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ABSTRACT
In NAND flash-based storage systems, an intermediate soft-
ware layer called a flash translation layer (FTL) is usually
employed to hide the erase-before-write characteristics of
NAND flash memory. This paper proposes a novel superblock-
based FTL scheme, which combines a set of adjacent logi-
cal blocks into a superblock. In the proposed FTL scheme,
superblocks are mapped at coarse granularity, while pages
inside the superblock are mapped freely at fine granularity
to any location in several physical blocks. To reduce extra
storage and flash memory operations, the fine-grain map-
ping information is stored in the spare area of NAND flash
memory. This hybrid mapping technique has the flexibility
provided by fine-grain address translation, while reducing
the memory overhead to the level of coarse-grain address
translation. Our experimental results show that the pro-
posed FTL scheme decreases the garbage collection overhead
up to 40% compared to previous FTL schemes.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Garbage
collection

General Terms
Management, Measurement, Performance, Design

Keywords
NAND flash memory, flash translation layer(FTL), address
translation
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Many mobile devices, including MP3 players, PDAs (per-
sonal digital assistants), PMPs (portable media players),
high-resolution digital cameras and camcorders, and mo-
bile phones, demand a large-capacity and high-performance
storage system in order to store, retrieve, and process large
multimedia data quickly. In those devices, NAND flash
memory is already becoming one of the most common stor-
age medium because of its versatile features such as non-
volatility, solid-state reliability, low power consumption, shock
resistance, and high cell densities [4, 11].

NAND flash memory, however, has a restriction that a
page, which is the basic unit of read and write operations,
should be erased before being rewritten in the same loca-
tion. This characteristic is sometimes called erase-before-
write. Moreover, the erase operations can only be performed
on a larger block than the page. Therefore, an intermediate
software layer called a flash translation layer (FTL) is usu-
ally employed to hide the limitation of erase-before-write [8,
3]. FTL achieves this by redirecting each write request to an
empty location in NAND flash memory that has been erased
in advance, and by managing an internal mapping table to
record the mapping information from the logical sector num-
ber to the physical location. Although FTL gives an ability
to update the same logical sector transparently without in-
tervention of erase operation, it needs extra flash memory
operations to prepare empty locations and extra storage to
maintain the internal mapping table. The amount of extra
operations and storage required is drastically varied depend-
ing on the employed FTL schemes.

There is trade off between extra storage and extra op-
erations. While coarse-grain address translation lowers the
amount of extra storage, it may cause more extra flash mem-
ory operations to keep up the mapping state regularly. On
the other hand, fine-grain address translation is flexible in
handling of write requests smaller than a block, but demands
more extra storage for managing mapping information. As
the capacity of NAND flash-based storage increases, the ex-
tra storage required by fine-grain address translation actu-
ally imposes a serious cost problem in mass-market products
[9].

In this paper, we propose a novel FTL scheme called su-
perblock FTL scheme for NAND flash memory. In the pro-
posed scheme, a superblock consists of a set of adjacent log-
ical blocks. Superblocks are mapped at coarse granularity,
while pages inside the superblock are mapped freely at fine
granularity to any location in several physical blocks. To re-
duce extra storage and extra flash memory operations, the
fine-grain mapping information is stored in the spare area
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of NAND flash memory. This hybrid mapping technique
has the flexibility provided by fine-grain address translation,
while reducing the memory overhead to the level of coarse-
grain address translation. Performance evaluation based on
a trace-driven simulation shows that our superblock scheme
reduces the garbage collection overhead up to 40% compared
to previous FTL schemes with roughly the same memory
overhead.

The rest of the paper is organized as follows. The next
section gives a brief overview of NAND flash memory and
FTL. Section 3 describes the motivation of the proposed
FTL. In Section 4, a detailed description of our superblock
FTL scheme is presented. Section 5 compares the perfor-
mance of our scheme with that of previous schemes based
on a trace-driven simulation. Finally, our conclusions and
future work are drawn in Section 6.

2. BACKGROUND AND RELATED WORK
In this section, we describe the characteristics of NAND

flash memory and the differences between the small block
and the large block NAND flash memory. Then, we present
a short overview of FTL and related work.

2.1 Characteristics of NAND flash memory
A NAND flash memory chip is composed of a fixed num-

ber of blocks, where each block typically has 32 pages. Each
page in turn consists of 512 bytes of the main data area and
16 bytes of the spare area. The page is the basic unit of read
and write operations in NAND flash memory. The spare
area is often used to store management information and er-
ror correction code (ECC) to correct errors while reading
and writing [6]. Note that the spare area can be read or
written along with the main data area using a single read
or write operation. Therefore, there is virtually no addi-
tional overhead to store/retrieve management information
and ECC to/from the spare area.

There are three basic operations in NAND flash memory:
read, write (or program), and erase. The read operation
fetches data from a target page, while the write operation
writes data to a page. The erase operation resets all values
of a target block to 1. NAND flash memory does not support
in-place update. Once a page is written, it should be erased
before the subsequent write operation is performed on the
same page. As the read and write operations are executed
on a page basis, while the erase operation is performed on a
much larger block basis, NAND flash memory is sometimes
called a write-once and bulk-erase medium.

Unlike magnetic disks or other semiconductor devices such
as SRAMs and DRAMs, the write operation requires a rel-
atively long latency compared to the read operation. As
the write operation usually accompanies the erase opera-
tion, the operational latency becomes even longer. Another
limitation of NAND flash memory is that the number of
program/erase cycles for a block is limited to about 100,000
– 1,000,000 times. Thus, the number of erase operations
should be minimized to improve the overall performance and
to lengthen the lifetime of NAND flash memory.

Recently, a new type of NAND flash memory, called large
block NAND, has been introduced in order to provide high
density and high performance in bulk data transfer. In the
large block NAND flash memory, a page consists of 2 Kbytes
of the main data area and 64 bytes of the spare area, and a
block has 64 pages. Note that a new programming restric-

Logical 
sector

number

Page-level 
mappingtable

Physical block number

Physical
page

number

Flash block

Logical 
sector

number

Block-level 
mapping table

Physical
block number

Flash block

Logical page number

Logical
block

number

(a) Page-mapped FTL (b) Block-mapped FTL

Figure 1: The address translation in FTL.

tion is added in the large block NAND flash memory; pages
should be programmed in sequential order from page 0 to
page 63 within a block. Random page address programming
in a block is strictly prohibited by the specification [5]. In
this paper, we primarily focus on the large block NAND
flash memory because most of the latest NAND flash de-
vices whose capacity is more than 1 Gbits have the large
block organization [7].

2.2 Flash translation layer (FTL)
The main goal of FTL is to emulate the functionality of

a normal block device with flash memory, hiding the pres-
ence of erase operation and erase-before-write characteris-
tics. Among others, two particularly important functions of
FTL are address translation and garbage collection.

FTL hides the latency of erase operation by redirecting
each write request from the host to an empty location in
flash memory that has been erased in advance, and by man-
aging the mapping information internally. The primary role
of the address translation is to translate the logical sector
number of a request into a physical address that represents
a location of data in NAND flash memory. According to the
granularity with which the mapping information is managed,
FTLs are classified either as page-mapped [1] or as block-
mapped [2]. Garbage collection is the process that reclaims
free pages by erasing appropriate blocks.

A page-mapped FTL scheme is a fine-grained translation
from a logical sector number to a physical block number
and a physical page number as shown in Figure 1(a). Since
a logical sector can be mapped to a page in any location
in NAND flash memory, a page-mapped FTL scheme allows
for more flexible storage management. However, the size of
the mapping table is large in proportion to the total number
of pages in NAND flash memory. Generally, the mapping
table resides in RAM; therefore, it consumes a large amount
of RAM.

In a block-mapped FTL scheme, a logical sector number
is divided into a logical block number and a logical page
number, and then the logical block number is translated to
a physical block number as depicted in Figure 1(b). The log-
ical page number helps to find the wanted page within the
physical block. A set of consecutive sectors in the logical
block is usually stored in the same physical block. The size
of the mapping table is only proportional to the total num-
ber of blocks in NAND flash memory. Therefore, the amount
of RAM required by a block-mapped FTL scheme is signif-
icantly smaller compared to page-mapped FTL schemes.

As the capacity of NAND flash-based storage increases,
the large amount of RAM required by a page-mapped FTL
scheme actually imposes a serious cost problem in mass-
market products. For example, a CompactFlash system
with a 4 Gbytes large block NAND flash memory chip re-
quires 8 Mbytes of RAM for maintaining the mapping ta-
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ble with page-mapped FTL schemes, while 128 Kbytes for
block-mapped FTL schemes. Thus, some variations of block-
mapped FTL scheme are mostly used for NAND flash-based
storage systems.

2.3 General architecture of block-mapped FTLs
Generally, we can classify physical flash memory blocks

into D-blocks (or data blocks) and U-blocks (or update blocks)
according to their usage in block-mapped FTL schemes. D-
blocks represent those blocks used to store user data, and
the total size of D-blocks serves as the effective storage space
provided by FTL. A small number of U-blocks, which are
invisible to users, are managed by FTL to handle the erase-
before-write characteristics of NAND flash memory. When
there is a write request to one of the pages and the write
request cannot be accommodated in the corresponding D-
block, FTL allocates a U-block and writes the fresh data into
the U-block, invalidating the previous data in the D-block.
Once a U-block is allocated, the subsequent write requests
to the D-block can be redirected to the associated U-block.
When the U-block itself becomes full, FTL can allocate an-
other U-block or can generate a new D-block by merging the
original D-block with the U-block. Although there are many
different kinds of block-mapped FTL schemes, the difference
largely comes from the way those D-blocks and U-blocks are
managed, i.e., when and how many U-blocks are allocated
for each D-block, or how the merge operation is performed.

Logical pages in a D-block or a U-block are organized
either by an in-place scheme or by an out-of-place scheme.
In the in-place scheme, the logical page number is always
equal to the physical page number in the physical block;
therefore, the logical page number is invariant in the address
translation. In the out-of-place scheme, however, a page
can be placed anywhere inside the physical block, requiring
another page-level mapping information to find the exact
location of the page.

Assume that the third page (logical page #2) in a D-block
is updated twice in Figure 2. Under the in-place scheme (cf.
Figure 2(a)), two extra U-blocks are allocated in order to
write to the same location as the previous page. The in-
place scheme simplifies the storage management, while other
free pages in U-blocks may be wasted when only a part of
pages is heavily updated. In addition, due to the sequential
page programming restriction, using the in-place scheme is
not always possible in large block NAND flash memory.

In the out-of-place scheme (cf. Figure 2(b)), the logical
page is written to any free page in a U-block and the page-
mapping table for the block is modified to point to the newly
written page. Although the out-of-place scheme is more flex-
ible, the extra overhead is added to manage the second level
of page-mapping table for each block. Thus, the out-of-place
scheme is usually employed in a very limited way.
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When all the available U-blocks are exhausted, garbage
collection is invoked. During garbage collection, FTL se-
lects a victim U-block and merges it with the corresponding
D-block. According to the situations, the merge operation
can be classified into full, partial, or switch merge as illus-
trated in Figure 3. The full merge (cf. Figure 3(a)) is simple;
it allocates a free block that is erased beforehand, and then
copies the most up-to-date pages (we call them valid pages.),
either from the D-block or from the U-block, into the free
block. After copying all the valid pages, the free block be-
comes the D-block and the former D-block and the U-block
are erased. Therefore, a single full merge requires read and
write operations as many as the number of valid pages in a
block and two erase operations.

Partial and switch merges are special cases of the merge
operation. The partial merge takes place when all the valid
pages in the D-block can be copied to the rest of the U-block.
As shown in Figure 3(b), the partial merge copies only the
valid pages in the D-block and one erase operation can be
saved compared to the full merge. On the other hand, if all
the pages in the D-block are already invalidated, we can sim-
ply switch from the U-block to the new D-block and erase
the old D-block. This case is called the switch merge (cf.
Figure 3(c)). The switch merge requires only one erase op-
eration without any valid page copy and hence is the optimal
case among merge operations. The switch merge typically
occurs when the whole pages in a block are sequentially up-
dated. This is the storage access pattern commonly found
in many file systems when they attempt to store large mul-
timedia files.

The performance of block-mapped FTL scheme signifi-
cantly depends on how to organize D-blocks and U-blocks,
and on how to select victim U-blocks during garbage col-
lection. We note that the major causes of the performance
degradation are due to valid page copy and erase operations
to make free blocks during garbage collection.

2.4 Related Work
FTL schemes have been proposed to improve the per-

formance in block-level mapping. Ban proposed the re-
placement block scheme based on the concept of a replace-
ment block [2]. In this scheme, U-blocks are called replace-
ment blocks, and both D-blocks and U-blocks are organized
by an in-place scheme. The operation of the replacement
block scheme is similar to the example shown in Figure 2(a).
When there is a write request, it allocates a U-block if the
write cannot be accommodated in the existing D-blocks and
U-blocks. During garbage collection, the D-block, which has
the largest number of U-blocks, is selected as a victim, and
all the valid pages are copied into the last U-block. The
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last U-block then becomes a new D-block. Since the pages
are always merged into the last U-block, only the partial
or the switch merge is performed. As noted in the previ-
ous subsection, the replacement block scheme exhibits poor
storage utilization especially when only some of pages are
frequently updated. Moreover, this scheme is not suitable
for large block NAND flash memory, where pages in a block
cannot be programmed in random order.

Kim et al. have suggested the log block scheme that uses
U-blocks as logging blocks [9]. The log block scheme logs
the changes of the data stored in a D-block into a U-block
until the U-block becomes full. In the log block scheme, D-
blocks are organized by an in-place scheme, while U-blocks
by an out-of-place scheme in order to overcome the disad-
vantage of the replacement block scheme. If there is a write
request, the log block scheme writes the data into a U-block
sequentially, and maintains the separate page-level mapping
information only for U-blocks. Since only the small number
of U-blocks is used by FTL, the additional mapping over-
head can be kept low. When all the U-blocks are used,
some U-blocks are merged with the corresponding D-blocks
to secure new free U-blocks. As D-blocks are managed by
an in-place scheme, the full merge may happen in order to
change from an out-of-place scheme to an in-place scheme.
In addition, the utilization of the U-blocks can be still low
since even a single page update of a D-block necessitates a
whole U-block similar to the replacement block scheme.

To solve the problem of the log block scheme, the fully
associative sector translation (FAST) scheme has been pro-
posed [10]. In FAST, a U-block is shared by all the D-blocks,
and every write request is logged into the current log block.
This effectively improves the storage utilization of log blocks
and delays the merge operation much longer. However, the
full merge may be performed more frequently than the pre-
vious schemes since a single log block contains pages that
belong to several D-blocks. To alleviate this phenomenon,
FAST uses the special U-block, called sequential log block,
for handling sequential writes.

3. MOTIVATION
In this paper, we propose a superblock FTL scheme that

combines the adjacent logical blocks into a superblock. In
our superblock scheme, pages inside a superblock can be
freely mapped at page granularity to several physical blocks
allocated for the superblock. This section elaborates upon
the motivation of our work.

3.1 Rearranging pages in several blocks
The performance of FTL mainly depends on the efficiency

of garbage collection. The overhead of garbage collection in-
cludes the time to erase blocks for making free blocks and the
time to copy valid pages from to-be-erased blocks. To reduce
the garbage collection overhead, many FTLs try to minimize
the number of erase operations by maximizing the utiliza-
tion of U-blocks. For example, unlike the replacement block
scheme, the log block scheme uses an out-of-place scheme for
U-blocks so that several updates to the same logical block
can be absorbed in the U-block regardless of the logical page
number. FAST goes one step further to increase the utiliza-
tion of U-blocks, by allowing any updates to be logged in
the U-block.

We observe that, however, it is important to minimize
not only the number of block erases, but also the number

Cold

Cold

D-block  0

Invalid

Invalid Hot

Hot

U-block 0

Cold

Cold

D-block  1

Invalid

Invalid

Hot

Hot

U-block 1

Cold

Cold

D-block 0
Invalid

Invalid

Hot

U-block 0

Cold

Cold

D-block 1

Invalid

Invalid

Hot

(c) superblock scheme(a) Log block scheme

Invalid

Invalid Hot

Hot

U-block 1

Invalid

Invalid

Superblock

P0

P1

P2

P3

P4

P5

P6

P7

P2

P3

P5

P7

P7

Cold

Cold

D-block 0

Invalid

Invalid

Hot

Hot

U-block 0

Cold

Cold

D-block 1

Invalid

Invalid

Hot

Hot

U-block 1

(b) FAST

Invalid Invalid

P0

P1

P2

P3

P4

P5

P6

P7

P2

P3

P7

P5

P7

P0

P1

P4

P6

Invalid

Invalid

P3

P2

P5

P5

P2

P3

Invalid

Invalid Invalid

Invalid

P2

P3

P7

P5

P7

P5

P2

P3

P2

P3

P7

P5

Figure 4: The situation where the full merge is oc-
curred in the previous block-mapped FTL schemes.

of valid page copy. To reduce the time for valid page copy,
we need to lower the number of full merge operations, while
increasing chances of partial or switch merge operations.

In the previous block-mapped FTL schemes, full merges
usually occur when pages within a block are randomly up-
dated. To illustrate the problem, consider the situation
shown in Figure 4. In this example, we assume that the
number of physical pages per a block is four and the pages
are updated in the following sequence: P5, P2, P3, P7, P5,
P2, P3, and P7. Only two pages in each logical block are
updated, namely P2, P3, P5, and P7.

In case of the log block scheme (cf. Figure 4(a)), to merge
U-block 0 and U-block 1 with D-block 0 and D-block 1,
respectively, two full merge operations are required. This is
because there are not enough free pages in U-block 0 and U-
block 1 to copy all valid pages in D-block 0 (P0 and P1) and
in D-block 1 (P4 and P6). In FAST (cf. Figure 4(b)), while
U-block 0 does not have any valid pages, two full merge
operations for D-block 0 and D-block 1 are still required
since U-block 1 has the pages that belong to both D-block
0 and D-block 1. FAST first merges D-block 0 with U-block
1 to generate the new D-block 0, and then merges D-block
1 with U-block 1 again for the new D-block 1.

If we can place all the updated pages to D-block 0 and
other pages to D-block 1 as presented in Figure 4(c), we need
only one switch merge operation between U-block 1 and D-
block 0. The key observation is that if we can dynamically
arrange the pages into the physical block, we can increase
chances of partial or switch merge operations instead of the
expensive full merge operation.

In our superblock FTL scheme, we define the superblock
as a set of adjacent logical blocks that share D-blocks and
U-blocks. We still use the block mapping at the superblock
level, but we allow logical pages within a superblock to be
freely located in one of the allocated D-blocks and U-blocks
by maintaining the page-level mapping information within
the superblock. During garbage collection, we try to sepa-
rate hot pages from cold pages and put them into different
D-blocks using the hybrid mapping technique.

3.2 Exploiting block-level spatial locality
observe that there are both block-level temporal locality

and block-level spatial locality in typical storage access pat-
terns. The block-level temporal locality indicates that the
pages in the same logical block are likely to be updated
again in the near future. The log block used in the log block
scheme is essentially the mechanism to capture the block-
level temporal locality, by redirecting the update requests
to the same logical block into the associated log block.
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On the other hand, the block-level spatial locality repre-
sents that the pages in the adjacent logical block are likely
to be updated in the near future. The block-level spatial lo-
cality is exhibited when two or more adjacent logical blocks
are allocated by the file system to the same file or to the
same metadata such as FATs (file allocation tables), direc-
tories, i-nodes, and bitmaps. Therefore, if several adjacent
logical blocks share a U-block, the storage utilization of the
U-block will increase.

Another advantage of using the superblock is that we can
exploit the block-level spatial locality to increase the storage
utilization of U-blocks, while controlling the degree of shar-
ing. We define the degree of sharing for a physical block as
the number of logical blocks to which the pages, stored in
the given physical block, belong.

FAST achieves the best storage utilization for U-blocks by
logging every write request to a single log block regardless
of the logical block number of the target page. Hence, in the
worst case, the degree of sharing in FAST is identical to the
number of pages within a block. As noted in section 2.4, this
tends to increase the chance of full merge operation. The
log block scheme is another extreme case, where the degree
of sharing is always limited to one. In the log block scheme,
the block-level spatial locality is not exploited at all, which
curtails the utilization of the log block. Therefore, we can
notice that it is necessary to increase the degree of sharing
for better storage utilization, but not too much, so that the
occurrences of full merge operation can be kept low. In
the proposed superblock scheme, we can easily control the
degree of sharing by adjusting the superblock size.

4. SUPERBLOCK FTL SCHEME
In this section, we describe the design and implementation

of the proposed superblock FTL scheme in detail.

4.1 Overall architecture
The basic idea of the superblock FTL scheme is to page-

map N logical blocks into N + M physical blocks. N is
the number of logical blocks composing a single superblock,
which is identical to the number of D-blocks allocated for
the superblock. M is the number of U-blocks additionally
allocated for the superblock. Therefore, N is determined
by the superblock size, while M is dynamically changed ac-
cording to the number of currently available U-blocks. If a
new U-block is allocated to the superblock, M is increased
by one. Meanwhile, M is decreased when garbage collection
merges D-blocks with U-blocks.

We construct a superblock by combining several adjacent
logical blocks in order to utilize the block-level spatial local-
ity. For example, if the superblock size is four, four logical
blocks whose logical block numbers are 0, 1, 2, and 3, be-
long to the superblock 0. When a write request arrives for a
page in the superblock, the superblock scheme allocates an
empty U-block and logs the write request in the first page
of the U-block.

A U-block is exclusively used by the associated superblock
to exploit both the block-level temporal locality and the
block-level spatial locality. Once a U-block is allocated for a
superblock, the subsequent write requests to the superblock
are logged in the U-block sequentially from the first page.
This out-of-place scheme makes it suitable for use with large
block NAND flash memory, in which pages should be pro-
grammed in sequential order from the first page to the last
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Figure 5: The address translation in the superblock
scheme with three-level page-mapping table.

page within a block. When there are no more free pages in
the U-block, another U-block is allocated for the superblock.

In order to make the superblock FTL scheme useful, we
need to consider the following two questions: (1) how to
maintain the mapping information compactly and efficiently,
and (2) how to perform garbage collection intelligently to
reduce the number of erase operations and valid page copy.
In the following subsections, we attempt to answer these
questions in detail.

4.2 Hybrid mapping with three-level mapping
table

Since the superblock FTL scheme utilizes the page-level
mapping inside the superblock, the pages belong to N log-
ical blocks can be distributed anywhere in N + M physical
blocks. Therefore, maintaining the mapping information ef-
ficiently and compactly is a challenging issue.

We make use of spare areas to record the page-mapping
information so as not to incur any additional overhead in
terms of space and flash operations. When user data are
written in the main data area, the up-to-date page-mapping
information is also stored simultaneously in the spare area
of the same physical page.

We organize the page-mapping table in three levels as
shown in Figure 5 so that it can be fit into the limited size
of the spare area. This resembles the page table structure
used in modern CPUs for implementing virtual memory sys-
tem. The first-level page table is the page global directory
(PGD) indexed using the superblock number and PGD in-
dex. When the superblock size is N = 2s, PGD index is
low s bits of the logical block number. Each entry of PGD
points to a page middle directory (PMD) that holds four
entries. Each PMD entry in turn points to the location of
one of four page tables (PTs), whose entry (PTE: page table
entry) contains the physical block number and the physical
page number of the wanted data. Using the high 2 bits of
the logical page number, which we call PMD index, we re-
trieve the location of PT from PMD, and find the final PTE
using the remaining 4 bits of the logical page number, PTE
index.
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Figure 6: An example of the address translation in
the superblock scheme.

Note that the whole page table is divided into four sepa-
rate PTs due to the space limitation of the spare area within
a single page in large block NAND flash memory. The role
of PMD is to locate the up-to-date position of each PT. The
location of the up-to-date PMD is kept track of by PGD.
While PGD is stored in main memory, PMD and PTs are
saved in the spare area of NAND flash memory. Since the
number of entries in PGD is equal to the number of logi-
cal blocks, the memory overhead for PGD is comparable to
other block-mapped FTL schemes.

Figure 6 illustrates an example of address translation per-
formed in the superblock scheme. Suppose that we would
like to find the physical address corresponding to the logi-
cal address whose logical block number is 17 and the logical
page number is 12. The logical block number is divided into
the superblock number 4 and PGD index 1, and the logi-
cal page number is split into PMD index 0 and PTE index
12. As shown in Figure 6, we find the latest PMD for the
logical block 17 from PGD using the superblock number 4
and PGD index 1. Once PMD is read from the spare area,
we extract the first entry from PMD to find the location of
PT0, which holds PTEs from PTE0 to PTE15. Finally, the
location of data can be found by reading PTE12 from PT0.

When a logical page is updated, the up-to-date page-
mapping information is also saved in the spare area of the
same physical page. For instance, suppose that the logical
page that we find in the above example is updated. In this
case, PTE12 is modified to point to the location that the
logical page will be written, and the first PMD entry is also
changed to locate the same physical page since it now has
the new PT0. After the page is written with the modified
PMD and PT0, the second PGD entry is changed to point
to a new location. As the up-to-date PMD and the corre-
sponding PT is stored in flash memory whenever a page is
updated, we can guarantee that each entry of PMD and PT
always points to the valid page.

Since we should read PMD and the corresponding PT
from flash memory every time when we read, write, or copy
a page, we adopt a cache mechanism to reduce the number
of flash read operations. A cache entry consists of PMD and
the associated four PTs that are used to record the page-
mapping information of a single logical block. The number
of cache entries is fixed and we manage those entries with a
least recently used (LRU) replacement scheme. This cache
mechanism is similar to those used in the log block scheme

3 bits 6 bits

06 58

Page index

Block index

20 bytes 5 bytes 18 bytes

Data Information (DI) Page table (PT)

Page middle directory (PMD)

(a) Spare area

1 3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes 4 Bytes

(b) Data Information

Logical sector numberECC2 ECC3ECC1

Bad block indicator

Error correction code 
(ECC) for spare area

Error correction code 
(ECC0) for data area

(d) Page middle directory (PMD)

Error correction code

3 bits 6 bits

06 58

Page index
Block index

Page-director entry0

(PDE0)
Page-director entry3

(PDE3)

21 bytes

Physical block mapping table 
(PBMT)

3 bits 6 bits

06 58

Page index

Block index

(e) Page table (PT)

3 bits 6 bits

06 58

Page index

Block index

Page table entry0

(PTE0)
Page table entry15

(PTE15)

3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes 3 Bytes

(c) Physical block mapping table (PBMT)

PBN2 PBN3 PBN4 PBN5 PBN6PBN0 PBN1

Figure 7: The format of the spare area in the
superblock scheme in order to record the page-
mapping information.

and FAST. Our experiment shows that the small number of
cache entries works quite well (cf. Section 5.5).

Figure 7 depicts the overall layout of the spare area we use
in the superblock scheme. The spare area is divided into four
sections: data information (DI), physical block mapping ta-
ble (PBMT), PMD, and PT, as presented in Figure 7(a). DI
consists of a bad block indicator, 15 bytes of error correction
code (ECC), and a logical sector number (cf. Figure 7(b)).
The logical sector number in DI is typically used for recov-
ery. PBMT is an array of seven physical block numbers as
shown in Figure 7(c). Each PMD has four page directory
entries (PDEs) for locating four PTs (cf. Figure 7(d)), and
each PT consists of 16 PTEs (cf. Figure 7(e)).

In principle, each PDE or PTE needs to point to a physical
location of a page in flash memory, where the location is
identified by the physical block number and the page offset
inside the block. Allowing every PDE or PTE to specify
the physical block number redundantly is not only wasteful
but also impossible due to the limited size of the spare area.
Instead, we adopt an indirect mapping to accommodate the
whole information can be fit into the spare area. In our
superblock scheme, PBMT has an array of actual physical
block numbers allocated for the superblock, and the block
index in PDE or PTE is used to retrieve the proper physical
block number from PBMT. Then the page index is used to
identify the target physical page in the block.

Since there are 64 pages in a physical block of large block
NAND flash memory, 6 bits of page index in PDE or PTE
are sufficient to locate any physical page in a block. The
block index in PDE or PTE is 3 bits, which can indicate
one of eight physical blocks. There are only seven physical
block numbers in PBMT due to space limitation, and the
eighth index has a special meaning. If the block index is
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superblock scheme.

specified as 7, it points out that the target physical block
number is the same as that of the upper-level data structure;
in case of PDE, it represents that the target PT is on the
same physical block with PMD. For PTE, it denotes that
the target page is on the same physical block with PT. This
indirect mapping scheme for physical block numbers implies
that the number of D-blocks and U-blocks that can be al-
located to a superblock is limited to eight in our current
implementation.

4.3 Garbage collection
We need an intelligent garbage collection mechanism in or-

der to reduce the number of erase operations and valid page
copy, which are the major causes of performance degrada-
tion. Garbage collection is invoked if there is no free U-block
to allocate. During garbage collection, a physical block is
selected as a victim and then it is merged with other block to
make a free block. The detailed process of garbage collection
is as follows.

The first step is to find a physical block that has no valid
pages. If there is such a block, it is erased and then allocated
to another superblock. In case the chosen block is a D-block,
one of U-blocks is promoted to D-block (switch merge), as
shown in Figure 8(a). In this step, we only examine those su-
perblocks that have at least one U-block, since investigating
all the physical blocks is time-consuming, hence impractical.

If the first step fails, we find the superblock that has the
least recently written U-block. In case there is the D-block
that has sufficient free pages, we perform the partial merge.
In the other case, we do not merge the U-block with one
of D-blocks in order to separate hot pages from cold pages.
Instead, we select two D-blocks from the superblock, which
has the smallest number of valid pages, and perform the full
merge, as illustrated in Figure 8(b). The rationale behind
this decision is that U-blocks tend to have hot pages, while
D-blocks cold pages. Therefore, putting cold pages stored
in D-blocks together into a free block is desirable for future
garbage collection. After the full merge, the superblock is
reorganized in such a way that the new block and the U-
block become D-blocks, and the original D-blocks are erased
and reused as free U-blocks. In this way, we can achieve the
effect that the pages of a superblock with similar update
frequency flock together into the same D-block. Since the
number of valid pages contained in two D-blocks may exceed
the number of pages that can be stored in a free block, the
full merge operation is continued until all the valid pages
are moved and we can ultimately obtain a free block.

Table 1: Traces used for simulation

Trace Description

Total
storage
size
(MB)

The num-
ber of
pages
written

PIC

This trace models the
workload of digital cam-
eras. Picture files whose
average size is 1 Mbytes
are created and deleted.

2048 1,121,352

MP3

This trace models the
workload of MP3 play-
ers. MP3 files whose av-
erage size is 5 Mbytes
are created and deleted.

2048 1,437,522

MOV

This trace models the
workload of movie play-
ers. Movie files whose
sizes vary from 15 to 30
Mbytes are created and
deleted.

2048 1,832,613

PMP 2G

This trace models the
workload of portable
media players (PMPs).
A number of picture
files, MP3 files, and
movie files are created
and deleted.

2048 1,222,218

PMP 4G
4096 2,403,474

PC

This trace is extracted
from a real user activity
on the notebook of per-
sonal usage during one
week.

4096 2,724,393

As a special case, the least recently written U-block se-
lected in the previous step may have some free page slots.
This happens when the superblock includes only one U-
block. In this case, most pages are cold and stored in D-
blocks, while only a small number of hot pages stay in the
U-block. Since all the D-blocks are almost full, performing
the full merge operation between two D-blocks incurs high
overhead, and we have no choice but to partially merge the
U-block with one of D-blocks.

As described in the previous subsection, the number of U-
blocks and D-blocks allocated to a superblock is restricted
to eight due to the restriction in maintaining the mapping
information. Thus, when we are to allocate the ninth physi-
cal block to a superblock, the same garbage collection algo-
rithm is performed for the superblock to reclaim one of the
physical blocks.

5. PERFORMANCE EVALUATION
This section evaluates the performance of the proposed su-

perblock FTL scheme. For comparison, we have also evalu-
ated two previous block-mapped FTL schemes, the log block
scheme and FAST.

5.1 Evaluation methodology
We have implemented trace-driven simulators for the su-

perblock scheme, the log block scheme, and FAST. The
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Table 2: Access times large block NAND flash mem-
ory

Operation Access time

NAND Flash read time (µs/page) 129.72
NAND Flash write time (µs/page) 298.88
NAND Flash erase time (µs/block) 1,998.70
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Figure 9: The garbage collection overhead of the log
block scheme, FAST, and the superblock scheme.

workload is chosen to reflect the representative storage ac-
cess patterns for notebook computers and multimedia mo-
bile devices. Table 1 summarizes the characteristics of traces
used in this paper. These traces are extracted from disk ac-
cess logs of real user activities on FAT32 file system. Three
traces, PIC, MP3, and MOV, model the workload of digital
cameras, MP3 players, and movie players, respectively. We
also model the workload of portable media players (PMPs)
by creating and deleting various picture files, MP3 files, and
movie files. The PC trace is the storage access trace of a real
user during one week, which includes web surfing, word pro-
cessing, presentation, and playing games, MP3 songs, and
movies.

The sizes of NAND flash memory experimented are 2
Gbytes and 4 Gbytes. The simulators model the parameters
related to current technologies as exactly as possible. The
access times of large block NAND flash memory are summa-
rized in Table 2. These parameters are actually measured
on Samsung NAND flash chip model K9F1G16U0M.

The main performance metrics we use are the number of
erase operations and the number of valid pages copied during
garbage collection since they are the major factors limiting
the performance of FTL. The garbage collection overhead is
calculated based on the parameters shown in Table 2.

5.2 Overall performance
Unless otherwise stated, we performed our experiments in

the following conditions. The superblock size is four (N=4),
and the number of cache entries is 16. The number of avail-
able U-blocks is 3.1% of the number of D-blocks, hence the
number of D-blocks is 16,384 and that of U-blocks is 512 in
2 Gbytes large block NAND flash memory.

Figure 9 depicts the garbage collection overhead for each
block-mapped FTL scheme. There are three bars for each
trace, which corresponds to the log block scheme, FAST,
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Figure 10: The cumulative distribution function
(CDF) of the number of written pages in each victim
block (PC trace).

and the superblock scheme, respectively. We breakdown the
garbage collection overhead according to the time spent on
cache manipulation, valid page copy, and erase operations.

Overall, the superblock scheme exhibits noticeably shorter
garbage collection overhead than other schemes. The su-
perblock scheme outperforms FAST by reducing the garbage
collection overhead by 32% – 40% over the whole trace. In
particular, we can observe that most of the benefits come
from the decrease in the number valid pages copied during
garbage collection; the superblock scheme reduces the time
spent on valid page copy by 37% – 44% compared to FAST.

Notice that the cache manipulation time in the superblock
scheme is negligible. This also includes the time to manage
the page-mapping information stored in three-level mapping
tables, but the overhead is only 2.3% – 2.9% of the total
garbage collection overhead. From these results, we can see
that the superblock scheme is indeed quite effective in re-
ducing the garbage collection overhead, while imposing very
little management overhead. As varying the trace does not
change the trend of overall performance, we only show the
results for PC trace in the following discussions.

The storage utilization is an important factor that affects
the performance of FTL, since the lower storage utilization
leads to more frequent garbage collection. To investigate the
impact of each FTL scheme on the storage utilization, we
have measured the number of written pages in each U-block,
when the block is selected as a victim. Figure 10 illustrates
the cumulative distribution function (CDF) of the measured
values for PC trace.

Figure 10 shows that most of victim blocks are either full
or occupied by less than 4 pages. Because a physical block
has 64 pages in large block NAND flash memory, the value
for 64 pages in Figure 10 indicates the percentage of the
blocks that was full of written pages. For the log block
scheme, about 65% of the blocks were fully used when they
were selected as victims during garbage collection. As ex-
pected, FAST shows the better storage utilization compared
to the log block scheme due to the increased degree of shar-
ing; the percentage of the fully used blocks is increased to
75% in FAST.

Note that the percentage of the fully used blocks for the
superblock scheme is about 85%, which is significantly better
than that of FAST. This is very interesting because U-blocks
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are shared by all the logical blocks in FAST, while they are
shared only by the logical blocks within the same superblock
in the superblock scheme. Our measurement shows that this
is caused by a shortcoming inherent in FAST. FAST has se-
quential log blocks to optimize for a sequential write pattern.
Unlike the other (random) log blocks, these sequential log
blocks are assigned to a dedicated logical block as same as
the log block scheme. In case the prediction of the sequen-
tial access pattern is wrong, the sequential log block can be
merged even though the block is not full. The superblock
scheme does not have such a problem, since several adja-
cent logical blocks in a superblock always share a U-block.
Therefore, we can see that the proposed superblock scheme
is a more effective and more robust way of exploiting the
block-level spatial locality.

Figure 11 compares the execution time spent on erase op-
erations in detail according to the type of the merge opera-
tion: full merge, partial merge, and switch merge.

We can find that, in the superblock scheme, 72% more
erase operations are caused by the switch merge compared
to FAST. This is because the superblock scheme shares D-
blocks and U-blocks among several logical blocks and orga-
nizes all physical blocks with an out-of-place scheme, which
increases the chance of the switch merge. On the other hand,
erase operations caused by the full merge are significantly
reduced in the superblock scheme. When the pages are not
sequentially aligned in a U-block, the log block scheme and
FAST need to perform the full merge operation to maintain
D-blocks with an in-place scheme. However, the superblock
scheme can switch the U-block to a new D-block, simply
converting the full merge into the switch merge.

5.3 The effect of the number of U-blocks
Figure 12 shows the garbage collection overhead for each

block-mapped scheme when the amount of U-blocks is varied
from 16 (0.05% of the number of D-blocks) to 2048 (6.25%
of the number of D-blocks). Again, three bars correspond
to the results of the log block scheme, FAST, and the su-
perblock scheme, respectively. As the amount of U-blocks is
raised, the garbage collection overhead of all schemes is low-
ered. This is an expected result since the chance of garbage
collection decreases as there are more free blocks.

When the amount of U-blocks is 16, FAST indicates the
better performance than the superblock scheme. The su-
perblock scheme cannot exploit the advantage of block-level
temporal and spatial locality with a small number of U-
blocks. This leads to more frequent garbage collection due
to the lower storage utilization. However, as the amount
of U-blocks grows, the superblock scheme shows the much
better performance than FAST.
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Figure 12: The impact of the number of U-blocks
on the garbage collection overhead (PC trace).
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Figure 13: The impact of the superblock size on the
garbage collection overhead (PC trace).

5.4 The effect of the superblock size
Figure 13 investigates the impact of the superblock size

on the garbage collection overhead. For this experiment, we
held all the page-mapping information in RAM without stor-
ing them in the spare area, since the current implementation
cannot support the superblock size greater than eight.

Note that the garbage collection overhead is reduced by
16% compared to FAST even when the superblock size is
one. The performance gain is largely resulted from organiz-
ing D-blocks with an out-of-place scheme.

As superblock size grows from 1 to 32, the garbage col-
lection overhead is decreased because the storage utilization
of U-blocks increases due to the block-level spatial local-
ity. This reduces the number of garbage collection invoked.
When the superblock size is 32, the garbage collection over-
head is decreased by 23% compared to the result with the
superblock size 1.

However, from the case that the superblock size is 64, the
garbage collection overhead increases slowly. This is because
the larger degree of sharing tends to increase the chance of
full merge operation and to cause more valid page copies and
erase operations to make a free block. In the worst case, we
must relocate all valid pages in a superblock. Figure 13
shows that increasing the superblock size above 4 has only
marginal benefits.
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5.5 The effect of the cache size
Figure 14 presents the change of the cache hit ratios when

the number of cache entries increases from 16 to 1024. Note
that the hit ratio of the smallest cache size is more than 93%
for all types of requests. This shows that the block-level tem-
poral locality and page-level spatial locality are very high in
the tested workload.

As the number of cache entries increases from 16 to 1024,
the improvement of hit ratio is 1.2% at most (note the scale
of the y-axis). Therefore, 16 cache entries are sufficient in
most cases.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel FTL scheme for NAND

flash memory, which we call a superblock FTL scheme. In
the superblock scheme, we still use the block mapping at
the superblock level, but we allow logical pages within a su-
perblock to be freely located in one of the allocated physical
blocks. This hybrid mapping techniques has the flexibility
provided by fine-grain address translation, while reducing
the memory overhead to the level of coarse-grain address
translation. The superblock scheme reduces the number of
garbage collections invoked, as well as increases chances of
switch merge operations instead of expensive full merge op-
erations. The hybrid mapping technique makes use of spare
areas in NAND flash memory to store page-mapping infor-
mation so as not to incur any additional overhead in term
of space and flash memory operations.

In addition, using the notion of the superblock is quite
effective in exploiting both of the block-level temporal lo-
cality and the block-level spatial locality. Especially, the
superblock FTL scheme can easily control the degree of shar-
ing by adjusting the superblock size according to the block-
level spatial locality. As the degree of sharing increases, the
chance of garbage collection falls due to the increased stor-
age utilization, but the chance of the full merge operation
rises. In our experiment, the superblock size of 2 or 4 worked
very well in most cases.

From our results, the proposed FTL scheme decreases the
garbage collection overhead up to 40% in compared to previ-
ous FTL schemes with roughly the same memory overhead.

For future work, we are going to design a mechanism,

which constructs the first-level mapping table (PGD) in
RAM as quickly as possible for fast startup. We also plan to
investigate how to achieve the power-off recovery effectively
under our FTL scheme.
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