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Background

Fundus fluorescein angiography (FFA) imaging is a valuable diagnostic tool for many 

ocular and systemic diseases including malarial retinopathy, glaucoma, malignant 

hypertension and multiple sclerosis [1–4]. Ocular lesions can be detected in the early 

phases by examining FFA images, which improves the chances of early diagnosis of 

some diseases, such as, age-related macular degeneration (AMD) [5] and diabetic retin-

opathy (DR) [6]. �erefore, FFA images can provide ophthalmologists with additional 

data that can ultimately improve a patient’s cure rate. For example, diabetic retinopathy, 

which is the leading cause of blindness in adults world-wide [7], can be treated effec-

tively via laser surgery if diagnosed at an early stage. Although routine checkups with 
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ophthalmoscopes have already promoted early diagnosis of ocular diseases, the overall 

diagnostic rate is still limited by the shortage of ophthalmologists and optometrists [8] 

in most countries. Hence, high-resolution (HR) FFA images become a vital tool in oph-

thalmopathy screenings because the HR images can provide doctors with more indica-

tors, such as micro-aneurysms, hemorrhages, and small veins, to assist their diagnosis 

decision. However, only low-resolution (LR) FFA images are available in most clinical 

cases. �us, super-resolution (SR) techniques that aim at enhancing the spatial resolu-

tion of images by using image-processing techniques have great potential to improve 

ophthalmic disease diagnosis rates.

SR techniques were pioneered by Tsai and Huang in 1984 [9] and are mainly used 

to improve nature and remote sensing images. Generally, there are two major catego-

ries of SR algorithms, multi-frame SR and single image SR (SISR). �e early SR meth-

ods are mainly multi-frame SR [10–13]. �e core idea of such methods is an algorithm 

that combines the information of a sequence of LR images to construct a correlated HR 

image. On the other hand, the SISR methods focus on learning the relationship between 

HR and LR images from a training set and recover a correlated HR image from a single 

LR image. Benefitting from the development of machine learning techniques, various 

SISR algorithms [14–25] have been proposed in recent years and have become the main 

research direction of SR algorithms.

In recent years, SR techniques have successfully been extended to medical imaging 

applications; this provides an important preprocessing step that can improve the image 

quality of imaging technologies such as ultrasound [26, 27], CT [28], PET [29] and MRI 

[30–35]. �ere is also relevant research on using SR techniques on conventional fundus 

images. �apa et  al. evaluated several SR algorithms and demonstrated the promising 

impact of partial SR methods [36]. However, the study of �apa et al. is limited by the 

low amount of experimental data.

Considering the limitations of current methods, FFA images provide more valuable 

clinical information than conventional fundus images. �us, applying super-resolution 

methods to FFA images can help ophthalmologists achieve better diagnosis results. To 

the best of our knowledge, no one has applied SR techniques to FFA imaging so far; thus, 

we propose a SR method-based pipeline for FFA imaging. �e aim of this pipeline is to 

enhance the image quality of FFA by using super-resolution techniques. In this study, 

four types of SISR algorithms will be analyzed, i.e., neighborhood embedding (NE) [14, 

15] approaches, sparsity-based approaches [16, 17], locally-linear regression approaches 

[18–21] and deep learning (DL)-based approaches [22, 23]. We investigate the effective-

ness of each method using our clinical FFA datasets. �e results of each algorithm are 

then quantitatively evaluated to investigate the method’s feasibility and performance.

Methods

Super-resolution method-based pipeline

As an important branch of SR, the SISR method mainly depends on machine learn-

ing techniques and shows promise in the field of SR research. Hence, we propose an 

SR-based pipeline for FFA image enhancement based on SISR methods. A typical 

schematic diagram of the pipeline is illustrated in Fig.  1. First, an FFA training set 

that includes HR and LR FFA image pairs is constructed and translated into the form 
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of patch pairs (details will follow shortly); then, a mapping model between the HR 

images and the LR images can be learned from the training set by using SISR meth-

ods; finally, new HR FFA images can be reconstructed from their correlated LR FFA 

images using the model found in the learning stage of the process. Considering most 

SISR methods are applicable to the proposed pipeline, we divide the methods into 

four categories and investigate the most promising techniques to evaluate the feasibil-

ity of the pipeline. In this section, we briefly describe the processing process and the 

parameter setting process of the ten testing SISR algorithms.

Before describing each process, we define the mathematical notation we use in this 

paper (mathematical definition and details will follow shortly). For the training phase, 

a set of patch pairs are extracted from the original training image pairs. �is yields 

the training set P = {Xh,Xl} = {
(

x
n

l
, xn

h

)

|n = 1, 2, . . . ,N } , where Xh =

{

x
1
h
, x2

h
, . . . , xN

h

}

 

and Xl =

{

x
1
l
, x2

l
, . . . , xN

l

}

 are a set of HR and LR image patches (with N sam-

ples), respectively. Meanwhile, we denote Xh =

[

x
1
h
, x2

h
, . . . , xN

h

]

∈ RSh×N  and 

Xl =

[

x
1
l
, x2

l
, . . . , xN

l

]

∈ RSl×N  as the matrix representation of the two sets, where Sh 

and Sl are the dimensions of the HR and LR patches in vector form, respectively. For 

the testing phase, we denote the testing LR image patch by yl ∈ RSl×1 and the recon-

struction HR image patch by yh ∈ RSh×1
.

�e parameter restrictions of the patch extraction are shown in Table 1, which will 

be used in the following algorithm instructions and experiments. In this work, the 

parameter settings of each algorithm are based on values recommended by a set of 

relevant papers and partial parameters are modified empirically to improve our FFA 

images. From Table 1, we can see that DL-based approaches (SRCNN [22] and VDSR 

[23]) and non-DL approaches [14–21] adopt a variety of patch extraction schemes. 

On one hand, the non-DL approaches densely extract small patch pairs from the 

Fig. 1 A schematic diagram of the proposed SR method-based pipeline
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training image pairs with an overlap between adjacent patches; the size of LR and HR 

patches need to be restricted by a fixed scale-based upscaling factor. On the other 

hand, the two testing DL-based approaches first interpolate the LR images to stand-

ardize the size of the original training image pairs with the corresponding HR images. 

�en large patch pairs, with or without slight overlap, are extracted from the training 

image pairs. Finally, according to the specific network design (e.g., whether the zero-

padding is used for convolutional layers), the border of the HR patches is cropped to 

constitute the final training patch pairs.

Neighborhood embedding approaches

As a representative of learning-based SISR methods, the neighborhood embedding 

(NE) method was proposed by Chang et  al. [14] in 2004. �e NE method assumes 

that LR and HR patches naturally lie on local manifolds with a locally similar geom-

etry in feature space. Once sufficient training samples are obtained, patches in the 

HR feature space can be reconstructed via a linear combination of local neighbors 

using the same weights learned in the corresponding LR feature space. �us, for each 

input LR patch yl , the NE method first determines the K-nearest patches in the train-

ing pool Xl by calculating the Euclidean distance to get a subset of nearest neighbors 

Nknn =

{

x
1
lk
, x2

lk
, . . . , xK

lk

}

 , where xi
lk

 is a selected patch from Xl and

�e input LR patch yl can now be approximated by using a weighted combination of 

the learned subset of nearest neighbors Nknn:

where Nknn =

[

x
1
lk
, x2

lk
, . . . , xK

lk

]

∈ RSl×K  and w is the vector of {wi}
K

i=1
.

Considering that the local manifold assumption is used by all kinds of NE meth-

ods, the means of solving the weight coefficient {wi}
K

i=1
 are essential. In this work, we 

implement neighborhood embedding with least squares (NE + LS) [14] and neigh-

borhood embedding with non-negative least squares (NE + NNLS) [15]; these meth-

ods employ least squares algorithms and non-negative least squares constraints to 

(1)
Nknn = arg min

xnl ∈Xl

K ||yl − xnl ||
2
2.

(2)
yl ≈

∑

xilk∈Nknn

wix
i
lk = Nknnw,

Table 1 Parameter setting for  the  patch-extraction of  ten test SISR algorithms 

on the pipeline (M represents the upscaling factor of the SR task)

Patch size (LR patch) Patch size (HR patch) Sampling stride 
(LR patch)

Sampling 
stride (HR 
patch)

Non-DL methods 
[14–21]

3 × 3 pixels 3M × 3M pixels 2 pixels 2M pixels

SRCNN [22] 33 × 33 pixels 21 × 21 pixels 14 pixels 14 pixels

VDSR [23] 41 × 41 pixels 3 × 3 pixels 41 pixels 41 pixels
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calculate the set of weights w. �erefore, the weight-calculation of the NE + LS and 

NE + NNLS methods can be expressed as

and

respectively.

Once the weight coefficients are determined, they can be used to reconstruct the HR 

patch yh based on the nearest neighbor subset H(Nknn) =

{

x
1
hk
, x2

hk
, . . . , xK

hk

}

 , which is 

the counterpart of Nknn for the HR patch space Xh.

In the proposed pipeline, the size of the nearest neighbor set K, of both NE + LS and 

NE + NNLS, was set to 24.

Sparsity-based approaches

Sparsity-based approaches [16, 17] are different from NE-based approaches. �e former 

needs to learn subsets of patches ( Nknn and H(Nknn) ) for every input LR patch from the 

entire LR and HR training patch spaces ( Xl and Xh ) are used to reconstruct HR patches; 

the latter integrates sparse coding [37] into the SR problem and aims at simplifying the 

patch spaces by learning the compact dictionaries. As a pioneer, Yang et  al. [16] pro-

posed training a coupled dictionary pair, which can characterize the LR and HR patch 

spaces with the same sparse representation. Given the training set P = {Xh,Xl}, the 

coupled dictionary-based joint training problem is defined as

where Dh ∈ R
Sh×B and Dl ∈ R

Sl×B are the LR and HR dictionaries, respectively. �e sca-

lar B is the number of dictionary atoms, and Z ∈ R
B×N is the encoding coefficient that 

couples both HR and LR dictionaries. Once the Dh and Dl have been trained, the recon-

struction of input LR patch yl can be formulated as Eqs. 7 and 8.

�e sparse representation α ( α ∈ R
B×1 ) of yl is firstly calculated by minimizing Eq. 7, 

where the regularization parameter λ balances the importance of the sparsity constraint. 

(3)w = arg min
w

||yh − Nknnw||22 s.t. 1Tw = 1

(4)w = arg min
w

||yh − Nknnw||22 s.t. w ≥ 0,

(5)
yh =

∑

xihk∈H(Nknn)

wix
i
hk .

(6)
{Dh,Dl ,Z} = arg min

{Dh,Dl ,Z}

1

Sh
||Xh − DhZ||22 +

1

Sl
||Xl − DlZ||22+�

(

1

Sh
+

1

Sl

)

||Z||1,

(7)α = arg min
α

||yl − Dlα||22 + �||α||1

(8)yh = Dhα.
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�en the reconstructed HR patch yh is obtained directly via matrix multiplication of the 

sparse representation α and the HR dictionary Dh.

Zeyde et al. [17] have improved the training scheme based on [10]. By reformulating 

the joint training of coupled dictionaries into two consecutive optimization problems 

(Eqs. 9, 10), the dictionaries Dl and Dh can be retrieved by applying the K-SVD [38] algo-

rithm and pseudo-inverse techniques, respectively. In the reconstruction phase, the so-

called orthogonal matching pursuit (OMP) [39] is further applied to facilitate the solving 

procedure of the sparse representation α in Eq. 7. Finally, the HR patch yh can be recon-

structed based on Eq. 8.

In this work, we used SB-Yang and SB-Zeyde to signify the two sparsity-based 

approaches, respectively. Both approaches set the number of dictionary atoms and regu-

larization parameter λ to 2048 and 0.1, respectively. �e parameter L for the solution 

process of K-SVD is set to 24 atoms for each representation vector.

Locally-linear regression approaches

Combining the ideas of both the NE-based approaches and the sparsity-based 

approaches, Timofte et  al. proposed a locally-linear regression approach called 

anchored neighborhood regression (ANR) [18]. In the training phase, this method 

employs the SB-Zeyde technique to train the coupled dictionaries Dh and Dl . Two sig-

nificant modifications were introduced to the reconstruction procedure. First, the 

global dictionaries are subdivided into various sub-dictionaries. �en, the LR diction-

ary Dl with B dictionary atoms can be represented as Dl =

[

d
1
l
, d2

l
, . . . , dB

l

]

 , where 

d
j
l

(

j ∈ [1, B]
)

 is one dictionary atom of Dl . For each d
j
l , a corresponding sub-dictionary 

N
j
la =

[

d
1(j)
la , d

2(j)
la , . . . , d

K(j)
la

]

∈ RSl×K  is constructed with the k-nearest neighbors from 

the dictionary atoms of Dl . �en, by locating the counterpart of N i

la
 in the HR diction-

ary Dh , the HR sub-dictionaries N
j
ha =

[

d
1(j)
ha , d

2(j)
ha , . . . , d

K(j)
ha

]

∈ RSh×K  can be also 

obtained. Moreover, the ANR algorithm uses the L2-norm constraint of the coefficient 

matrix instead of the L1-norm constraint for the sparse representation; this is done to 

simplify the optimization problem to a ridge regression [40], which can be solved in 

closed-form. �erefore, for the input LR patch yl with the nearest dictionary atom d
j
l , 

the optimization problem of Eq. 7 can be reformulated (as Eq. 11) by combining the sub-

dictionaries and L2-norm regularization

which has a closed-form solution

(9){Dl ,Z} = arg min
{Dl ,Z}

||Xl − DlZ||2F s.t. ||zn||0 ≤ L for n = 1, 2, . . . ,N

(10)Dh = arg min
Dh

||Xh − DhZ||2F

(11)β = arg min
β

||yl − N
j
laβ||22 + �||β||2,

(12)β = ((N
j
la)

TN
j
la + �I)−1(N

j
la)

T yl .



Page 7 of 19Jiang et al. BioMed Eng OnLine  (2018) 17:125 

�en, the reconstructed HR patch can be denoted as

where Pj is the so-called projection matrix for the j-th dictionary atom, which can be cal-

culated offline. For each input LR patch yl , the reconstruction procedure of ANR can be 

simplified to find the nearest-neighbor atom d
j
l for yl in the LR dictionary Dl and using 

the corresponding projection matrix Pj to finish the SR reconstruction via the matrix 

multiplication of Pj and yl.

Depending on the simplified architecture of ANR, Timofte further proposed an 

adjusted anchored neighborhood regression (A+) [19]. A+ inherits various tricks of 

ANR, such as sub-dictionary and L2-norm regularization; but for A+, the training sam-

ples are no longer discarded after training the coupled dictionaries, whereas ANR and 

most of the sparsity-based approaches do. Instead, these training samples are directly 

applied to the reconstruction procedure via the use of sub-dictionaries. For each atom 

d
j
l from the LR dictionary Dl , A+ searches its k-nearest neighbors among the train-

ing pool Xl , instead of the sparse dictionary atoms of Dl . �erefore, the LR and HR 

sub-dictionaries of A+ can be denoted as N
j
ls =

[

x
1(j)
ls , x

2(j)
ls , . . . , x

K(j)
ls

]

∈ RSl×K  and 

N
j
hs =

[

x
1(j)
hs , x

2(j)
hs , . . . , x

K(j)
hs

]

∈ RSh×K  , where xls and xhs are training samples selected 

from Xl and Xh respectively. Based on the solved N
j
ls and N

j
hs , A+ reconstructs the HR 

patch using the same method that ANR does.

Unlike ANR and A+, which needs the trained coupled dictionaries to divide the patch 

spaces and use the dictionary atoms as alternative anchor points for local linear regres-

sion, jointly optimized regressors (JOR) algorithms [20] tries to directly learn the separa-

tion of the patch spaces and the corresponding regressors by solving a joint optimization 

problem. For the given training examples P = {Xh,Xl} , JOR clusters the training patches 

into O groups and learns O regressors F =

{

f1, f2, . . . , fO
}

 , which collectively provide 

the least reconstruction error for all the training patches (O is the fixed number assigned 

manually). �e problem can be expressed as follows:

where C ∈ R
O×N  is the cluster indicator of training sample, in which co,n = 1 rep-

resents that the training sample n in cluster O, otherwise co,n = 0 . An iterative algo-

rithm resembling EM algorithm [41] is used to solve this problem. Two procedures 

(E-step and M-step) are implemented to update the F  and C alternately until Eq.  14 

convergence. In the E-step, the clusters C are fixed and F =

{

f1, f2, . . . , fO
}

 is esti-

mated for each cluster. Once again, ridge regression (Eqs.  11–13) is used to learn 

the regressors. �e SR-reconstructed HR patch of regressor fO can be expressed as 

x̃o,nh = fo
(
xnl

)
= Pox

n
l = [Xo

h

(
(Xo

l )
TXo

l + �I
)−1

(Xo
l )

T ]xnl . Here, Xo

l
 and Xo

h
 are matrices 

stacked by all the LR patches and the corresponding HR patches from the O-th clus-

ter column-wise. In the M step, the regressors F  are fixed and the clusters C should 

be updated. For each training sample pair {xn
l
, xn

h
} , the SR reconstruction error of all 

(13)yh = N
j
haβ = [N

j
ha((N

j
la)

TN
j
la + �I)−1(N

j
la)

T
]yl = Pjyl ,

(14){C , F} = arg min
C ,F

N∑

n=1

O∑

o=1

co,n||fo(x
n
l ) − xnh||

2
2,
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regressors 
{

fo
}O

o=1
 are calculated according to eo,n = � ˜

x
o,n

h
− x

n

h
�2 ; the sample pair is 

then reassigned to the o-th cluster with the minimum reconstruction error eo,n to get 

the new clusters. Once Eq.  14 is solved, the training of JOR is finished. For the test-

ing step, the input LR patch only needs to find its k-nearest neighbors from the train-

ing samples and use these neighbors to evaluate the most suitable regressor fo for SR 

reconstruction.

Inspired by the basic idea of JOR, Schulter et  al. [21] proposed a random forest-

based approach called super-resolution forests (SRF); this method is used to directly 

learn a mapping from the LR patch space to HR patch space. Random forests [42] 

split the training patch space automatically without defining the number of clusters 

manually. All the trees in SRF are trained independently and the set P = {Xh,Xl} 

includes N training samples 
{

x
n

l
, xn

h

}N

n=1
 . Moreover, SRF adapts a novel regularized 

quality measure E(XH ,XL) for the evaluation of splitting functions

where m
(

x
n

l

)

 is the HR prediction for the LR sample xn
l
 , xl  is the mean value of the xn

l
 in 

the leaf node and κ is the hyper-parameter. �us, E(XH ,XL) is a suitable way to efficiently 

learn the tree structure needed for regression-based SR problem, because it not only 

promotes the HR prediction precision but also keeps the similarity of the samples from 

the same leaf node. Once the structure of the tree is fixed, for any leaf node le with a lin-

ear regression model mle

(

x
n

l

)

= wlex
n

l
 , SRF can use the training samples (X le

l
and X

le

h
) , 

routed to the current leaf node, to calculate the mapping wle via local linear regression. 

Again, we can get a closed-form solution of wle
= X

le

h

(

(X le

l
)TX le

l
+ �I

)

−1

(X le

l
)T . �e 

reconstruction procedure of yh can be implemented by averaging the predictions over 

all T trees:

where l(t) is the leaf node belonging to tree t that yl is routed to.

In our pipeline, the ANR and A+ use the trained coupled dictionaries Dh and Dl 

to form the SB-Zeyde as the starting point of the algorithm. On the other hand, JOR 

and SRF directly split the patch spaces without coupled dictionaries. For the ANR 

and A+ , the weight factors λ of the sparsity constraints were all set to 0.1 and the 

nearest neighbor size K was set to 40 and 2048 for ANR and A+ , respectively. For 

JOR, the weight factor λ was fixed to 0.1 and the three main parameters (the num-

ber of regressors, the number of iterations of the E-M optimization and the nearest 

neighbor size K) were set to 32, 20 and 32, respectively. For the SRF case, the param-

eter settings were the number of trees T = 6 , the max tree depth ξmax = 15 , � = 0.1 

and κ = 1.

(15)E(XH ,XL) =
1

|X |

|X |∑

n=1

(||xn
h

− m(xn
l
)||22 + κ||xn

l
− xl ||

2
2),

(16)yh =

1

T

T∑

t=1

mle(t)(yl),
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Deep learning-based approaches

In recent years, DL has achieved phenomenal success. Various computer vision tasks 

such as classification, object recognition, and segmentation have benefited from DL’s 

many functions. Inspired by successful DL models, especially convolutional neural net-

works (CNN) that are used for classification (such as VGG-Net [43] and ResNet [44]), 

several CNN-based methods [22–25] were proposed to handle the SISR problem. In this 

paper, two representative CNN networks for SR, SRCNN [22] and VDSR [23], are imple-

mented in our experiment.

As a pioneer of CNN-based SISR work, SRCNN was proposed by Dong et  al. [22] 

to learn an end-to-end nonlinear mapping from the LR and HR images. A simplified 

structure of SRCNN is shown in the Fig. 2a, which includes three convolutional layers 

with filter sizes of 1 × 9 × 9, 64 × 1 × 1 and 32 × 5 × 5. Except for the last layer, rectified 

linear units (ReLu, max(0, x) ) [45] are applied following the convolutional layers as the 

activation function. For the end-to-end system, the network parameters are denoted as 

Θ =
{

Wd ,Bd |d = 1, 2, 3
}

, where Wd and Bd are the filter weights and biases for the d-

th convolutional layer. Given the training set P = {
(

x
n

l
, xn

h

)

|n = 1, 2, . . . ,N }, the SRCNN 

model is estimated by minimizing the mean squared error (MSE) of ground truth HR 

images xn
h
 and reconstructed HR images F

(

x
n

l
; Θ

)

 . �e loss function is characterized by

�e objective function can be minimized by using the stochastic gradient descent 

(SGD) with the standard backpropagation (BP) [46]. In Dong’s view, the function of the 

three convolutional layers of SRCNN can be explained in analogy with the pipeline of 

sparse coding-based SR methods, which includes patch extraction and representation, 

Non-linear mapping, and reconstruction, respectively. Relying on the highly expres-

sive capability of CNN, SRCNN can explore the nonlinear relationships between the LR 

and HR images and learn general image representation, which can be applied to various 

datasets and tasks.

Considering the overall development trend of CNN, that “the deeper the better” in the 

field of computer vision, Kim et al. proposed a very deep convolution network, termed 

VDSR. Figure  2b shows the structure of the VDSR, which indicates that VDSR uses 

20 weight layers in a cascaded way to form the deep network. Except for the first and 

last layers, all the weight layers include 64 filters with size 64 × 3 × 3 and with ReLu on 

(17)L(Θ) =
1

N

N∑

n=1

||F(xn
l
; Θ) − x

n

h
||22.

Fig. 2 Simplified structures of a SRCNN and b VDSR
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filter responses. In this way, VDSR has achieved a significantly larger perspective than 

SRCNN (41 × 41 vs 13 × 13) to help the network exploit more contextual information to 

model the SR-mapping tasks. For training, the VDSR adapts the MSE as a loss function 

and uses SGD with BP to train the network. At the same time, to accelerate the conver-

gence speed of the deep network, Kim also provides several techniques, such as residual 

learning and adaptive gradient clipping, to ensure the deep network can be trained with 

a very high learning rate. Residual learning demands that the convolutional layers of 

VDSR only predict the difference between the LR image and the correlated HR image, 

i.e., residual images; the LR input image can then be added to the residual image via a 

skip connection to reconstruct the final HR image. Especially considering that the LR 

input image and the HR output image are similar in the SR tasks, training a deep convo-

lution network that can predict residual images instead of HR images should be easier 

to accomplish. Hence, the VDSR has achieved good performance in both training time 

and reconstruction quality. In fact, nowadays, even if various new CNN models [24, 25], 

which have more complicated and elaborative designs, are proposed to complete the SR 

tasks, the VDSR should still be an efficient DL model.

For the training of the SRCNN in the pipeline, the batch size, momentum, and weight 

decay parameters were set to 128, 0.9 and 0, respectively. �e learning rate was  10−4 for 

the first two convolutional layers and  10−4 for the third layer. �e filter weights were 

initialized randomly via a Gaussian distribution (µ = 0, δ2 = 0.001) and the biases were 

was initialized with the constant zero. On the other hand, for the training of VDSR, 

the batch size, momentum and weight decay parameters were set to 16, 0.9 and 0.0001, 

respectively. �e learning rate was initially set to 0.1 and decreased by a factor of 10 

every 30 epochs. When the learning rate reached 0.0001, the learning rate stops decreas-

ing and keeps the fixed value in the following epoch. �e filter weights are initialized by 

the method proposed by [47], where the biases were set to 0.

Experimental setup

A simulation experiment was carried out for quantitative analysis and evaluation of the 

SISR methods (compared in this work) for the SR method-based pipeline using a clini-

cal FFA dataset. All the experiments were implemented on a workstation (Intel i7-7700 

CPU at 3.6  GHz, 32  GB RAM). �e non-DL SISR methods were implemented using 

MATLAB. Meanwhile, DL-based SISR methods (SRCNN and VDSR) are trained using 

the Caffe package [48] on a GTX 1070 GPU and tested using the MatConvNet package 

[49].

Fundus �uorescein angiography dataset

To better explore the performance of the pipeline in a clinical setting, we collected 185 

FFA images from ten different eyes in Second Affiliated Hospital to Xuzhou Medical 

University as our dataset. All the FFA images were acquired using Canon (CF-60DSi) 

equipment. �e 185 images have been classified into ten groups. Note that, although 

the images from the same group were acquired from the same eye, they also have the 

obvious difference between individuals due to various conditions of translation, rota-

tion, blood flow and lighting distribution. Hence, for convenience, we named the images 

belonging to the same groups and images belonging to the different groups as the 
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homologous images and non-homologous images, respectively. Figure  3 demonstrates 

one example to explain the concept of homologous images and non-homologous images.

Experimental protocol

�e experimental study was performed in accordance with the workflow of the proposed 

pipeline. We used the original FFA images as the HR images and acquired the corre-

sponding LR images by down-sampling the HR images in the spatial dimension. �e 

down-sampling was done by implementing downsampling factors via a Bicubic down-

sampler. In this way, the original 185 FFA images were translated into 185 FFA image 

pairs. �e FFA image pairs were divided into a training set TR1 (115 FFA image pairs) 

and a testing set TE1 (70 FFA image pairs). �is is done to ensure that both TR1 and 

TE1 contain all ten types of homologous images and maintain a unified 23:14 distribu-

tion proportion (between TR1 and TE1) for each group of homologous images. Next, 

we used the HR-LR image pairs from TR1 as the input of the SISR algorithms to train 

the mapping models. �e LR images from TE1 were tested next by using the trained SR 

models for reconstruction. Finally, the HR images from the TE1 served as the ground 

truth for quantitative analysis of the reconstruction performance of the SR methods. 

In this paper, we have performed the experiments using ten representative algorithms 

under two upscaling factors (2× and 4×) and choose the peak signal-to-noise ratio 

(PSNR) and structural similarity (SSIM) [50] as the quantitative evaluation indexes.

Results

Table 2 shows the performance of the ten SISR algorithms using our SR method-based 

pipeline with two upscaling factors (2× and 4×). �e Bicubic interpolation [51] results 

are also calculated in Table 2 as a baseline to compare the studies.

As shown in Table 2, all the SR results demonstrate better PSNR and SSIM indices 

compared to the Bicubic interpolation; this result suggests that the SISR algorithms 

have successfully extracted suitable feature-mapping models for FFA images from the 

Fig. 3 An example of homologous and non-homologous images
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training set during the image enhancement procedure. For twofold SR tasks, all the 

SISR algorithms have good evaluation indexes. Figure 4 provides six typical twofold 

upscaling SR results from the four groups of the SISR algorithms. �ese SR images 

have high consistency with the ground truth, and the borderline of the blood vessels 

among the optic disc and macula region, which are less distinct in the interpolated 

LR image, can be seen clearly in the SR reconstructed images. On the other hand, 

while the fourfold SR tasks are more challenging, the evaluation indexes of the recon-

structed results have decreased and the performance gap between the Bicubic inter-

polation and the SISR algorithms becomes more evident compared to the twofold SR 

tasks. Figure 5 shows the SR results using fourfold magnification. �us, even under 

the fourfold upscaling, the locally-linear regression approaches (JOR and SRF) and 

DL-based approaches (SRCNN and VDSR) still successfully reconstruct most spatial 

information for the FFA image, particularly in the reconstructed images of SRF and 

VDSR. �e connections of blood vessels at the margins of the optic disc and other 

important structural details, such as the tiny arteries among the macular region and, 

can be steadily recovered by the SISR algorithms and this result already provides a 

similarity to the ground truth. Hence, from both quantitative and visual results, 

the feasibility of the proposed SR method-based pipeline for FFA imaging has been 

validated.

We further compare the reconstruction performance of the ten SISR algorithms under 

two upscaling factors using our FFA datasets. �e performance of the SISR algorithms 

can be roughly ranked by the following order: SRF > VDSR > SRCNN > JOR > A+ > SB-

Zeyde > ANR > SB-Yang > NE + LS > NE + NNLS. �e ordering shows that the locally-lin-

ear regression and DL-based approaches are more effective. �e SRF provides the best 

visual results with the highest PSNR values. Meanwhile, the training time and the aver-

age reconstruction speed of the best three SISR algorithms are shown in Table 3. SRF 

has shown good efficiency with an acceptable reconstruction speed and a significantly 

shorter training time than the two DL-based methods.

Table 2 The average number of  evaluation indexes of  SISR algorithms (trained on  TR1) 

for the testing set TE1 (with an upscaling factor: 2×, 4×)

PSNR SSIM

2× 4× 2× 4×

Bicubic 40.11 34.51 0.994 0.968

NE + LS 42.83 36.16 0.998 0.981

NE + NNLS 42.25 36.10 0.998 0.981

SB-Yang 42.80 36.20 0.998 0.981

SB-Zeyde 43.50 36.60 0.998 0.982

ANR 42.98 36.02 0.998 0.982

A+ 43.18 36.97 0.998 0.985

JOR 43.76 37.76 0.997 0.985

SRF 47.06 41.30 0.998 0.986

SRCNN 44.40 37.76 0.997 0.984

VDSR 44.46 38.84 0.998 0.986
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Discussion

In this work, we explore the effectiveness of the proposed the proposed SR method-

based pipeline for FFA imaging and find the most potential SISR algorithm for clini-

cal practices. From the experimental results, we verified that SRF methods achieved 

high performance using the FFA dataset. One of the possible reasons for this good 

Fig. 4 The reconstructed FFA images by different SISR algorithms under the upscaling factor of ×2
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performance is that the SRF method can find a suitable number of clusters for the 

training patch spaces via the building of tree structures. Depending on this efficient 

division, FFA patches share the similar local fundus features that can be used together 

to learn more precise locally-linear regression models for the reconstruction of 

Fig. 5 The reconstructed FFA images by different SISR algorithms under the upscaling factor of ×4
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FFA images than other parameter-dependent SISR methods such as sparsity-based 

approaches, ANR, A+ and JOR. However, to some extent, the superiority of SRF 

methods over DL-based approaches are unexpected (contrary to the common under-

standing of the performance of the deep networks). Considering that ten groups of 

homologous images are divided into both training set and testing set for our experi-

ment, this prior distribution of the homologous images should be a potential influ-

ence on the performance of SISR algorithms. In the SRF algorithm, the algorithms are 

highly-likely to improve the performance via proper regression models determined 

by the homologous training images of the current test image. Hence, we conduct the 

second experiment to explore the influence of this prior distribution on the perfor-

mance of SISR algorithms. In this experiment, we exclude four groups of homologous 

images from the training set TR1 to obtain the new training set TR2, which contains 

52 images from six eyes. Meanwhile, we also reform the testing set TE1 by keeping 

only four non-homologous groups of images against the TR2 in the testing set. We 

name this new testing set TE2, which includes 32 images from four eyes. Two best 

SISR algorithms (SRF and VDSR) in the first experiment are selected for the second 

experiment. We train these two algorithms based on TR2 and test them on the TE2. 

For comparison, we also conduct another testing on the TE2 using the trained map-

ping model (based on TR1) in the first experiment. All the SR procedures in the sec-

ond experiment use the fourfold upscaling factor. �e results are presented in Table 4.

From Table 4, we can see that, although the performances of the two SISR methods 

decrease without the help of the homologous images in training set, the two SISR 

algorithms still achieve acceptable results via a trained model of non-homologous 

images. �e SRF has successfully kept the reconstruction quality at a high level. In 

fact, to reduce the calculation intensity, we have already compromised the partial per-

formance of SRF by simplifying the number of trees of the random forest from 15 

(recommended in the original paper) to 6 in our experiments. Even after applying this 

trade-off, the SRF has “learned” a suitable number of data-dependent regression func-

tions via numerous leaf nodes in the forest for the SR reconstruction of FFA images.

Table 3 The training time and  averaged reconstruction speed of  the  best three SISR 

methods

SRCNN VDSR SRF

Training time (h) 300 41 10

Reconstruction speed (s/sample) 37.2 43.2 57

Table 4 The average evaluation indexes of  SISR algorithms (trained on  TR1 and  TR2, 

respectively) for the test set TE2 (with an upscaling factor: 4×)

PSNR SSIM

TR1 TR2 TR1 TR2

SRF (TE2) 41.86 41.23 0.987 0.986

VDSR (TE2) 39.27 39.00 0.986 0.986



Page 16 of 19Jiang et al. BioMed Eng OnLine  (2018) 17:125 

On the other hand, the relatively stable performance of VDSR, shown in Table 4, dem-

onstrates that the training procedure of VDSR is less dependent on the homologous 

images. One of the possible explanations should be that the deep CNN’s strong capac-

ity for learning and expression can help VDSR extract more general features from the 

FFA training images to complete the reconstruction. In fact, designing very deep CNN 

models is a recent trend for SISR algorithms. For example, Mao et al. [52] proposed a 

30-layer residual encoder-decoder (RED) networks with symmetric skip connection. Tai 

et al. later introduced recursive blocks in DRRN (52 layers) [53] and memory blocks in 

MemNet (80 layers) [54] to construct multi-path deep networks. Li et al. [55] used mod-

ified residual blocks to construct EDSR (36 layers) and MDSR (165 layers) for single-

scale SR task and multi-scale SR task respectively. All these networks have successfully 

improved the reconstruction quality of SR images depending on the fine hierarchical fea-

tures extracted by deep CNN model. However, to make full use of this advantage, large 

training datasets are usually necessary to avoid the over-fitting problem and improve the 

final performance of the deep network. �is is not the case in this work because the 

training datasets in our experiment have a limited number of FFA images. On the other 

hand, high-performance GPUs are another key requirement for the application of deep 

network to meet the demand of large storage and heavy computation. Considering that 

many computers in Chinese department of Ophthalmology, especially in primary hos-

pitals, do not have GPUs that can achieve fast calculations of big data sets, the practical 

applications of the DL-based SISR methods remain limited. Hence, although we real-

ize the potentiality of DL-based SISR algorithms, we believe that SRF should still be the 

competitive option for the resolution enhancement of FFA images with high generality 

and usability in a clinical setting at present stage because the algorithm can be efficiently 

trained on the small size of the training data and the relatively short training and testing 

time on CPU environment.

Next, we discuss the degradation model of the LR images. In our experiments, we used 

the degradation model xl = Gxh to simulate the LR FFA images, where G is the down-

sampling matrix. �is degradation model should be treated as a simplified version of the 

normal degradation model xl = GBuxh(Bu represents the blur matrix). �is simplifica-

tion is made to explore the clinical practice of abandoning images with obvious motion 

blur and out-of-focus blur that are not used for subsequent diagnosis and analysis. In 

our experiments, we are concerned with whether our SR algorithm has the capability 

to recover information from the spatially downsampled FFA images. In fact, the insuf-

ficiency of spatial sampling is always a major problem for clinical FFA imaging. On one 

hand, due to budget constraints, high-performance sensors are not standard equipment 

for all the clinical environments. In some primary hospitals, the sensor used for FFA 

imaging have relatively lower spatial resolution and can’t meet the demands of HR imag-

ing. On the other hand, the fluorescence signal of FFA imaging has relative lower inten-

sity than the normal reflective signal of conventional fundus imaging. Additionally, the 

exposure time can’t be markedly prolonged due to other practical considerations (e.g., 

eye movement), pixel binning (a kind of downsampling) is often used in clinical settings 

to increase the signal-to-noise ratio (SNR) of FFA images. �us, we find that our degra-

dation model of LR images considers common clinical problems. Hence, our simulated 

LR FFA images should have a certain degree of similarity with LR images typically used 
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in clinics, which also becomes an important guarantee to generalize the experimental 

results to the clinical practice.

Finally, we believe that the SR-enhanced FFA images are meaningful for ophthalmol-

ogists, even if novel imaging modalities such as optical coherence tomography (OCT) 

have gained great success in recent years. �ere are three main reasons for our opin-

ion. First, the FFA, as the current gold standard for evaluating the clinical fundus feature 

of DR and AMD, is still widely used in ophthalmology for diagnosing and classifying 

related fundus disorders [56–59]. Second, FFA is still the most commonly used method 

to plan laser treatment (photocoagulation) in clinical settings [60]. �ird, for clinical 

research involving multimodal imaging, OCT, FFA and other modalities are often used 

cooperatively [61]. In fact, considering the characteristic of OCT images, we also won-

der if our proposed SR-based pipeline method can be used to the enhance OCT images, 

which can be a potential research direction for future work.

Conclusion

In conclusion, we have preliminary explored the effects of resolution enhancement of 

the FFA images using an SR-based pipeline method. Ten testing SISR methods, divided 

into four groups, are used for the proposed pipeline of our clinical FFA datasets. �e 

experimental results are then analyzed and compared. From the results, we find that 

direct local regression-based approaches and DL-based approaches work well for our 

(clinical) datasets. �en, as the representative algorithms of these two groups of SISR 

methods, SRF and VDSR are further discussed on the reformed datasets to discuss the 

algorithms’ dependency on the training set. Both experimental results have shown that 

super-resolution method-based pipeline has the potential to enhance FFA images. �e 

SRF has displayed remarkably-high effectiveness and outperformed other testing algo-

rithms. Hence, we believe that the SRF is a feasible SR method that can be implemented 

on an ophthalmologist’s workstation to create an SR-based pipeline method for FFA 

images to assist ophthalmologists in enhancing these images in their clinical practices.
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