each processing scheme

bubble charts are shown in the figure, each of which shows

the relationship between aWER and the number ofmicro-

phones (i.e., 1-ch, 2-ch, and 8-ch), the presence/absence

of a dereverberation scheme, the presence/absence of

robust features, the presence/absence of an NN-based

AM, the presence/absence of feature/model-space adap-

tation, the presence/absence of advanced decoding, the

type of training data (i.e., clean, multi-condition, or

extended data) and the latency of the proposed sys-

tem (i.e., real-time (RT), utterance-batch (UB), and

full-batch (FB)). The figure indicates the following

tendencies:

• The overall results seem greatly influenced by the

following two parameters: the type of training data

and the presence/absence of DNN-based AM. In the

charts that correspond to these two parameters,

there is only a slight overlap between the results

obtained by the systems that employed these

processing schemes and the results obtained by the

systems that did not.

• When we focus on the systems that achieved lower

WERs, we can see vague trends that show the utility

of multichannel processing and the advantage of

employing some kind of a dereverberation method

and advanced decoding.

• On a gross level, clearly detecting any significant

influences of the other parameters is difficult,

although each method that corresponds to these

parameters was found to be effective in each

submission.

Appendix B: Relationship between the SimData
and RealData results in the ASR task
When we compared the SimData and RealData results,

the systems performed differently with simulated data

(i.e., conditions with completely time-invariant RIRs) and

real recordings. Figure 10 shows a scatter plot of the

results for all the systems, where the vertical and horizon-

tal axes show the WERs of the RealData and SimData-

room3 far conditions. The strong positive correlation

between the RealData and SimData results indicate that

almost all the systems proposed for the REVERB challenge

appear to behave similarly for RealData and SimData.

Fig. 10 Scatter plot showing relationship between SimData and

RealData results
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Endnotes
1We used about 30 responses to calculate the average

for each condition.
2The values related to PESQ are in parentheses; since

PESQ was treated as an optional metric in the challenge,

we did not collect enough data for it.
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